
Optimizing Parallel Reduction in CUDA

Mark Harris

NVIDIA Developer Technology

2

Parallel Reduction

Common and important data parallel primitive

Easy to implement in CUDA

Harder to get it right

Serves as a great optimization example

Weôll walk step by step through 7 different versions

Demonstrates several important optimization strategies

3

Parallel Reduction

Tree-based approach used within each thread block

Need to be able to use multiple thread blocks
To process very large arrays

To keep all multiprocessors on the GPU busy

Each thread block reduces a portion of the array

But how do we communicate partial results between
thread blocks?

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

4

Problem: Global Synchronization

If we could synchronize across all thread blocks, could easily

reduce very large arrays, right?

Global sync after each block produces its result

Once all blocks reach sync, continue recursively

But CUDA has no global synchronization. Why?

Expensive to build in hardware for GPUs with high processor

count

Would force programmer to run fewer blocks (no more than #

multiprocessors * # resident blocks / multiprocessor) to avoid

deadlock, which may reduce overall efficiency

Solution: decompose into multiple kernels

Kernel launch serves as a global synchronization point

Kernel launch has negligible HW overhead, low SW overhead

5

Solution: Kernel Decomposition

Avoid global sync by decomposing computation

into multiple kernel invocations

In the case of reductions, code for all levels is the

same

Recursive kernel invocation

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3

Level 0:

8 blocks

Level 1:

1 block

6

What is Our Optimization Goal?

We should strive to reach GPU peak performance

Choose the right metric:

GFLOP/s: for compute-bound kernels

Bandwidth: for memory-bound kernels

Reductions have very low arithmetic intensity

1 flop per element loaded (bandwidth-optimal)

Therefore we should strive for peak bandwidth

Will use G80 GPU for this example

384-bit memory interface, 900 MHz DDR

384 * 1800 / 8 = 86.4 GB/s

7

Reduction #1: Interleaved Addressing

__global__ void reduce0(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

// do reduction in shared mem

for(unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

// write result for this block to global mem

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

8

Parallel Reduction: Interleaved Addressing

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2Values (shared memory)

0 2 4 6 8 10 12 14

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2Values

0 4 8 12

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2Values

0 8

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

0

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

Thread

IDs

Step 1

Stride 1

Step 2

Stride 2

Step 3

Stride 4

Step 4

Stride 8

Thread

IDs

Thread

IDs

Thread

IDs

9

Reduction #1: Interleaved Addressing

__global__ void reduce1(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

// do reduction in shared mem

for (unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

// write result for this block to global mem

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Problem: highly divergent

warps are very inefficient, and

% operator is very slow

10

Performance for 4M element reduction

Kernel 1:
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Note: Block Size = 128 threads for all tests

BandwidthTime (222 ints)

11

for (unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

for (unsigned int s=1; s < blockDim.x; s *= 2) {

int index = 2 * s * tid;

if (index < blockDim.x) {

sdata[index] += sdata[index + s];

}

__syncthreads();

}

Reduction #2: Interleaved Addressing

Just replace divergent branch in inner loop:

With strided index and non-divergent branch:

12

Parallel Reduction: Interleaved Addressing

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2Values (shared memory)

0 1 2 3 4 5 6 7

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2Values

0 1 2 3

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2Values

0 1

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

0

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2Values

Thread

IDs

Step 1

Stride 1

Step 2

Stride 2

Step 3

Stride 4

Step 4

Stride 8

Thread

IDs

Thread

IDs

Thread

IDs

New Problem: Shared Memory Bank Conflicts

13

Performance for 4M element reduction

Kernel 1:
interleaved addressing

with divergent branching

8.054 ms 2.083 GB/s

Kernel 2:
interleaved addressing

with bank conflicts

3.456 ms 4.854 GB/s 2.33x 2.33x

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup

14

Parallel Reduction: Sequential Addressing

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2Values (shared memory)

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0

41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

Thread

IDs
Step 1

Stride 8

Step 2

Stride 4

Step 3

Stride 2

Step 4

Stride 1

Thread

IDs

Thread

IDs

Thread

IDs

Sequential addressing is conflict free

