

Optimizing Parallel Reduction in CUDA

Mark Harris NVIDIA Developer Technology

Parallel Reduction

Common and important data parallel primitive

Easy to implement in CUDA

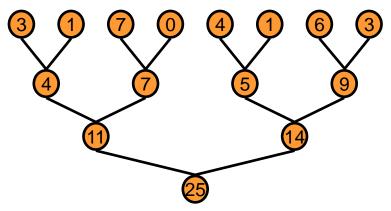
Harder to get it right

Serves as a great optimization example

- We'll walk step by step through 7 different versions
- Demonstrates several important optimization strategies

Parallel Reduction

Tree-based approach used within each thread block



0

Need to be able to use multiple thread blocks

- To process very large arrays
- To keep all multiprocessors on the GPU busy
- Each thread block reduces a portion of the array

But how do we communicate partial results between thread blocks?

Problem: Global Synchronization

If we could synchronize across all thread blocks, could easily reduce very large arrays, right?

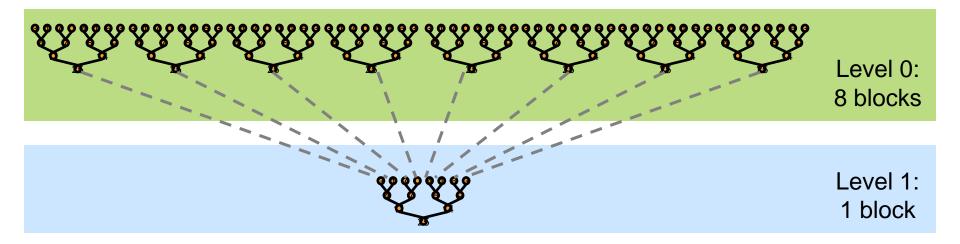
- Global sync after each block produces its result
- Once all blocks reach sync, continue recursively
- But CUDA has no global synchronization. Why?
 - Expensive to build in hardware for GPUs with high processor count
 - Would force programmer to run fewer blocks (no more than # multiprocessors * # resident blocks / multiprocessor) to avoid deadlock, which may reduce overall efficiency

Solution: decompose into multiple kernels

- Kernel launch serves as a global synchronization point
- Kernel launch has negligible HW overhead, low SW overhead

Solution: Kernel Decomposition

Avoid global sync by decomposing computation into multiple kernel invocations



In the case of reductions, code for all levels is the same

Recursive kernel invocation

What is Our Optimization Goal?

We should strive to reach GPU peak performance

- Choose the right metric:
 - GFLOP/s: for compute-bound kernels
 - Bandwidth: for memory-bound kernels
- Reductions have very low arithmetic intensity
 - 1 flop per element loaded (bandwidth-optimal)
- Therefore we should strive for peak bandwidth
- Will use G80 GPU for this example
 - 384-bit memory interface, 900 MHz DDR
 - 384 * 1800 / 8 = 86.4 GB/s

Reduction #1: Interleaved Addressing


```
global__ void reduce0(int *g_idata, int *g_odata) {
  extern __shared__ int sdata[];
```

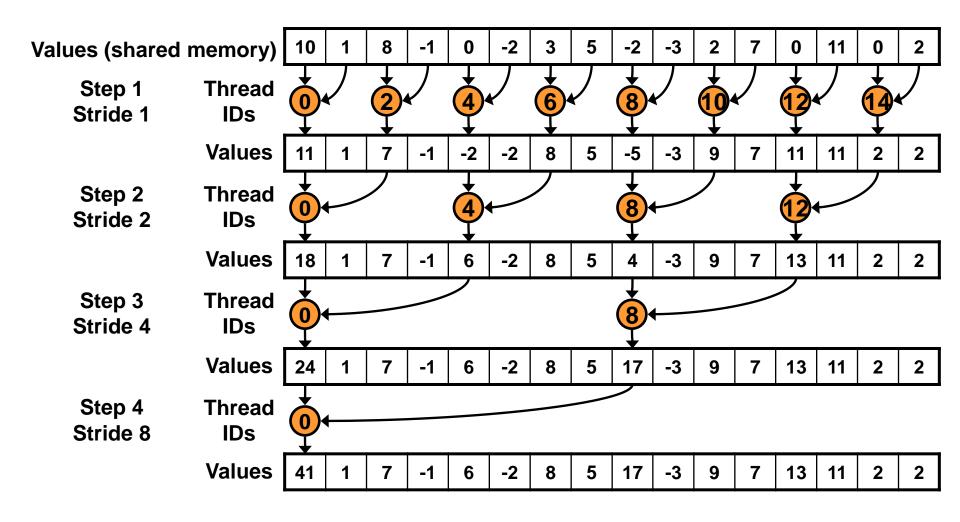
```
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
___syncthreads();
```

```
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
        sdata[tid] += sdata[tid + s];
    }
    ____syncthreads();
}</pre>
```

```
// write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];
```

}

Parallel Reduction: Interleaved Addressing



NVIDIA.

Reduction #1: Interleaved Addressing

```
global__ void reduce1(int *g_idata, int *g_odata) {
  extern __shared__ int sdata[];
```

```
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];
___syncthreads();
```

// write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s

Note: Block Size = 128 threads for all tests

Reduction #2: Interleaved Addressing

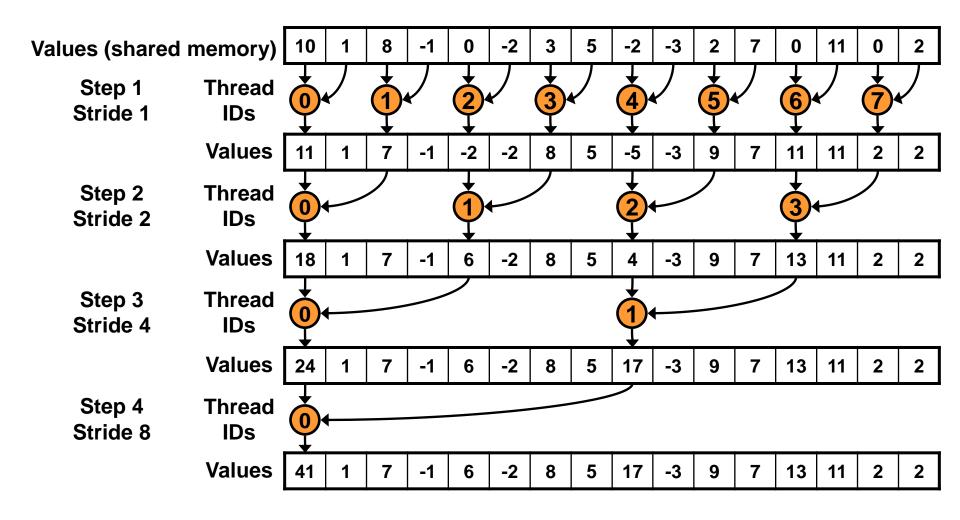
Just replace divergent branch in inner loop:

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
        sdata[tid] += sdata[tid + s];
    }
    ___syncthreads();
}</pre>
```

With strided index and non-divergent branch:

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;
    if (index < blockDim.x) {
        sdata[index] += sdata[index + s];
    }
    ___syncthreads();
}</pre>
```

Parallel Reduction: Interleaved Addressing



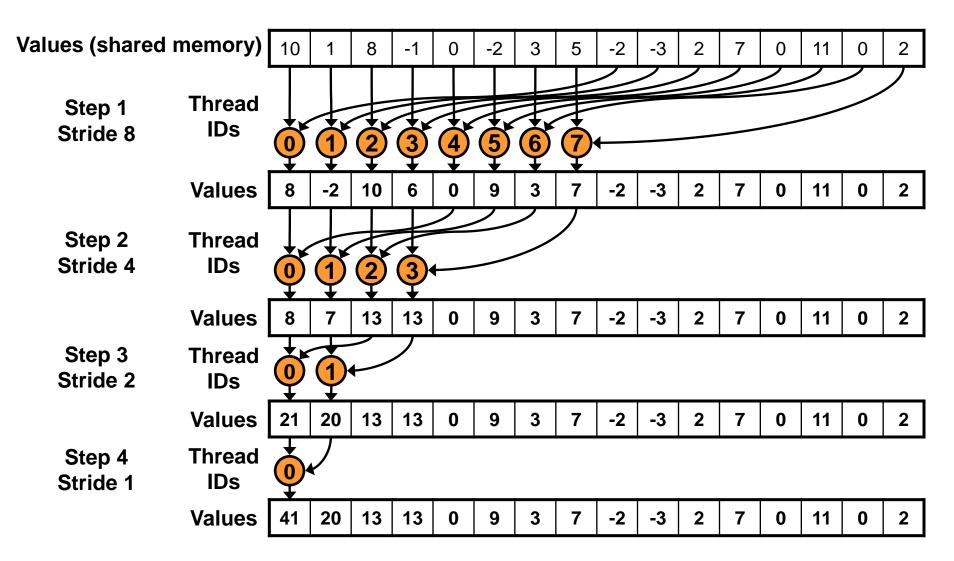
New Problem: Shared Memory Bank Conflicts

NVIDIA

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x

Parallel Reduction: Sequential Addressing



Sequential addressing is conflict free

NVIDIA.

Reduction #3: Sequential Addressing

Just replace strided indexing in inner loop:

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;

    if (index < blockDim.x) {
        sdata[index] += sdata[index + s];
    }
    ___syncthreads();
}</pre>
```

With reversed loop and threadID-based indexing:

```
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    ___syncthreads();
}</pre>
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x

Idle Threads

Problem:

```
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    ___syncthreads();
}</pre>
```

Half of the threads are idle on first loop iteration!

This is wasteful...

Reduction #4: First Add During Load

Halve the number of blocks, and replace single load:

// each thread loads one element from global to shared mem unsigned int tid = threadldx.x; unsigned int i = blockldx.x*blockDim.x + threadldx.x; sdata[tid] = g_idata[i]; ___syncthreads();

With two loads and first add of the reduction:

```
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
____syncthreads();
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x

Instruction Bottleneck

At 17 GB/s, we're far from bandwidth bound

And we know reduction has low arithmetic intensity

Therefore a likely bottleneck is instruction overhead

- Ancillary instructions that are not loads, stores, or arithmetic for the core computation
- In other words: address arithmetic and loop overhead

Unrolling the Last Warp

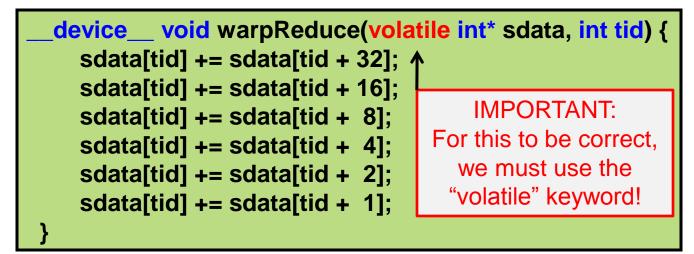
work

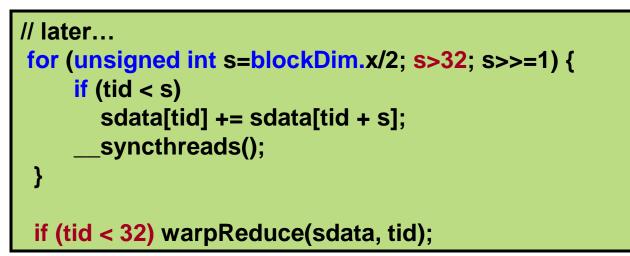
As reduction proceeds, # "active" threads decreases
 When s <= 32, we have only one warp left
 Instructions are SIMD synchronous within a warp
 That means when s <= 32:
 We don't need to __syncthreads()
 We don't need "if (tid < s)" because it doesn't save any

Let's unroll the last 6 iterations of the inner loop

21

Reduction #5: Unroll the Last Warp





Note: This saves useless work in *all* warps, not just the last one! Without unrolling, all warps execute every iteration of the for loop and if statement

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x

Complete Unrolling

If we knew the number of iterations at compile time, we could completely unroll the reduction

- Luckily, the block size is limited by the GPU to 512 threads
- Also, we are sticking to power-of-2 block sizes

So we can easily unroll for a fixed block size

But we need to be generic – how can we unroll for block sizes that we don't know at compile time?

Templates to the rescue!

CUDA supports C++ template parameters on device and host functions

Unrolling with Templates

Specify block size as a function template parameter:

template <unsigned int blockSize>
__global___void reduce5(int *g_idata, int *g_odata)

Reduction #6: Completely Unrolled

```
Template <unsigned int blockSize>
___device___ void warpReduce(volatile int* sdata, int tid) {
    if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
    if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
    if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
    if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
    if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
    if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
```

```
if (blockSize >= 512) {
    if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize >= 256) {
    if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) {
    if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }</pre>
```

if (tid < 32) warpReduce<blockSize>(sdata, tid);

Note: all code in **RED** will be evaluated at compile time.

Results in a very efficient inner loop!

Invoking Template Kernels

Don't we still need block size at compile time?

Nope, just a switch statement for 10 possible block sizes:

```
switch (threads)
    case 512:
      reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 256:
      reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 128:
      reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 64:
      reduce5< 64><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 32:
      reduce5< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 16:
      reduce5< 16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 8:
                 8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
      reduce5<
    case 4:
                 4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
      reduce5<
    case 2:
                 2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
      reduce5<
    case 1:
      reduce5< 1><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.16x

Parallel Reduction Complexity

Log(N) parallel steps, each step S does N/2^S independent ops

Step Complexity is O(log N)

- For N=2^D, performs ∑_{S∈[1..D]} 2^{D-S} = N-1 operations
 Work Complexity is O(N) It is work-efficient
 - i.e. does not perform more operations than a sequential algorithm
- With P threads physically in parallel (P processors), time complexity is O(N/P + log N)
 - Compare to O(N) for sequential reduction
 - In a thread block, N=P, so O(log N)

What About Cost?

Cost of a parallel algorithm is processors time complexity

- Allocate threads instead of processors: O(N) threads
- Time complexity is O(log N), so cost is O(N log N) : not cost efficient!

Brent's theorem suggests O(N/log N) threads

- Each thread does O(log N) sequential work
- Then all O(N/log N) threads cooperate for O(log N) steps
- \bigcirc Cost = O((*N*/log *N*) * log *N*) = O(*N*) → cost efficient

Sometimes called *algorithm cascading*

Can lead to significant speedups in practice

Algorithm Cascading

Combine sequential and parallel reduction

- Each thread loads and sums multiple elements into shared memory
- Tree-based reduction in shared memory
- Brent's theorem says each thread should sum O(log n) elements
 - i.e. 1024 or 2048 elements per block vs. 256
- In my experience, beneficial to push it even further
 - Possibly better latency hiding with more work per thread
 - More threads per block reduces levels in tree of recursive kernel invocations
 - High kernel launch overhead in last levels with few blocks
- On G80, best perf with 64-256 blocks of 128 threads
 - 1024-4096 elements per thread

Reduction #7: Multiple Adds / Thread

Replace load and add of two elements:

```
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

With a while loop to add as many as necessary:

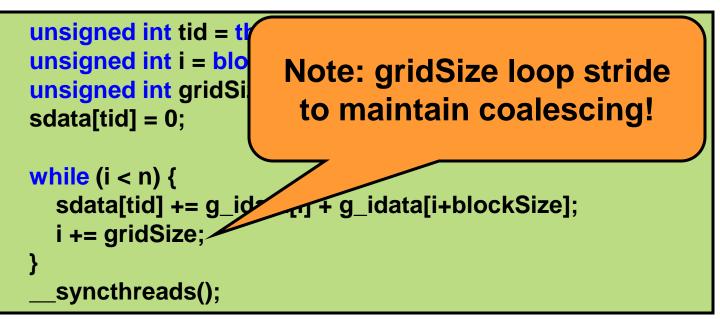
```
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockSize*2) + threadldx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;
while (i < n) {
    sdata[tid] += g_idata[i] + g_idata[i+blockSize];
    i += gridSize;
}
___syncthreads();
```

Reduction #7: Multiple Adds / Thread

Replace load and add of two elements:

unsigned int tid = threadldx.x; unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x; sdata[tid] = g_idata[i] + g_idata[i+blockDim.x]; __syncthreads();

With a while loop to add as many as necessary:



Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.16x
Kernel 7: multiple elements per thread	0.268 ms	62.671 GB/s	1.42x	30.04x

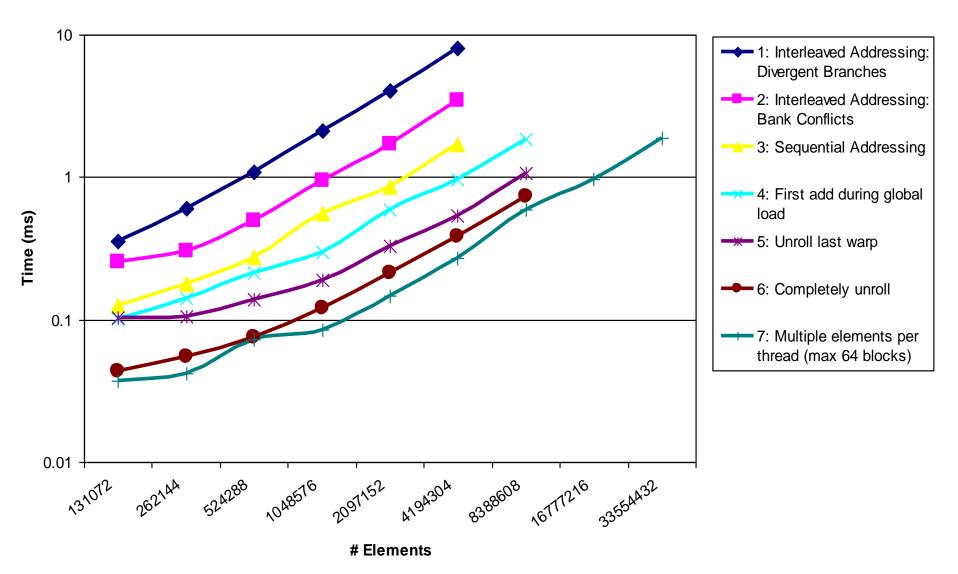
Kernel 7 on 32M elements: 73 GB/s!

```
template <unsigned int blockSize>
  device void warpReduce(volatile int *sdata, unsigned int tid) {
  if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
  if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
  if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
  if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
                                                            Final Optimized Kernel
  if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
  if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
template <unsigned int blockSize>
  global___ void reduce6(int *g_idata, int *g_odata, unsigned int n) {
  extern shared int sdata[];
  unsigned int tid = threadldx.x;
  unsigned int i = blockldx.x*(blockSize*2) + tid;
  unsigned int gridSize = blockSize*2*gridDim.x;
  sdata[tid] = 0;
  while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
    _syncthreads();
  if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } ___syncthreads(); }
  if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } syncthreads(); }
  if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }
```

```
if (tid < 32) warpReduce(sdata, tid);
if (tid == 0) g_odata[blockldx.x] = sdata[0];</pre>
```

}

Performance Comparison



Types of optimization

Interesting observation:

Algorithmic optimizations

- Changes to addressing, algorithm cascading
- 11.84x speedup, combined!

Code optimizations

- Loop unrolling
- 2.54x speedup, combined

Conclusion

Understand CUDA performance characteristics

- Memory coalescing
- Divergent branching
- Bank conflicts
- Latency hiding
- Use peak performance metrics to guide optimization
- Understand parallel algorithm complexity theory
- Know how to identify type of bottleneck
 - e.g. memory, core computation, or instruction overhead
- Optimize your algorithm, then unroll loops
- Use template parameters to generate optimal code

