NVIDIA.

Optimizing Parallel Reduction in CUDA

Mark Harris
NVIDIA Developer Technology

NVIDIA.

« Common and important data parallel primitive

« Easy to implement in CUDA
“ Harder to get it right

« Serves as a great optimization example
“YWeobll walk step by step throug
« Demonstrates several important optimization strategies

NVIDIA.

« Tree-based approach used within each thread block

“ Need to be able to use multiple thread blocks
“ To process very large arrays
“ To keep all multiprocessors on the GPU busy
“ Each thread block reduces a portion of the array

« But how do we communicate partial results between
thread blocks?

NVIDIA.

“ If we could synchronize across all thread blocks, could easily
reduce very large arrays, right?
“ Global sync after each block produces its result
“ Once all blocks reach sync, continue recursively

“ But CUDA has no global synchronization. Why?

“ Expensive to build in hardware for GPUs with high processor
count

“ Would force programmer to run fewer blocks (no more than #
multiprocessors * # resident blocks / multiprocessor) to avoid
deadlock, which may reduce overall efficiency

“ Solution: decompose into multiple kernels
« Kernel launch serves as a global synchronization point
« Kernel launch has negligible HW overhead, low SW overhead

NVIDIA.

« Avoid global sync by decomposing computation
iInto multiple kernel invocations

8 blocks

O \\\\ I//, .
= 9Q9 Level 1:
1 block

“ In the case of reductions, code for all levels is the

same
“ Recursive kernel invocation

NVIDIA.

“ We should strive to reach GPU peak performance

“ Choose the right metric:
“ GFLOP/s: for compute-bound kernels
« Bandwidth: for memory-bound kernels

“ Reductions have very low arithmetic intensity
“ 1 flop per element loaded (bandwidth-optimal)

“ Therefore we should strive for peak bandwidth

“ Will use G80 GPU for this example
« 384-bit memory interface, 900 MHz DDR
@ 384 *1800/8 =

Reduction #1: Interleaved Addressing >

NVIDIA.

__global __ void reduceO(int *g_idata, int *g_odata) {

extern _ shared__ int sdata[];

/[each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdataftid] = g_idata]i];

__syncthreads();

// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdataftid] += sdata[tid + s];
}
__syncthreads();

}

I/ write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

Values (shared memory)

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

10 8 -1 0 |- -2 | -3 011
¢ ¢ &
11 7 |-1|-2|- -5 | -3 11 | 11
18 7 (-1 6 |- 4 | -3 13 | 11
[
24 7 |-1|6 |- 17| -3 13| 11
/
7 |-1|6 17| -3 13| 11

41

Reduction #1: Interleaved Addressing >

NVIDIA.

__global __ void reducel(int *g_idata, int *g_odata) {

extern _ shared__ int sdata[];

/[each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdataftid] = g_idata]i];

__syncthreads();

// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s)==0){ <—
sdataftid] += sdata[tid + s];

}
__syncthreads();

}

Problem: highly divergent
warps are very inefficient, and
% operator is very slow

I/ write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

Performance for 4M element reduction %

Time (2%2ints) Bandwidth

Note: Block Size = 128 threads for all tests

10

©

NVIDIA.
Just replace divergent branch in inner loop:

for (unsigned int s=1; s < blockDim.x; s *=2) {
if (tid % (2*s) == 0) {
sdataftid] += sdata[tid + s];
}

__syncthreads();

}

With strided index and non-divergent branch:

for (unsigned int s=1; s < blockDim.x; s *=2) {
intindex =2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}

__syncthreads();

Values (shared memory)|10 (1|8 -1 10|23 |5 |-2]-3|2]|7

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Y

Values 11| 1| 7 |-1|-2|-2|8|5|-5|-3|]9 |7 |11|11
Thread / /

IDs

Values | 18| 1 71-1]16|-2|8 5 4 1-319 7 |13] 11
Thread

IDs

Values |24 1| 7 |-1|16|-2|8]| 5 |17|-3| 9|7 |13|11
Thread /

IDs

Values |41| 1| 7 |-1|16|-2|8]|5|17|-3|]9 |7 |13|11

New Problem: Shared Memory Bank Conflicts

NVIDIA.

Performance for 4M element reduction I%A

Step Cumulative
Time (222ints) Bandwidth Speedup Speedup

Kernel 1:
interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:
3.456ms 4.854 GB/s 2.33X 2.33X

interleaved addressing
with bank conflicts

13

Values (shared memory)

Step 1 Thread
Stride 8 IDs
Values
Step 2 Thread
Stride 4 IDs
Values
Step 3 Thread
Stride 2 IDs
Values
Step 4 Thread
Stride 1 IDs

Values

NVIDIA.

10

11

41

13

11

