
 

 

March 3, 2011 

 

Technical Brief 

CUDA TOOLKIT 4.0 READINESS 
FOR CUDA APPLICATIONS 

  



 

 
CUDA TOOLKIT 4.0 READINESS FOR CUDA APPLICATIONS 2 

TECHNICAL BRIEF 

INTRODUCTION 

In NVIDIA® CUDATM Toolkit version 4.0, a major emphasis has been placed on 

improving the programmability of multi-threaded and multi-GPU applications and on 

improving the ease of porting existing code to CUDA C/C++.  This document describes 

the key API changes and improvements that have been made toward that end, 

particularly where they have the potential to impact existing applications. 

This document also highlights a few of the improvements that have been made to the 

libraries bundled with the CUDA Toolkit. 

For a complete listing of new features, please refer to the CUDA Toolkit Release Notes; 

for complete documentation of CUDA APIs, please refer to the CUDA Toolkit Reference 

Manual, the CUDA C Programming Guide, and the CUDA library documentation. 

  



TECHNICAL BRIEF 

 
CUDA TOOLKIT 4.0 READINESS FOR CUDA APPLICATIONS 3 

MULTI-GPU PROGRAMMING 

In CUDA Toolkit 3.2 and earlier, there were two basic approaches available to execute 

CUDA kernels on multiple GPUs (CUDA “devices”) concurrently from a single host 

application: 

 Use one host thread per device, since any given host thread can call cudaSetDevice() 

at most one time. 

 Use the push/pop context functions provided by the CUDA Driver API. 

For applications that do not require tight coupling of the various CUDA devices within a 

system (e.g., when the devices are processing independent data sets with little need to 

communicate or synchronize with each other), these approaches were often sufficient. 

However, for applications that need a tighter coupling of the execution of work across 

devices, or where the use of multiple host threads is otherwise inconvenient, it would 

sometimes be better if a single host thread could easily launch work onto any devices it 

needed. 

CUDA Runtime API 
The CUDA Runtime now provides a native means to accomplish this: a host thread can 

simply call cudaSetDevice() at any time (rather than just once at the beginning of the 

program) to change the currently active device.  This has the following consequences: 

 Kernel launches will be executed on the currently selected device. 

 Memory allocations will be made on the currently selected device. 

 Streams and events created will be associated with the currently selected device.1 

For example: 

cudaSetDevice(0);      // start on device 0 

cudaMalloc(&p0, size); // allocate memory for p0 on device 0 

K0<<<1,1>>>(p0);       // launch kernel K0 on device 0 

 

cudaSetDevice(1);      // switch to device 1 (Not legal in CUDA 3.x!) 

cudaMalloc(&p1, size); // allocate memory for p1 on device 1 

K1<<<1,1>>>(p1);       // launch kernel K1 on device 1 

Also, note that since a host thread can now control more than one device, the 

cudaThread*() functions (e.g., cudaThreadSynchronize()) no longer have names that 

match their functionality.  For this reason, these functions have been replaced with 

cudaDevice*() functions of similar names and functionality (e.g., 

cudaThreadSynchronize() is now cudaDeviceSynchronize()).  The old function names 

remain but are now deprecated; code using the old names will trigger a compile-time 

warning. 

                                                   

1 This restriction might be removed in a future version of the CUDA Toolkit. 



TECHNICAL BRIEF 

 
CUDA TOOLKIT 4.0 READINESS FOR CUDA APPLICATIONS 4 

CUDA Driver API 
While the CUDA Driver API prior to version 4.0 already provided a way to access 

multiple devices from within a single host thread (namely cuCtxPushCurrent() and 

cuCtxPopCurrent()), feedback from CUDA application developers showed that a set/get 

context management interface would in some cases be more convenient than the 

push/pop stack-based paradigm. 

Consider the case where a given host thread needs to cycle through a set of devices.  

With the stack-based interface, operating on device 0 and then device 1 requires two 

pairs of API calls: push(ctx0); pop(ctx0); push(ctx1); pop(ctx1).  With a set/get 

interface, this would become simply set(ctx0); set(ctx1). 

With this in mind, cuCtxSetCurrent() and cuCtxGetCurrent() have been added to 

version 4.0 of the CUDA Driver API in addition to the existing cuCtxPushCurrent() and 

cuCtxPopCurrent() functions. 

Unified Virtual Addressing and GPUDirect™ v2.0 
Additional features have been added to CUDA Toolkit version 4.0 to ease 

programmability of multi-GPU environments for NVIDIA Fermi GPUs running in 64-bit 

mode on Linux or on Windows in TCC mode. 

Unified Virtual Addressing (UVA) allows the system memory and the one or more 

device memories in a system to share a single virtual address space.  This allows the 

CUDA Driver to determine the physical memory space to which a particular pointer 

refers by inspection, which simplifies the APIs of functions such as cudaMemcpy(), since 

the application need no longer keep track of which pointers refer to which memory. 

Built on top of UVA, GPUDirect v2.0 provides for direct peer-to-peer communication 

among the multiple devices in a system. 

Inter-Device Coupling 
The cudaStreamWaitEvent() function now allows synchronizing across streams from 

different contexts, including streams for different devices.  In conjunction with the 

features listed above, this allows for much simpler inter-device coupling. 

For example, consider an iterative application that executes kernels on two or more 

devices, synchronizes the devices, exchanges the boundary (halo) data among the 

devices, synchronizes again, and then repeats.  Prior to version 4.0, this would have 

required separate host threads (one per device), and it would have required those host 

threads to somehow synchronize with each other as well as to arrange the inter-context 

data transfer.  With version 4.0, however, a single host thread can accomplish this quite 

easily with a simple for() loop: 



TECHNICAL BRIEF 

 
CUDA TOOLKIT 4.0 READINESS FOR CUDA APPLICATIONS 5 

for (int i=0; i<iterations; i++) 

{ 

    // Launch kernels on each device and record events to let 

    // us know when the kernels launches complete 

    cudaSetDevice(0); 

    kernel<<<grid, block, 0, stream0>>>(cells0, halo0, halo1dst); 

    cudaEventRecord(event0, stream0); 

    cudaSetDevice(1); 

    kernel<<<grid, block, 0, stream1>>>(cells1, halo1, halo0dst); 

    cudaEventRecord(event1, stream1); 

 

    // Synchronize the devices with each other 

    cudaStreamWaitEvent(stream0, event1); 

    cudaStreamWaitEvent(stream1, event0); 

 

    // Set up asynchronous copies to transfer the boundary (halo) 

    // data from each device to the other, and again record events 

    // to signal completion.  Note: the use of cudaMemcpyAsync() in 

    // this way instead of cudaMemcpyPeerAsync() assumes UVA support. 

    cudaMemcpyAsync(halo1dst, halo1, size, cudaMemcpyDefault, stream0); 

    cudaMemcpyAsync(halo0dst, halo0, size, cudaMemcpyDefault, stream1); 

    cudaEventRecord(event0, stream0); 

    cudaEventRecord(event1, stream1); 

  

    // Synchronize the devices with each other 

    cudaStreamWaitEvent(stream0, event1); 

    cudaStreamWaitEvent(stream1, event0); 

} 

MULTI-THREADED PROGRAMMING 

Another common scenario is when multiple host threads in a multi-threaded application 

want to share access to a single device.  In version 4.0, major changes have gone in to 

both the CUDA Runtime and the CUDA Driver to improve this: 

CUDA Runtime API 
Prior to version 4.0 of the CUDA Runtime, each host thread accessing a particular device 

would get its own context to (view of) that device.  As a consequence, it was not possible 

to share memory objects, events, and so forth across host threads, even when they were 

referring to the same device. 

In version 4.0, host threads within a given process that access a particular device 

automatically share a single context to that device, rather than each having its own 

context.  In other words, the new model for runtime applications is one context per device 

per process. 



TECHNICAL BRIEF 

 
CUDA TOOLKIT 4.0 READINESS FOR CUDA APPLICATIONS 6 

As an example, consider the following code listing: 

   Host Thread A                 Host Thread B 

 

   cudaSetDevice(0);             cudaSetDevice(0); 

   cudaMalloc(&p0, size); 

   pthread_barrier_wait(b);      pthread_barrier_wait(b); 

                                 K0<<<1,1>>>(p0); 

                                 cudaFree(p0); 

 

This example is an invalid program with version 3.2 and earlier, because host threads A 

and B would have separate contexts and consequently separate address spaces, so p0 

would be an invalid pointer in thread B.  This is a valid program in version 4.0, however, 

because host threads A and B will use the same context. 

This has several important ramifications for multi-threaded processes: 

 Host threads can now share device memory allocations, streams, events, or any other 

per-context objects (as seen above). 

 Concurrent kernel execution on devices of compute capability 2.x is now possible 

across host threads, rather than just within a single host thread.  Note that this 

requires the use of separate streams; unless streams are specified, the kernels will be 

executed sequentially on the device in the order they were launched.  In all cases, 

kernel launch via the <<<>>> notation is a thread-safe operation. 

 cudaGetLastError() is per-host-thread: it returns the last error returned by an API 

call in that host thread, even if other host threads are concurrently accessing the 

same device. 

 IMPORTANT: Host threads now share __global__, __constant__, and other file-

scoped variables within .cu files.  If an application previously depended on each 

host thread getting its own instance of these variables, this assumption is now 

broken.  (As a workaround, such applications could explicitly create separate 

contexts for each host thread by calling cuCtxCreate() at the beginning of each host 

thread.) 

 IMPORTANT: If one host thread calls cudaThreadExit(), the context will be torn 

down immediately, even if other host threads are still using it.  It is the 

application’s responsibility to ensure that all host threads are finished with the 

device before calling this function.  If any CUDA Runtime API calls are made 

subsequent to cudaThreadExit(), a new context will be created, and any references to 

objects created in the earlier context will be invalid.  To make it more clear that this is 

the expected behavior of this function, cudaThreadExit() has been renamed to 

cudaDeviceReset() (the older function name still exists but is now deprecated).  This 

issue is of particular importance because in prior versions of the CUDA Toolkit, the 

recommended best practice was for an application to explicitly call cudaThreadExit() 

when cleaning itself up prior to exit.  The general idea remains valid: an application 

should, as a best practice, call either cudaDeviceSynchronize() or cudaDeviceReset() 

prior to terminating (allowing the flushing of profiler buffers and other graceful 



TECHNICAL BRIEF 

 
CUDA TOOLKIT 4.0 READINESS FOR CUDA APPLICATIONS 7 

cleanups to occur); however, if cudaDeviceReset() is used for this, only one host 

thread per device should call it. 

CUDA Driver API 
While the CUDA Driver API prior to version 4.0 provided a way to hand off a context 

from one host thread to another, this still did not allow for concurrent access to that 

context from multiple host threads, in part because the CUDA Driver’s interface for 

launching kernel grids was stateful and therefore not thread-safe. 

In version 4.0, it is now legal for multiple host threads to set a particular context current 

simultaneously using either cuCtxSetCurrent() or cuCtxPushCurrent().  This has several 

important ramifications for multi-threaded processes: 

 Host threads can now share device memory allocations, streams, events, or any other 

per-context objects (as seen above). 

 Concurrent kernel execution devices of compute capability 2.x is now possible across 

host threads, rather than just within a single host thread.  Note that this requires the 

use of separate streams; unless streams are specified, the kernels will be executed 

sequentially on the device in the order they were launched. 

 IMPORTANT: For thread-safety, host threads launching kernels in the same context 

concurrently must use the new thread-safe stateless launch API function 

cuLaunchKernel(), which takes the place of the more verbose earlier API (i.e., 

cuParamSet*() + cuFuncSetBlockShape() + cuFuncSetSharedSize() + cuLaunchGrid()).  

Note that with this new API, kernel grid launches in the CUDA Driver API more 

closely resemble kernel launches via the <<<>>> syntax of the CUDA Runtime API. 

Compute-exclusive mode for multi-threaded applications 

The “compute-exclusive mode” for a device (settable via nvidia-smi) previously allowed 

no more than one context used by a single thread of one process to access the device at 

any given time.  This mode has been renamed to “compute-exclusive-thread mode” and 

retains the same functionality.  A new mode named “compute-exclusive-process mode” 

has been added wherein the threads of a single process (sharing one context) can access 

the device at any particular time. 



TECHNICAL BRIEF 

 
CUDA TOOLKIT 4.0 READINESS FOR CUDA APPLICATIONS 8 

PORTING CODE TO CUDA C/C++ 

Following are a few of the key features that have been added to CUDA Toolkit 4.0 that 

can help improve the porting of existing applications to CUDA C or CUDA C++: 

 CUDA C++ now supports operator new and operator delete on devices of compute 

capability 2.x. 

 Classes in CUDA C++ now support virtual functions on devices of compute 

capability 2.x. 

 CUDA C/C++ now support the inlining of PTX assembly into device code using the 

asm() construct. 

 The CUDA Driver and CUDA Runtime APIs now support no-copy, after-the-fact 

pinning of arbitrary buffers in system memory.  In other words, the decision to pin 

the memory using the CUDA APIs no longer needs to be made at the time the buffer 

is allocated (using cudaHostAlloc()).  This decoupling of allocation from pinning 

should be helpful in applications where memory allocation is done well ahead of the 

point at which the decision to copy the contents of that memory to the device is 

made. 

 CUDA C/C++ now support layered textures, which are a type of texture that holds a 

group of some other type of texture. Note that the various layers of the layered 

texture must be textures of the same type, size and format and that filtering is done 

only within each layer and not across layers. 

 Kernel launches using the CUDA Runtime’s <<<>>> and the new stateless launch 

API in the CUDA Driver now both support three-dimensional grids of thread blocks 

on Fermi GPUs, which should simplify the porting of algorithms that naturally map 

to 3D domains to CUDA C/C++. 

CUDA TOOLKIT LIBRARIES 

 The CUBLAS library now supports a new API that is thread-safe and allows the 

application to more easily take advantage of parallelism using streams, especially for 

functions with scalar return parameters.  This new API allows CUBLAS to work 

cleanly with applications using the new multi-threading features of CUDA Runtime 

4.0.  The legacy CUBLAS API is still supported, but it is not thread-safe and does not 

offer as many opportunities for parallelism with streams as the new API. 

 IMPORTANT: The CUFFT library is not yet thread-safe and therefore cannot safely 

access the same device context from multiple host threads concurrently.  This 

restriction will be removed in a future release of the CUDA Toolkit. 

 The CURAND library now supports double precision Sobol, scrambled Sobol, log-

normal distributions, and a faster setup technique for XORWOW. 



TECHNICAL BRIEF 

 
CUDA TOOLKIT 4.0 READINESS FOR CUDA APPLICATIONS 9 

 The CUFFT and CUBLAS library APIs now include functions that will report the 

library’s version number. 

 The CUSPARSE library now provides a solver for triangular sparse linear systems 

via the cusparse*csrsv_analysis() and cusparse*csrsv_solve() API functions. 

 The Thrust template library and the NPP image processing library are now bundled 

with the CUDA Toolkit, with no additional download required. 

 Some API functions in the NPP library were changed to pass results via device 

pointer instead of via host pointer for consistency with all of the rest of the NPP API. 



 

www.nvidia.com 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER 

DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO 

WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND 

EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR 

A PARTICULAR PURPOSE.  

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 

responsibility for the consequences of use of such information or for any infringement of patents or other 

rights of third parties that may result from its use. No license is granted by implication of otherwise under 

any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change 

without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA 

Corporation products are not authorized as critical components in life support devices or systems without 

express written approval of NVIDIA Corporation. 

Trademarks 

NVIDIA, the NVIDIA logo, GeForce, Tesla, and Quadro are trademarks or registered trademarks of NVIDIA 

Corporation in the U.S. and other countries. Other company and product names may be trademarks of the 

respective companies with which they are associated. 

Copyright  

© 2011 NVIDIA Corporation. All rights reserved.  


	TECHNICAL BRIEF
	Introduction
	Multi-GPU Programming
	CUDA Runtime API
	CUDA Driver API
	Unified Virtual Addressing and GPUDirect™ v2.0
	Inter-Device Coupling

	Multi-threaded Programming
	CUDA Runtime API
	CUDA Driver API
	Compute-exclusive mode for multi-threaded applications

	Porting Code to CUDA C/C++
	CUDA Toolkit Libraries


