
 

 
 

June 2010 

 

 

 

 

 

 

 

 

 

 

Optimizing Matrix 
Transpose in CUDA 

Greg Ruetsch 
   gruetsch@nvidia.com 

   Paulius Micikevicius 
   pauliusm@nvidia.com 

 

  

 
 
 



 
 

 
     ii 

 



 

 
 

 
  

  June 2010   3

Chapter 1. 
Introduction 

Optimizing CUDA Memory 
Management in Matrix 
Transpose 

This document discusses aspects of CUDA application 
performance related to efficient use of GPU memories and data 
management as applied to a matrix transpose.  In particular, this 
document discusses the following issues of memory usage: 
 coalescing data transfers to and from global memory 
 shared memory bank conflicts 
 partition camping 
There are other aspects of efficient memory usage not discussed 
here, such as data transfers between host and device, as well as 
constant and texture memories. 
Both coalescing and partition camping deal with data transfers 
between global device and on-chip memories, while shared 
memory bank conflicts deal with on-chip shared memory.  We 
should mention here that the performance degradation in the 
matrix transpose due to partition camping only occurs in 
architectures with compute capabilities less than 2.0, such as the 
8- and 10-series architectures. 
The reader should be familiar with basic CUDA programming 
concepts such as kernels, threads, and blocks, as well as a basic 
understanding of the different memory spaces accessible by CUDA 
threads.  A good introduction to CUDA programming is given in 
the CUDA Programming Guide as well as other resources on CUDA 
Zone (http://www.nvidia.com/cuda). 
The matrix transpose problem statement is given next, followed by 
a brief discussion of performance metrics, after which the 
remainder of the document presents a sequence of CUDA matrix 
transpose kernels which progressively address various 
performance bottlenecks.  



Optimizing Matrix Transpose in CUDA 

 
   
4 June 2010 

   

Matrix Transpose Characteristics 

In this document we optimize a transpose of a matrix of floats that 
operates out-of-place, i.e. the input and output matrices address 
separate memory locations.  For simplicity and brevity in 
presentation, we consider only square matrices whose dimensions 
are integral multiples of 32 on a side, the tile size, through the 
document. However, modifications of code required to 
accommodate matrices of arbitrary size are straightforward.  

Code Highlights and Performance Measurements 

The host code for all the transpose cases is given in Appendix A.  
The host code performs typical tasks: data allocation and transfer 
between host and device, the launching and timing of several 
kernels, result validation, and the deallocation of host and device 
memory. 
In addition to different matrix transposes, we run kernels that 
execute matrix copies.  The performance of the matrix copies 
serve as benchmarks that we would like the matrix transpose to 
achieve.   
For both the matrix copy and transpose, the relevant performance 
metric is the effective bandwidth, calculated in GB/s as twice the 
size of the matrix – once for reading the matrix and once for 
writing – divided by the time of execution.  Since timing is 
performed in loops executed NUM_REPS times, which is defined at 
the top of the code, the effective bandwidth is also normalized by 
NUM_REPS. 

Looping NUM_REPS times over code for measurement is done in 
two different fashions: looping over kernel launches, and looping 
within the kernel over the load and stores.  The host code for these 
measurements is given below: 
// take measurements for loop over kernel launches 
    cudaEventRecord(start, 0); 
    for (int i=0; i < NUM_REPS; i++) { 
      kernel<<<grid, threads>>>(d_odata, d_idata,size_x,size_y,1); 
    } 
    cudaEventRecord(stop, 0); 
    cudaEventSynchronize(stop); 
    float outerTime; 
    cudaEventElapsedTime(&outerTime, start, stop);     
 
    ... 
 
 // take measurements for loop inside kernel 
    cudaEventRecord(start, 0); 



Optimizing Matrix Transpose in CUDA 

 
   

  June 2010   5 

    kernel<<<grid,threads>>> 
        (d_odata, d_idata, size_x, size_y, NUM_REPS); 
    cudaEventRecord(stop, 0); 
    cudaEventSynchronize(stop); 
    float innerTime; 
    cudaEventElapsedTime(&innerTime, start, stop);     
 

The first timing is done by a for loop in the host code, the second 
by passing NUM_REPS as a parameter to the kernel.  A simple copy 
kernel is shown below:  
 
__global__ void copy(float *odata, float* idata, int width,  
                                     int height, int nreps) 
{ 
  int xIndex = blockIdx.x*TILE_DIM + threadIdx.x; 
  int yIndex = blockIdx.y*TILE_DIM + threadIdx.y; 
 
  int index  = xIndex + width*yIndex; 
  for (int r=0; r < nreps; r++) { 
    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 
      odata[index+i*width] = idata[index+i*width]; 
    } 
  } 
} 

 
The difference between these two timings is the overhead of the 
kernel launch, which should be consistent between different 
kernels, as well as the time spent in calculating the matrix indices 
at the beginning of each kernel.  In addition, looping over kernel 
launches also acts as a synchronization mechanism.  When the 
kernel is launched multiple times from a loop in host code, all 
blocks from one kernel launch must complete execution before 
any block of a following launch can begin.  As a result the set of 
active blocks and hence memory access patterns resets every loop 
iteration.  When the loop is performed within the kernels, the set 
of active thread blocks has more opportunity to diverge as 
execution progresses through the timing loop.   
Both methods of timing code provide useful measurements, the 
first indicating what one would typically use as an overall 
performance metric, and the second as a means of comparing the 
data movement times between kernels. 
In the following section we present different kernels called from 
the host code, each addressing different performance issues.  All 
kernels in this study launch thread blocks of dimension 32x8, 
where each block transposes (or copies) a tile of dimension 32x32.  
As such, the parameters TILE_DIM and BLOCK_ROWS are set to 32 
and 8, respectively.  Using a thread block with fewer threads than 
elements in a tile is advantageous for the matrix transpose in that 
each thread transposes several matrix elements, four in our case, 



Optimizing Matrix Transpose in CUDA 

 
   
6 June 2010 

and much of the cost of calculating the indices is amortized over 
these elements. 
 
 



 

 
 

 
  

  June 2010   7

2. Copy and Transpose Kernels 

Simple copy 

The first two cases we consider are a naïve transpose and simple 
copy, each using blocks of 32x8 threads on a 32x32 matrix tiles.  
The copy kernel was given in the previous section, and shows the 
basic layout for all of the kernels.  The first two arguments odata 
and idata are pointers to the input and output matrices, width 
and height are the matrix x and y dimensions, and nreps 
determines how many times the loop over data movement between 
matrices is performed.  In this kernel, the global 2D matrix indices 
xIndex and yIndex are calculated, which are in turn used to 
calculate index, the 1D index used by each thread to access 
matrix elements.   The loop over i adds additional offsets to 
index so that each thread copies multiple elements of the array, 
and the loop over r is used for timing the data transfer from input 
to output array multiple times. 

Naïve transpose 

The naïve transpose: 
__global__ void transposeNaive(float *odata, float* idata,  
                         int width, int height, int nreps) 
{ 
  int xIndex = blockIdx.x*TILE_DIM + threadIdx.x; 
  int yIndex = blockIdx.y*TILE_DIM + threadIdx.y; 
 
  int index_in  = xIndex + width * yIndex; 
  int index_out = yIndex + height * xIndex; 
  for (int r=0; r < nreps; r++) { 
    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 
      odata[index_out+i] = idata[index_in+i*width]; 
    } 
  } 
} 

is nearly identical to the copy kernel above, with the exception that  
index, the array index used to access elements in both input and 
output arrays for the copy kernel, is replaced by the two indices 
index_in (equivalent to index in the copy kernel), and 
index_out.  Each thread executing the kernel transposes four 



Optimizing Matrix Transpose in CUDA 

 
   
8 June 2010 

elements from one column of the input matrix to their transposed 
locations in one row of the output matrix.   
The performance of these two kernels on a 2048x2048 matrix 
using a GTX280 is given in the following table: 
 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Naïve Transpose 2.2 2.2 

 
The minor differences in code between the copy and naïve 
transpose kernels have a profound effect on performance - nearly 
two orders of magnitude.  This brings us to our first optimization 
technique: global memory coalescing.  

Coalesced Transpose 

Because device memory has a much higher latency and lower 
bandwidth than on-chip memory, special attention must be paid to 
how global memory accesses are performed, in our case loading 
data from idata and storing data in odata.  All global memory 
accesses by a half-warp of threads can be coalesced into one or 
two transactions if certain criteria are met.  These criteria depend 
on the compute capability of the device, which can be determined, 
for example, by running the deviceQuery SDK example.  For 
compute capabilities of 1.0 and 1.1, the following conditions are 
required for coalescing: 
 threads must access either 32- 64-, or 128-bit words, 

resulting in either one transaction (for 32- and 64-bit words) 
or two transactions (for 128-bit words) 

 All 16 words must lie in the same aligned segment of 64 or 128 
bytes for 32- and 64-bit words, and for 128-bit words the data 
must lie in two contiguous 128 byte aligned segments 

 The threads need to access words in sequence.  If the k-th 
thread is to access a word, it must access the k-th word, 
although not all threads need to participate. 

For devices with compute capabilities of 1.2, requirements for 
coalescing are relaxed.  Coalescing into a single transaction can 



Optimizing Matrix Transpose in CUDA 

 
   

  June 2010   9 

occur when data lies in 32-, 64-, and 128-byte aligned segments, 
regardless of the access pattern by threads within the segment.  In 
general, if a half-warp of threads access N segments of memory, N 
memory transactions are issued. 
In a nutshell, if a memory access coalesces on a device of compute 
capability 1.0 or 1.1, then it will coalesce on a device of compute 
capability 1.2 and higher.  If it doesn’t coalesce on a device of 
compute capability 1.0 or 1.1, then it may either completely 
coalesce or perhaps result in a reduced number of memory 
transactions, on a device of compute capability 1.2 or higher. 
For both the simple copy and naïve transpose, all loads from 
idata  coalesce on devices with any of the compute capabilities 
discussed above.  For each iteration within the i-loop, each half 
warp reads 16 contiguous 32-bit words, or one half of a row of a 
tile.  Allocating device memory through cudaMalloc() and 
choosing TILE_DIM to be a multiple of 16 ensures alignment with 
a segment of memory, therefore all loads are coalesced. 
Coalescing behavior differs between the simple copy and naïve 
transpose kernels when writing to odata.  For the simple copy, 
during each iteration of the i-loop, a half warp writes one half of a 
row of a tile in a coalesced manner.  In the case of the naïve 
transpose, for each iteration of the i-loop a half warp writes one 
half of a column of floats to different segments of memory, 
resulting in 16 separate memory transactions, regardless of the 
compute capability.   
The way to avoid uncoalesced global memory access is to read the 
data into shared memory, and have each half warp access 
noncontiguous locations in shared memory in order to write 
contiguous data to odata.  There is no performance penalty for 
noncontiguous access patters in shared memory as there is in 
global memory, however the above procedure requires that each 
element in a tile be accessed by different threads, so a 
__synchthreads() call is required to ensure that all reads from 
idata to shared memory have completed before writes from 
shared memory to odata commence.  A coalesced transpose is 
listed below: 
__global__ void transposeCoalesced(float *odata,  
            float *idata, int width, int height, int nreps) 
{ 
  __shared__ float tile[TILE_DIM][TILE_DIM]; 
 
  int xIndex = blockIdx.x*TILE_DIM + threadIdx.x; 
  int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;   
  int index_in = xIndex + (yIndex)*width; 
 
  xIndex = blockIdx.y * TILE_DIM + threadIdx.x; 
  yIndex = blockIdx.x * TILE_DIM + threadIdx.y; 
  int index_out = xIndex + (yIndex)*height; 



Optimizing Matrix Transpose in CUDA 

 
   
10 June 2010 

 
  for (int r=0; r < nreps; r++) { 
    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 
      tile[threadIdx.y+i][threadIdx.x] =  
        idata[index_in+i*width]; 
    } 
   
    __syncthreads(); 
   
    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 
      odata[index_out+i*height] =  
        tile[threadIdx.x][threadIdx.y+i]; 
    } 
  } 
} 

A depiction of the data flow of a half warp in the coalesced 
transpose kernel is given below.  The half warp writes four half 
rows of the idata matrix tile to the shared memory 32x32 array 
“tile” indicated by the yellow line segments.  After a 
__syncthreads() call to ensure all writes to tile are completed, 
the half warp writes four half columns of tile to four half rows of 
an odata matrix tile, indicated by the green line segments.   

 
 

 
 

 
With the improved access pattern to memory in odata, the writes 
are coalesced and we see an improved performance: 
 

idata odata 
tile 



Optimizing Matrix Transpose in CUDA 

 
   

  June 2010   11 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Naïve Transpose 2.2 2.2 

Coalesced Transpose 16.5 17.1 

 
While there is a dramatic increase in effective bandwidth of the 
coalesced transpose over the naïve transpose, there still remains a 
large performance gap between the coalesced transpose and the 
copy.  The additional indexing required by the transpose doesn’t 
appear to be the cause for the performance gap, since the results 
in the “Loop in kernel” column, where the index calculation is 
amortized over 100 iterations of the data movement, also shows a 
large performance difference.  One possible cause of this 
performance gap is the synchronization barrier required in the 
coalesced transpose.  This can be easily assessed using the 
following copy kernel which utilizes shared memory and contains a 
__syncthreads() call: 
__global__ void copySharedMem(float *odata, float *idata,  
                          int width, int height, int nreps) 
{ 
  __shared__ float tile[TILE_DIM][TILE_DIM]; 
 
  int xIndex = blockIdx.x*TILE_DIM + threadIdx.x; 
  int yIndex = blockIdx.y*TILE_DIM + threadIdx.y; 
   
  int index  = xIndex + width*yIndex; 
  for (int r=0; r < nreps; r++) { 
    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 
      tile[threadIdx.y+i][threadIdx.x] =  
        idata[index+i*width]; 
    } 
   
    __syncthreads(); 
   
    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 
      odata[index+i*width] =  
        tile[threadIdx.y+i][threadIdx.x]; 
    } 
  } 
} 

 
The __syncthreads() call is not needed for successful execution 
of this kernel, as threads do not share data, and is included only to 
assess the cost of the synchronization barrier in the coalesced 
transpose.  The results are shown in the following modified table: 



Optimizing Matrix Transpose in CUDA 

 
   
12 June 2010 

 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Shared Memory Copy 80.9 81.1 

Naïve Transpose 2.2 2.2 

Coalesced Transpose 16.5 17.1 

 
The shared memory copy results seem to suggest that the use of 
shared memory with a synchronization barrier has little effect on 
the performance, certainly as far as the “Loop in kernel” column 
indicates when comparing the simple copy and shared memory 
copy.  When comparing the coalesced transpose and shared 
memory copy kernels, however, there is one performance 
bottleneck regarding how shared memory is accessed that needs 
to be addressed: shared memory bank conflicts. 

Shared memory bank conflicts 

Shared memory is divided into 16 equally-sized memory modules, 
called banks, which are organized such that successive 32-bit 
words are assigned to successive banks.   These banks can be 
accessed simultaneously, and to achieve maximum bandwidth to 
and from shared memory the threads in a half warp should access 
shared memory associated with different banks.  The exception to 
this rule is when all threads in a half warp read the same shared 
memory address, which results in a broadcast where the data at 
that address is sent to all threads of the half warp in one 
transaction.    
One can use the warp_serialize flag when profiling CUDA 
applications to determine whether shared memory bank conflicts 
occur in any kernel.  In general, this flag also reflects use of 
atomics and constant memory, however neither of these are 
present in our example. 
The coalesced transpose uses a 32x32 shared memory array of 
floats.  For this sized array, all data in columns k and k+16 are 
mapped to the same bank.  As a result, when writing partial 
columns from tile in shared memory to rows in odata the half 



Optimizing Matrix Transpose in CUDA 

 
   

  June 2010   13 

warp experiences a 16-way bank conflict and serializes the 
request.  A simple to avoid this conflict is to pad the shared 
memory array by one column: 
  __shared__ float tile[TILE_DIM][TILE_DIM+1]; 

The padding does not affect shared memory bank access pattern 
when writing a half warp to shared memory, which remains conflict 
free, but by adding a single column now the access of a half warp 
of data in a column is also conflict free.  The performance of the 
kernel, now coalesced and memory bank conflict free, is added to 
our table below: 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Shared Memory Copy 80.9 81.1 

Naïve Transpose 2.2 2.2 

Coalesced Transpose 16.5 17.1 

Bank Conflict Free Transpose 16.6 17.2 

 
While padding the shared memory array did eliminate shared 
memory bank conflicts, as was confirmed by checking the 
warp_serialize flag with the CUDA profiler, it has little effect 
(when implemented at this stage) on performance.  As a result, 
there is still a large performance gap between the coalesced and 
shared memory bank conflict free transpose and the shared 
memory copy.  In the next section we break the transpose into 
components to determine the cause for the performance 
degradation. 

Decomposing Transpose 

There is over a factor of four performance difference between the 
best optimized transpose and the shared memory copy in the table 
above.  This is the case not only for measurements which loop 
over the kernel launches, but also for measurements obtained 
from looping within the kernel where the costs associated with the 
additional index calculations are amortized over the 100 iterations.   



Optimizing Matrix Transpose in CUDA 

 
   
14 June 2010 

To investigate further, we revisit the data flow for the transpose 
and compare it to that of the copy, both of which are indicated in 
the top portion of the diagram below. There are essentially two 
differences between the copy code and the transpose: transposing 
the data within a tile, and writing data to transposed tile.  We can 
isolate the performance between each of these two components by 
implementing two kernels that individually perform just one of 
these components.  As indicated in the bottom half of the diagram 
below, the fine-grained transpose kernel transposes the data 
within a tile, but writes the tile to the location that a copy would 
write the tile.  The coarse-grained transpose kernel writes the tile 
to the transposed location in the odata matrix, but does not 
transpose the data within the tile. 

 
 

 
 
The source code for these two kernels is given below: 
__global__ void transposeFineGrained(float *odata,  
           float *idata, int width, int height,  int nreps) 
{ 
  __shared__ float block[TILE_DIM][TILE_DIM+1]; 
 
  int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; 

idata odata 
tile 

cop
y 

transpose 

coarse-grained 
transpose 

fine-grained 
transpose 



Optimizing Matrix Transpose in CUDA 

 
   

  June 2010   15 

  int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; 
  int index = xIndex + (yIndex)*width; 
 
  for (int r=0; r<nreps; r++) { 
    for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) { 
      block[threadIdx.y+i][threadIdx.x] =  
        idata[index+i*width]; 
    }   
      
    __syncthreads(); 
 
    for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) { 
      odata[index+i*height] =  
        block[threadIdx.x][threadIdx.y+i]; 
    } 
  } 
} 
 
 
__global__ void transposeCoarseGrained(float *odata,  
      float *idata, int width, int height, int nreps) 
{ 
  __shared__ float block[TILE_DIM][TILE_DIM+1]; 
 
  int xIndex = blockIdx.x * TILE_DIM + threadIdx.x; 
  int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; 
  int index_in = xIndex + (yIndex)*width; 
 
  xIndex = blockIdx.y * TILE_DIM + threadIdx.x; 
  yIndex = blockIdx.x * TILE_DIM + threadIdx.y; 
  int index_out = xIndex + (yIndex)*height; 
 
  for (int r=0; r<nreps; r++) { 
    for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) { 
      block[threadIdx.y+i][threadIdx.x] =  
        idata[index_in+i*width]; 
    } 
   
    __syncthreads(); 
 
    for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) { 
      odata[index_out+i*height] =  
        block[threadIdx.y+i][threadIdx.x]; 
    } 
  } 
} 

 
Note that the fine- and coarse-grained kernels are not actual 
transposes since in either case odata is not a transpose of idata, 
but as you will see they are useful in analyzing performance 
bottlenecks.  The performance results for these two cases are 
added to our table below: 
 



Optimizing Matrix Transpose in CUDA 

 
   
16 June 2010 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Shared Memory Copy 80.9 81.1 

Naïve Transpose 2.2 2.2 

Coalesced Transpose 16.5 17.1 

Bank Conflict Free Transpose 16.6 17.2 

Fine-grained Transpose 80.4 81.5 

Coarse-grained Transpose 16.7 17.1 

 
The fine-grained transpose has performance similar to the shared 
memory copy, whereas the coarse-grained transpose has roughly 
the performance of the coalesced and bank conflict free 
transposes.  Thus the performance bottleneck lies in writing data 
to the transposed location in global memory.  Just as shared 
memory performance can be degraded via bank conflicts, an 
analogous performance degradation can occur with global memory 
access through partition camping, which we investigate next. 

Partition Camping 

The following discussion of partition camping applies to 8- and 
10-series architectures whose performance is presented in this 
paper.  As of the 20-series architecture (Fermi), memory addresses 
are hashed and thus partition camping is not an issue. 
Just as shared memory is divided into 16 banks of 32-bit width, 
global memory is divided into either 6 partitions (on 8-series 
GPUs) or 8 partitions (on 10-series GPUs) of 256-byte width.  We 
previously discussed that to use shared memory effectively, 
threads within a half warp should access different banks so that 
these accesses can occur simultaneously.  If threads within a half 
warp access shared memory though only a few banks, then bank 
conflicts occur.   
To use global memory effectively, concurrent accesses to global 
memory by all active warps should be divided evenly amongst 
partitions.  The term partition camping is used to describe the case 
when global memory accesses are directed through a subset of 



Optimizing Matrix Transpose in CUDA 

 
   

  June 2010   17 

partitions, causing requests to queue up at some partitions while 
other partitions go unused. 
While coalescing concerns global memory accesses within a half 
warp, partition camping concerns global memory accesses 
amongst active half warps.  Since partition camping concerns how 
active thread blocks behave, the issue of how thread blocks are 
scheduled on multiprocessors is important. When a kernel is 
launched, the order in which blocks are assigned to 
multiprocessors is determined by the one-dimensional block ID 
defined as: 
bid = blockIdx.x + gridDim.x*blockIdx.y; 

which is a row-major ordering of the blocks in the grid.  Once 
maximum occupancy is reached, additional blocks are assigned to 
multiprocessors as needed.  How quickly and the order in which 
blocks complete cannot be determined, so active blocks are 
initially contiguous but become less contiguous as execution of 
the kernel progresses.    
If we return to our matrix transpose and look at how tiles in our 
2048x2048 matrices map to partitions on a GTX 280, as depicted 
in the figure below, we immediately see that partition camping is a 
problem.   

 
With 8 partitions of 256-byte width, all data in strides of 2048 
bytes (or 512 floats) map to the same partition.  Any float matrix 
with an integral multiple of 512 columns, such as our 2048x2048 
matrix, will contain columns whose elements map to a single 
partition.  With tiles of 32x32 floats (or 128x128 bytes), whose 
one-dimensional block IDs are shown in the figure, all the data 
within the first two columns of tiles map to the same partition, and 
likewise for other pairs of tile columns (assuming the matrices are 
aligned to a partition segment).   
Combining how the matrix elements map to partitions, and how 
blocks are scheduled, we can see that concurrent blocks will be 
accessing tiles row-wise in idata which will be roughly equally 
distributed amongst partitions, however these blocks will access 

      

      

      

  … 130 129 128 

69 68 67 66 65 64 

5 4 3 2 1 0 

    69 5 

    68 4 

   … 67 3 

   130 66 2 

   129 65 1 

   128 64 0 

idata odata 



Optimizing Matrix Transpose in CUDA 

 
   
18 June 2010 

tiles column-wise in odata which will typically access global 
memory through just a few partitions.   
Having diagnosed the problem as partition camping, the question 
now turns to what can be done about it.  Just as with shared 
memory, padding is an option.  Adding an additional 64 columns 
(one partition width) to odata will cause rows of a tile to map 
sequentially to different partitions.  However, such padding can 
become prohibitive to certain applications.  There is a simpler 
solution that essentially involves rescheduling how blocks are 
executed.   

Diagonal block reordering 

While the programmer does not have direct control of the order in 
which blocks are scheduled, which is determined by the value of 
the automatic kernel variable blockIdx, the programmer does 
have the flexibility in how to interpret the components of 
blockIdx.  Given how the components blockIdx are named, i.e. x 
and y, one generally assumes these components refer to a 
cartesian coordinate system.  This does not need to be the case, 
however, and one can choose otherwise.  Within the cartesian 
interpretation one could swap the roles of these two components, 
which would eliminate the partition camping problem in writing to 
odata, however this would merely move the problem to reading 
data from idata.  

One way to avoid partition camping in both reading from idata 
and writing to odata is to use a diagonal interpretation of the 
components of blockIdx: the y component represents different 
diagonal slices of tiles through the matrix and the x component 
indicates the distance along each diagonal.  Both cartesian and 
diagonal interpretations of blockIdx components are shown in 
the top portion of the diagram below for a 4x4-block matrix, 
along with the resulting one-dimensional block ID on the bottom. 



Optimizing Matrix Transpose in CUDA 

 
   

  June 2010   19 

 
 
Before we discuss the merits of using the diagonal interpretation 
of blockIdx components in the matrix transpose, we briefly 
mention how it can be efficiently implemented using a mapping of 
coordinates.  This technique is useful when writing new kernels, 
but even more so when modifying existing kernels to use diagonal 
(or other) interpretations of blockIdx fields.  If blockIdx.x and 
blockIdx.y represent the diagonal coordinates, then (for block-
square matrixes) the corresponding cartesian coordinates are 
given by the following mapping: 
blockIdx_y = blockIdx.x; 
blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x; 

One would simply include the previous two lines of code at the 
beginning of the kernel, and write the kernel assuming the 
cartesian interpretation of blockIdx fields, except using 
blockIdx_x and blockIdx_y in place of blockIdx.x and 
blockIdx.y, respectively, throughout the kernel.  This is precisely 
what is done in the transposeDiagonal kernel below: 
 

3,3 2,3 1,3 0,3 

3,2 2,2 1,2 0,2 

3,1 2,1 1,1 0,1 

3,0 2,0 1,0 0,0 

3,0 3,3 3,2 3,1 

2,1 2,0 2,3 2,2 

1,2 1,1 1,0 1,3 

0,3 0,2 0,1 0,0 

blockIdx.x + gridDim.x*blockIdx.y 

15 14 13 12 

11 10 9 8 

7 6 5 4 

3 2 1 0 

3 15 11 7 

6 2 14 10 

9 5 1 13 

12 8 4 0 

Cartesian 
Coordinate

s 

Diagonal 
Coordinate

s 



Optimizing Matrix Transpose in CUDA 

 
   
20 June 2010 

__global__ void transposeDiagonal(float *odata,  
            float *idata, int width, int height, int nreps) 
{ 
  __shared__ float tile[TILE_DIM][TILE_DIM+1]; 
 
  int blockIdx_x, blockIdx_y; 
 
  // diagonal reordering 
  if (width == height) { 
    blockIdx_y = blockIdx.x; 
    blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x; 
  } else { 
    int bid = blockIdx.x + gridDim.x*blockIdx.y; 
    blockIdx_y = bid%gridDim.y; 
    blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x; 
  }     
 
  int xIndex = blockIdx_x*TILE_DIM + threadIdx.x; 
  int yIndex = blockIdx_y*TILE_DIM + threadIdx.y;   
  int index_in = xIndex + (yIndex)*width; 
 
  xIndex = blockIdx_y*TILE_DIM + threadIdx.x; 
  yIndex = blockIdx_x*TILE_DIM + threadIdx.y; 
  int index_out = xIndex + (yIndex)*height; 
 
  for (int r=0; r < nreps; r++) { 
    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 
      tile[threadIdx.y+i][threadIdx.x] =  
        idata[index_in+i*width]; 
    } 
   
    __syncthreads(); 
   
    for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) { 
      odata[index_out+i*height] =  
        tile[threadIdx.x][threadIdx.y+i]; 
    } 
  } 
} 

 
Here we allow for both square and nonsquare matrices.  The 
mapping for nonsquare matrices can be used in the general case, 
however the simpler expressions for square matrices evaluate 
quicker and are preferable when appropriate. 
If we revisit our 2048x2048 matrix in the figure below, we can see 
how the diagonal reordering solves the partition camping problem.  
When reading from idata and writing to odata in the diagonal 
case, pairs of tiles cycle through partitions just as in the cartesian 
case when reading data from idata. 



Optimizing Matrix Transpose in CUDA 

 
   

  June 2010   21 

 
 
The performance of the diagonal kernel in the table below reflects 
this.  The bandwidth measured when looping within the kernel 
over the read and writes to global memory is within a few percent 
of the shared memory copy.  When looping over the kernel, the 
performance degrades slightly, likely due to additional 
computation involved in calculating blockIdx_x and blockIdx_y.  
However, even with this performance degradation the diagonal 
transpose has over four times the bandwidth of the other complete 
transposes.   
 

 
 

      

      

      

  … 130 129 128 

69 68 67 66 65 64 

5 4 3 2 1 0 

    69 5 

    68 4 

   … 67 3 

   130 66 2 

   129 65 1 

   128 64 0 

idata odata 

5      

68 4     

… 67 3    

 130 66 2   

  129 65 1  

   128 64 0 

5 68 …    

 4 67 130   

  3 66 129  

   2 65 128 

    1 64 

     0 

Cartesian 

Diagonal 



Optimizing Matrix Transpose in CUDA 

 
   
22 June 2010 

 Effective Bandwidth (GB/s) 
2048x2048, GTX 280 

 Loop over kernel Loop in kernel 

Simple Copy 96.9 81.6 

Shared Memory Copy 80.9 81.1 

Naïve Transpose 2.2 2.2 

Coalesced Transpose 16.5 17.1 

Bank Conflict Free Transpose 16.6 17.2 

Fine-grained Transpose 80.4 81.5 

Coarse-grained Transpose 16.7 17.1 

Diagonal 69.5 78.3 

 
 
 
 
 

 



 

 
 

 
  

  June 2010   23

Summary 

In this paper we have discussed several aspects of GPU memory 
management through a sequence of progressively optimized 
transpose kernels.  The sequence is typical of performance tuning 
using CUDA.  The first step in improving effective bandwidth is to 
ensure that global memory accesses are coalesced, which can 
improve performance by an order of magnitude. 
The second step was to look at shared memory bank conflicts.  In 
this study eliminating shared memory bank conflicts appeared to 
have little effect on performance, however that is largely due to 
when it was applied in relation to other optimizations:  the effect 
of bank conflicts were masked by partition camping.  By removing 
the padding of the shared memory array in the diagonally 
reordered transpose, one can see that bank conflicts have a 
sizeable effect on performance. 
While coalescing and bank conflicts will remain relatively 
consistent as the problem size varies, partition camping is 
dependent on problem size, and varies across different 
generations of hardware.  The particular sized matrix in this 
example will experience far less performance degradation due to 
partition camping on a G80-based card due to the different 
number of partitions: 6 partitions on the 8-series rather than 8 on 
the 10-series.  (For 20-series GPUs, partition camping is not an 
issue.) 
The final version of the transpose kernel by no means represents 
the highest level of optimization that can be achieved.  Tile size, 
number of elements per thread, and instruction optimizations can 
improve performance, both of the transpose and the copy kernels. 
But in the study we merely focused on the issues that have the 
largest impact. 

 



 

 
 

 
  

  June 2010   24

Appendix A - Host Code 

#include <stdio.h> 
 
// kernels transpose/copy a tile of TILE_DIM x TILE_DIM elements 
// using a TILE_DIM x BLOCK_ROWS thread block, so that each thread 
// transposes TILE_DIM/BLOCK_ROWS elements.  TILE_DIM must be an  
// integral multiple of BLOCK_ROWS 
 
#define TILE_DIM 32 
#define BLOCK_ROWS 8 
 
// Number of repetitions used for timing.   
 
#define NUM_REPS  100 
 
int 
main( int argc, char** argv)  
{ 
  // set matrix size 
  const int size_x = 2048, size_y = 2048;  
 
  // kernel pointer and descriptor 
  void (*kernel)(float *, float *, int, int, int); 
  char *kernelName; 
 
  // execution configuration parameters 
  dim3 grid(size_x/TILE_DIM, size_y/TILE_DIM),   
       threads(TILE_DIM,BLOCK_ROWS); 
 
  // CUDA events 
  cudaEvent_t start, stop; 
 
  // size of memory required to store the matrix 
  const int mem_size = sizeof(float) * size_x*size_y; 
 
  // allocate host memory 
  float *h_idata = (float*) malloc(mem_size); 
  float *h_odata = (float*) malloc(mem_size); 
  float *transposeGold = (float *) malloc(mem_size);   
  float *gold; 
 
  // allocate device memory 
  float *d_idata, *d_odata; 
  cudaMalloc( (void**) &d_idata, mem_size); 
  cudaMalloc( (void**) &d_odata, mem_size); 
 
  // initalize host data 
  for(int i = 0; i < (size_x*size_y); ++i) 
    h_idata[i] = (float) i; 
   
  // copy host data to device 
  cudaMemcpy(d_idata, h_idata, mem_size,    
             cudaMemcpyHostToDevice ); 



Optimizing Matrix Transpose in CUDA 

 
   

  June 2010   25 

 
  // Compute reference transpose solution 
  computeTransposeGold(transposeGold, h_idata, size_x, size_y); 
 
  // print out common data for all kernels 
  printf("\nMatrix size: %dx%d, tile: %dx%d, block: %dx%d\n\n",  
  size_x, size_y, TILE_DIM, TILE_DIM, TILE_DIM, BLOCK_ROWS); 
   
  printf("Kernel\t\t\tLoop over kernel\tLoop within kernel\n"); 
  printf("------\t\t\t----------------\t------------------\n"); 
 
  // 
  // loop over different kernels 
  // 
 
  for (int k = 0; k<8; k++) { 
    // set kernel pointer 
    switch (k) { 
    case 0: 
      kernel = &copy;  
      kernelName = "simple copy           "; break; 
    case 1: 
      kernel = &copySharedMem;                   
      kernelName = "shared memory copy    "; break; 
    case 2: 
      kernel = &transposeNaive;                  
      kernelName = "naive transpose       "; break; 
    case 3: 
      kernel = &transposeCoalesced;              
      kernelName = "coalesced transpose   "; break; 
    case 4: 
      kernel = &transposeNoBankConflicts;        
      kernelName = "no bank conflict trans"; break; 
    case 5: 
      kernel = &transposeCoarseGrained;          
      kernelName = "coarse-grained        "; break; 
    case 6: 
      kernel = &transposeFineGrained;            
      kernelName = "fine-grained          "; break; 
    case 7: 
      kernel = &transposeDiagonal;               
      kernelName = "diagonal transpose    "; break; 
    }       
 
    // set reference solution 
    // NB: fine- and coarse-grained kernels are not full 
    //     transposes, so bypass check 
    if (kernel == &copy || kernel == &copySharedMem) { 
      gold = h_idata; 
    } else if (kernel == &transposeCoarseGrained ||  
               kernel == &transposeFineGrained) { 
      gold = h_odata; 
    } else { 
      gold = transposeGold; 
    } 
 
     
    // initialize events, EC parameters 
    cudaEventCreate(&start); 
    cudaEventCreate(&stop); 
 
    // warmup to avoid timing startup 



Optimizing Matrix Transpose in CUDA 

 
   
26 June 2010 

    kernel<<<grid, threads>>>(d_odata, d_idata, size_x,size_y, 1); 
 
    // take measurements for loop over kernel launches 
    cudaEventRecord(start, 0); 
    for (int i=0; i < NUM_REPS; i++) { 
      kernel<<<grid, threads>>>(d_odata, d_idata,size_x,size_y,1); 
    } 
    cudaEventRecord(stop, 0); 
    cudaEventSynchronize(stop); 
    float outerTime; 
    cudaEventElapsedTime(&outerTime, start, stop);     
 
    cudaMemcpy(h_odata,d_odata, mem_size, cudaMemcpyDeviceToHost); 
    int res = comparef(gold, h_odata, size_x*size_y); 
    if (res != 1) 
      printf("*** %s kernel FAILED ***\n", kernelName); 
 
    // take measurements for loop inside kernel 
    cudaEventRecord(start, 0); 
    kernel<<<grid,threads>>> 
        (d_odata, d_idata, size_x, size_y, NUM_REPS); 
    cudaEventRecord(stop, 0); 
    cudaEventSynchronize(stop); 
    float innerTime; 
    cudaEventElapsedTime(&innerTime, start, stop);     
 
    cudaMemcpy(h_odata,d_odata, mem_size, cudaMemcpyDeviceToHost); 
    res = comparef(gold, h_odata, size_x*size_y); 
    if (res != 1) 
      printf("*** %s kernel FAILED ***\n", kernelName); 
     
    // report effective bandwidths 
    float outerBandwidth =  
       2.*1000*mem_size/(1024*1024*1024)/(outerTime/NUM_REPS); 
    float innerBandwidth =  
       2.*1000*mem_size/(1024*1024*1024)/(innerTime/NUM_REPS); 
    printf("%s\t%5.2f GB/s\t\t%5.2f GB/s\n",  
       kernelName, outerBandwidth, innerBandwidth); 
  } 
   
  // cleanup 
 
  free(h_idata); free(h_odata); free(transposeGold); 
  cudaFree(d_idata); cudaFree(d_odata); 
  cudaEventDestroy(start); cudaEventDestroy(stop); 
   
  return 0; 
} 

 



Optimizing Matrix Transpose in CUDA 

 
   

  June 2010   27 

 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND 
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA 
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE 
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, 
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication or otherwise under 
any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to 
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA 
Corporation products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

Trademarks 

NVIDIA, the NVIDIA logo, and CUDA are trademarks or registered trademarks of NVIDIA Corporation in the 
United States and other countries. Other company and product names may be trademarks of the respective 
companies with which they are associated. 

Macrovision Compliance Statement 

NVIDIA Products that are Macrovision enabled can only be sold or distributed to buyers with a valid and 
existing authorization from Macrovision to purchase and incorporate the device into buyer’s products. 

Macrovision copy protection technology is protected by U.S. patent numbers 5,583,936; 6,516,132; 
6,836,549; and 7,050,698 and other intellectual property rights. The use of Macrovision’s copy protection 
technology in the device must be authorized by Macrovision and is intended for home and other limited pay-
per-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or 
disassembly is prohibited. 

Copyright 

© 2009 NVIDIA Corporation. All rights reserved.  

 

 
 
 


