

DA-05612-001_v1.5 | May 2011

Application Note

TUNING CUDA APPLICATIONS
FOR FERMI

www.nvidia.com

Tuning CUDA Applications for Fermi DA-05612-001_v1.5 | ii

DOCUMENT CHANGE HISTORY

DA-05612-001_v1.5

Version Date Authors Description of Change

1.0 CZ,CW Initial public release.

1.1

1.2

1.3

 CW See Appendix A.

1.4 December 6, 2010 TechPubs Updated template and made minor edits.

1.5 May 3, 2011 CW Updated cross-references.

www.nvidia.com

Tuning CUDA Applications for Fermi DA-05612-001_v1.5 | iii

TABLE OF CONTENTS

Tuning CUDA Applications for Fermi ... 1

Next-Generation CUDA Compute Architecture ... 1

CUDA Best Practices .. 2

Application Compatibility .. 2

Fermi Tuning .. 2

Device Utilization .. 2

L1 Cache .. 3

Global Memory ... 3

Shared Memory .. 4

Constant Cache .. 4

32-Bit Integer Multiplication ... 4

IEEE 754-2008 Compliance .. 4

C++ Support ... 5

Advanced Functions ... 5

References ... 6

Appendix A .. 7

Version 1.1 ... 7

Version 1.2 ... 7

Version 1.3 ... 7

www.nvidia.com

Tuning CUDA Applications for Fermi DA-05612-001_v1.5 | 1

TUNING CUDA APPLICATIONS FOR FERMI

NEXT-GENERATION CUDA COMPUTE

ARCHITECTURE

The NVIDIA® Fermi architecture is a next-generation compute architecture for

NVIDIA® CUDA™ applications. This application note describes guidelines for

tuning your CUDA applications to the Fermi architecture. A detailed overview

of the major improvements in Fermi over the Tesla architecture introduced in

2006 with G80 and later revised with GT200 in 20081 are described in a Fermi

whitepaper [1] entitled, “NVIDIA’s Next Generation CUDA Compute Architecture:

Fermi.”

Since the Fermi and Tesla architectures are both CUDA compute architectures,

the programming model is the same for both, and applications that follow the

best practices for the Tesla architecture should typically see speedups on the

Fermi architecture without any code changes, particularly for computations that

are limited by double-precision floating-point performance.

An overview on how to tune applications for Fermi to further increase these

speedups is provided. More details are available in the CUDA C Programming

Guide (version 3.2 and later) as noted throughout the document.

1 Here “Tesla” refers to the Tesla CUDA compute architecture rather the Tesla™ brand of

GPUs targeted to high performance computing. There are Tesla-branded products for

both the Tesla and Fermi architectures.

Tuning CUDA Applications for Fermi

www.nvidia.com

Tuning CUDA Applications for Fermi DA-05612-001_v1.5 | 2

CUDA BEST PRACTICES

The performance guidelines and best practices described in the CUDA C Programming

Guide [2] and the CUDA C Best Practices Guide [3] apply to all CUDA architectures.

Programmers must primarily focus on following those recommendations to achieve the

best performance.

The high-priority recommendations from those guides are as follows:

 Find ways to parallelize sequential code,

 Minimize data transfers between the host and the device,

 Adjust kernel launch configuration to maximize device utilization,

 Ensure global memory accesses are coalesced,

 Replace global memory accesses with shared memory accesses whenever possible,

 Avoid different execution paths within the same warp.

APPLICATION COMPATIBILITY

Before addressing the specific performance tuning issues covered in this guide,

developers should refer to the Fermi Compatibility Guide for CUDA Applications to ensure

that their applications are being compiled in a way that will be compatible with Fermi.

FERMI TUNING

All section references are to sections in the CUDA C Programming Guide 4.0.

Device Utilization

The only way to utilize all multiprocessors in a device of compute capability 1.x is to

launch a single kernel with at least as many thread blocks as there are multiprocessors in

the device (Section 5.2.2). Applications have more flexibility on devices of compute

capability 2.x, since these devices can execute multiple kernels concurrently (Section

3.2.5.3) and therefore allow applications to also fill the device with several smaller kernel

launches as opposed to a single larger one. This is done using CUDA streams (Section

3.2.5.5).

Tuning CUDA Applications for Fermi

www.nvidia.com

Tuning CUDA Applications for Fermi DA-05612-001_v1.5 | 3

L1 Cache

Devices of compute capability 2.x come with an L1/L2 cache hierarchy that is used to

cache local and global memory accesses. Programmers have some control over L1

caching:

 The same on-chip memory is used for both L1 and shared memory, and how much of

it is dedicated to L1 versus shared memory is configurable for each kernel call

(Section F.4.1);

 Global memory caching in L1 can be disabled at compile time (Section F.4.2);

 Local memory caching in L1 cannot be disabled (Section 5.3.2.2), but programmers

can control local memory usage by limiting the amount of variables that the compiler

is likely to place in local memory (Section 5.3.2.2) and by controlling register spilling

via the __launch_bounds()__ attribute (Section B.17) or the -maxrregcount

compiler option.

Experimentation is recommended to find out the best combination for a given kernel:

16 KB or 48 KB of L1 cache (and vice versa for shared memory) with or without global

memory caching in L1 and with more or less local memory usage. Kernels that use a lot

of local memory (e.g., for register spilling (Section 5.3.2.2)) could benefit from 48 KB of

L1 cache.

On devices of compute capability 1.x, some kernels can achieve a speedup when using

(cached) texture fetches rather than regular global memory loads (e.g., when the regular

loads do not coalesce well). Unless texture fetches provide other benefits such as address

calculations or texture filtering (Section 5.3.2.5), this optimization can be counter-

productive on devices of compute capability 2.x, however, since global memory loads

are cached in L1 and the L1 cache has higher bandwidth than the texture cache.

Global Memory

On devices of compute capability 1.x, global memory accesses are processed per half-

warp; on devices of compute capability 2.x, they are processed per warp. Adjusting

kernel launch configurations that assume per-half-warp accesses might therefore

improve performance. Two-dimensional thread blocks, for example, should have their

x-dimension be a multiple of the warp size as opposed to half the warp size so that each

warp addresses a single cache line when accessing global memory.

Fermi-based GPUs of the Tesla and Quadro product lines (e.g., Tesla C2050) support

ECC error correction, and ECC is enabled by default. While necessary for many scientific

and professional applications, ECC comes at the cost of reduced peak memory

bandwidth. With ECC enabled, effective peak bandwidth for global memory accesses is

reduced by approximately 20% (more for scattered writes). If ECC is not needed, it can

be disabled for improved performance using the nvidia-smi utility (or via Control Panel

Tuning CUDA Applications for Fermi

www.nvidia.com

Tuning CUDA Applications for Fermi DA-05612-001_v1.5 | 4

on Microsoft Windows systems). Note that toggling ECC on or off requires a reboot to

take effect.

Shared Memory

The multiprocessor of devices of compute capability 2.x can be configured to have 48 KB

of shared memory (Section F.4.1), which is three times more than in devices of compute

capability 1.x. Kernels for which shared memory size is a performance limiter can

benefit from this, either by increasing the number of resident blocks per multiprocessor

(Section 4.2), or by increasing the amount of shared memory per thread block and

adjusting the kernel launch configuration accordingly.

On devices of compute capability 1.x, shared memory has 16 banks and accesses are

processed per half-warp; on devices of compute capability 2.x, shared memory has 32

banks and accesses are processed per warp (Section F.4.3). Bank conflicts can therefore

occur between threads belonging to the first half of a warp and threads belonging to the

second half of the same warp on devices of compute capability 2.x, and data layout in

shared memory (e.g. padded arrays) might need to be adjusted to avoid bank conflicts.

The shared memory hardware is improved on devices of compute capability 2.x to

support multiple broadcast words and to generate fewer bank conflicts for accesses of 8-

bits, 16-bits, 64-bits, or 128-bits per thread (Section F.4.3).

Constant Cache

In addition to the constant memory space supported by devices of all compute

capabilities (where __constant__ variables reside), devices of compute capability 2.x

support the LDU (LoaD Uniform) instruction that the compiler can use to load any

variable via the constant cache under certain circumstances (Section F.4.4).

32-Bit Integer Multiplication

On devices of compute capability 1.x, 32-bit integer multiplication is implemented using

multiple instructions as it is not natively supported. 24-bit integer multiplication is

natively supported via the __[u]mul24 intrinsic.

On devices of compute capability 2.x, however, 32-bit integer multiplication is natively

supported, but 24-bit integer multiplication is not. __[u]mul24 is therefore implemented

using multiple instructions and should not be used (Section 5.4.1).

IEEE 754-2008 Compliance

Devices of compute capability 2.x have far fewer deviations from the IEEE 754-2008

floating point standard than devices of compute capability 1.x, particularly in single

Tuning CUDA Applications for Fermi

www.nvidia.com

Tuning CUDA Applications for Fermi DA-05612-001_v1.5 | 5

precision (Section F.2). This can cause slight changes in numeric results between devices

of compute capability 1.x and devices of compute capability 2.x.

In particular, addition and multiplication are often combined into an FMAD instruction

on devices of compute capability 1.x, which is not IEEE compliant, whereas they would

be combined into an FFMA instruction on devices of compute capability 2.x, which is

IEEE compliant.

By default nvcc generates IEEE compliant code, but it also provides options to generate

code for devices of compute capability 2.x that is closer to the code generated for earlier

devices: -ftz=true (denormalized numbers are flushed to zero), -prec-div=false (less

precise division), and -prec-sqrt=false (less precise square root). Code compiled this way

tends to have higher performance than code compiled with the default settings

(Section 5.4.1).

C++ Support

Devices of compute capability 2.x support C++ classes with some restrictions, which are

detailed in Section D.2 of the programming guide.

Advanced Functions

Devices of compute capability 2.x support additional advanced intrinsic functions:

 Another memory fence function: __threadfence_system()(Section B.5),

 Variants of the __syncthreads() synchronization function: __syncthreads_count(),

__syncthreads_and(), and __syncthreads_or() (Section B.6),

 Surface functions (Section B.9),

 Floating-point atomic addition operating on 32-bit words in global and shared

memory (Section B.11.1.1),

 Another warp vote function: __ballot() (Section B.12).

 Atomic functions have higher throughput on devices of compute capability 2.x than

on earlier devices.

Tuning CUDA Applications for Fermi

www.nvidia.com

Tuning CUDA Applications for Fermi DA-05612-001_v1.5 | 6

REFERENCES

[1] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitect

ureWhitepaper.pdf.

[2] NVIDIA CUDA C Programming Guide from CUDA Toolkit 4.0.

[3] NVIDIA CUDA C Best Practices Guide from CUDA Toolkit 4.0.

[4] NVIDIA CUDA Reference Manual from CUDA Toolkit 4.0.

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf

www.nvidia.com

Tuning CUDA Applications for Fermi DA-05612-001_v1.5 | 7

APPENDIX A

VERSION 1.1

 Clarified discussion of 32-bit versus 64-bit device code.

VERSION 1.2

 For CUDA Driver API applications, the use of 32-bit device code within a 64-bit host

application is no longer recommended, as support for this mixed-bitness mode was

removed in CUDA Toolkit 3.2. (Note that the CUDA Runtime API already required

that the device code and host code have matching bitness.)

VERSION 1.3

 Added reference to surface functions under Advanced Functions.

 Updated cross-references to CUDA C Programming Guide.

 Updated references to compute capability 2.0 to 2.x.

 Added discussion of ECC to Global Memory section.

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO

WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND

EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other

rights of third parties that may result from its use. No license is granted by implication of otherwise under

any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA

Corporation products are not authorized as critical components in life support devices or systems without

express written approval of NVIDIA Corporation.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, Tesla, and Quadro are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names may be trademarks of the

respective companies with which they are associated.

Copyright

© 2011 NVIDIA Corporation. All rights reserved.

	Tuning CUDA Applications for Fermi
	Next-Generation CUDA Compute Architecture
	CUDA Best Practices
	Application Compatibility
	Fermi Tuning
	Device Utilization
	L1 Cache
	Global Memory
	Shared Memory
	Constant Cache
	32-Bit Integer Multiplication
	IEEE 754-2008 Compliance
	C++ Support
	Advanced Functions

	References

	Appendix A
	Version 1.1
	Version 1.2
	Version 1.3

