
 1 

Re-implementing the  
Follow-up Cg Runtime Tutorial with CgFX*  

Mark J. Kilgard 
NVIDIA Corporation 

Austin, Texas 

April 23, 2006 

The source code discussed in this tutorial is 
installed by the Cg Toolkit installer for Windows at 
c:\Program Files\NVIDIA Corporation\Cg\examples\OpenGL\advanced\cgfx_bumpdemo 

This whitepaper continues a tutorial I wrote a year ago titled “A Follow-up Cg Runtime 
Tutorial for Readers of The Cg Tutorial” in which I presented a complete OpenGL demo 
written in ANSI C that renders a procedurally-generated bump-mapped torus using Cg 
programs discussed in The Cg Tutorial,† a book I co-wrote about Cg programming. 

Now I present the same demo but re-implement it with CgFX, a shading effect system 
built around Cg.  CgFX is a file format and an associated runtime API for describing a 
complete shading effect that includes Cg programs, how these Cg programs are combined 
into potentially multiple rendering passes, how the input parameters for these programs 
are computed, how other non-programmable GPU state should be configured, and finally 
annotations so an application can appropriately associate its application-state to the 
effect’s input parameters and rendering passes. 

CgFX allows us to package a complete shading effect as a single unit so it can be more 
easily tweaked and shared among multiple applications.  Re-implementing the original 
demo in CgFX also results in less application code. 

The original whitepaper’s demo program is called cg_bumpdemo so the new CgFX-based 
demo is called cgfx_bumpdemo.  Before walking you through the complete source code 
for cgfx_bumpdemo, I first explain the rationale for CgFX and how CgFX structures the 
specification of a shading effect. 

                                                 

* You have permission to redistribute or make digital or hard copy of this article for non-commercial or 
educational use. 

† The Cg Tutorial by Randima (Randy) Fernando and Mark J. Kilgard is published by Addison-Wesley 
(ISBN 0321194969, 336 pages).  The book is now available in Japanese translation (ISBN4-939007-55-3). 
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1. The Why and What of CgFX 

CgFX addresses the fact that Cg programs, even though written in an expressive high-
level language, do not completely express what is required to use a particular Cg program 
properly for a given shading effect.  For one thing, you often need both a vertex and 
fragment program to be used simultaneously.  You also need to know how non-
programmable state such as blending or depth testing should be configured.  The 
complete effect may even require multiple rendering passes, performed in a particular 
order.  And because of the differences in graphics hardware you must support or varying 
requirements for rendering quality and performance, multiple implementations of a 
particular effect—termed techniques in CgFX—may be required.  Finally the parameters 
of the effect may require meta-information about the parameters such as their valid range 
or how the parameter is computed from other parameters. The big advantage of CgFX is 
you combine everything needed to render a shading effect in a single place.   

If you simply use Cg programs to implement a given rendering effect, you wind up 
embedding “application/effect glue” knowledge about your rendering effect in your 
application code.  This makes it difficult for a rendering effect to be authored in isolation 
from your particular application.  Artists and programmers working with shading effects 
should be able to treat shading as a form of 3D “content” that can be created, tweaked, 
deployed, and reused in much the same ways texture images and geometric models for 
3D games and applications are managed as art resources that are distinct from the 
applications that create and use them. 

For example, you might author an awesome shading effect to create the appearance of 
volumetric fog (or human skin or glowing lava or whatever) in your prototype rendering 
system.  Now your manager/publisher/client wants your effect in a different 3D engine 
yesterday.  The question is:  How can you successfully author a shading effect without 
tying it to a particular application?  CgFX answers this question. 

The goal of CgFX is to separate a particular rendering effect from the application—or 
even better—the multiple applications that can render or apply the effect. 

An effect—in the CgFX use of the term—is a shading algorithm and everything needed to 
utilize it that can be authored independently from the 3D application that ultimately 
renders the effect.  In short, an effect should be a form of content that can be authored, 
tweaked, deployed, and reused without having to change the applications that use the 
effect. 



 3 

1.1. Platform-independence for Effects 

To provide the broadest benefits, this decoupling should also provide platform-
independence both for content creation and deployment of effects.  This independence 
includes: 

• 3D API independence (across mainstream OpenGL, OpenGL ES, Direct3D, or 
“direct to the hardware” APIs), 

• Operating system independence (across Windows, Linux, OS X, Solaris, or 
embedded systems), 

• Graphics hardware vendor independence (whether NVIDIA or ATI), and 
• Graphics platform independence (across PC, console, handheld device, or 

embedded devices). 

Because CgFX builds upon Cg that already supports all the above platform variations, 
CgFX provides a uniquely interoperable basis for encapsulating shading effects.  Each 
CgFX file contains multiple Cg functions, type declarations, effect parameters, and 
techniques. 

1.2. The Structure of a CgFX Effect 

Every valid CgFX file has the same basic syntax and structure for specifying an effect.  
When parsed by the Cg compiler, a CgFX file is preprocessed by a conventional C 
preprocessor so you can use #define, #include, and #ifdef as you do when writing C 
or C++ code. 

The CgFX file syntax for an effect is broken into two types of constructs: 

1. Techniques, and 
2. Cg code that is referenced by expressions found within the techniques.   

The Cg code and techniques can be more or less arbitrarily interleaved as long as Cg 
functions, types, and variables are declared before being referenced. 

The Cg code within a CgFX file may specify Cg functions, type definitions, and effect 
parameters (basically Cg variable definitions).  Each technique defines the 
implementation of a particular version of the effect and typically does so by referencing 
Cg code from within Cg expressions found within the technique.  A single effect file may 
specify multiple techniques for the same effect.  One effect may be designed for the best 
quality on the latest-and-greatest GPU available while another effect may be intended for 
lowest-common denominator rendering capabilities. 

Each technique specifies its optional name and contains a sequence of passes.  Likewise 
each pass specifies its optional name and contains a sequence of state assignments.  Each 
state assignment is a name/value pair that assigns the value of some expression (written 
using the fully expressiveness of the Cg programming language) to a named state.   
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A state in CgFX is something such as whether blending is enabled or what fragment 
program should be bound.  The value of a state assignment’s expression and the named 
state’s type must match.  Each state’s name and type correspond to some pre-registered 
3D API state or some user-specified state.  Expressions can reference Cg functions, type 
definitions, and parameters declared earlier in the file.  Expressions for state assignments 
can also use Cg standard library routines just as expressions in Cg programs can. 

Here is an example of one of the techniques from cgfx_bumpdemo.cgfx file: 

technique bumpdemo_arb { 
  pass { 
    FragmentProgram = compile arbfp1 
      C8E4f_specSurf(Ambient, 
                     float4(DiffuseMaterial  * LightColor, 1), 
                     float4(SpecularMaterial * LightColor, 1), 
                     normalMap, normalizeCube, norm alizeCube); 
    VertexProgram = compile arbvp1 
      C8E6v_torus(LightPosition, EyePosition, Model ViewProj, 
                  float2(OuterRadius, InnerRadius)); 
  } 
} 

(The complete contents of bumpdemo.cgfx are found in Appendix A.) 

This technique is rather simple since it only implements a single pass.  Multi-pass 
techniques list more than one pass definition.  This technique has two state assignments 
to bind a vertex and fragment program. 

1.2.1. Program State Assignments 

The FragmentProgram and VertexProgram state assignments are somewhat “special” 
because they each expect a value that is a valid compiled Cg program.  The compile 
keyword is followed by a Cg profile name (arbfp1 for the multi-vendor OpenGL 
ARB_fragment_program profile and arbvp1 for the multi-vendor OpenGL 
ARB_vertex_program profile) followed by a Cg entry function declared earlier in the 
file.  The function name is followed by an ordered parameter list; however only function 
parameters declared as uniform are listed in this parameter list.  In other words, output 
parameters and varying input parameters such as the vertex position or texture 
coordinates are excluded.  Each parameter in the list is a Cg expression that evaluates to a 
value for the respective uniform parameter of the entry function.  Often the expression is 
either a constant or simply references some effect parameter, but it can be arbitrarily 
complex. 

Take a look at this expression from the FragmentProgram state assignment above: 

                     float4(DiffuseMaterial  * LightColor, 1) 

Notice how this expression multiplies the 3-component DiffuseMaterial and 
LightColor parameters together and forces the 4th component to be one.  It is the value 
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resulting from the evaluation of this expression that provides the value of the second 
uniform parameter (LMd) for the C8E4f_specSurf fragment program. 

When a state assignment is set in the course of applying a technique (the Cg runtime API 
calls to set the state assignments of a pass are discussed later), the Cg runtime iterates in 
order over each state assignment for the selected pass.  The Cg runtime evaluates 
expressions using the current values of any referenced effect parameters to determine the 
value for each state assignment.  Then the Cg runtime assigns the resulting values to the 
corresponding state. 

How does the Cg runtime evaluate expressions?  In the course of the Cg runtime creating 
the effect, the Cg compiler (which exists within the Cg runtime) parses the effect and 
builds (compiles) each expression into a data structure that can be evaluated with a virtual 
machine (which also exists within the Cg runtime).  Typically these expressions are quite 
simple (often merely constants or direct references to effect parameters) so the expense of 
evaluating such expressions is quite low. 

As a consequence of setting a state assignment, the Cg runtime (or possibly a custom 
user-registered state callback) issues the appropriate 3D API commands associated with 
each state.  In the case of the FragmentProgram and VertexProgram state assignments 
shown above, this means binding to the proper compiled program object and setting that 
program’s parameters to the respective value of each evaluated expression. 

Once all the state assignments for a pass have been set, the application can render objects 
and the appropriate GPU processing occurs. 

1.2.2. State Assignments for Other Non-programmable State 

The state assignments for Cg programs are special because they involve the compilation 
of Cg programs.  Other state assignments can control non-programmable 3D API state 
such as blending and are typically simpler to specify.  For example, to make sure a pass 
enables SrcAlpha/OneMinusSrcAlpha blending, you could write this state assignment 
within a pass definition: 

    BlendEnable = true; 
    BlendFunc = int2(SrcAlpha, OneMinusSrcAlpha); 

These state assignments for BlendEnable and BlendFunc are registered to set the 
respective state within the conventional 3D hardware rendering pipeline.  For a state such 
as BlendFunc that is most conveniently specified with enumerated names, such names 
are pre-registered for the state values. 

Complex effects often involve the combination of state assignments for programmable 
and non-programmable states.  With the CgFX runtime you can even register custom 
states to extend CgFX to handle unanticipated or effect-specific states. 
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1.3. Annotations 

Along with Cg code and techniques, CgFX files can also associate annotations with each 
technique, pass, program, or effect parameter.  An annotation is a typed name/value pair 
that can be queried (inspected) by applications using the Cg runtime.  The purpose of an 
annotation is to associate some meta-information with the annotated object that an 
application can use to apply the effect properly. 

Here is an example: 

float3 DiffuseMaterial< 
  string type = "color"; 
  float3 minValue = float3(0,0,0); 
  float3 maxValue = float3(1,1,1); 
> = { 0.9, 0.6, 0.3 }; 

The angle brackets after the effect parameter name DiffuseMaterial delimit a sequence 
of annotations.  In this example, three annotations are specified. 

How annotations are used is entirely application dependent.  The expectation is that effect 
authors and 3D application developers desiring to share effects would agree to an 
appropriate set of annotations.  For example, the type, minValue, and maxValue 
annotations would allow an effect editor to display a color chooser widget with the 
appropriate numeric range for setting the DiffuseMaterial effect parameter. 

1.4. CgFX Runtime API Support 

As of Cg Toolkit version 1.4, the Cg runtime API includes support for loading and using 
CgFX files.  When we discuss cgfx_bumpdemo.c, we will see portions of this API for 
CgFX in action.  Support for CgFX is not a layer upon Cg but rather a first-class 
capability implemented within the Cg runtime. 

2. A Complete CgFX Demo 

What follows is the complete source code for a CgFX-based version of cg_bumpdemo.  
Hence this new demo is called cgfx_bumpdemo. 

The demo’s CgFX effect file, named bumpdemo.cgfx, contains two Cg programs taken 
directly from Chapter 8 (Bump Mapping) of The Cg Tutorial.  The Cg programs are 
included in the appendix at the end of this article; please consult The Cg Tutorial for an 
explanation of the programs and the underlying bump mapping background and 
mathematics. 
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The demo renders with OpenGL and interfaces with the window system via the cross-
platform OpenGL Utility Toolkit (GLUT).†  To interface the application with the Cg 
programs, the demo calls the generic Cg and OpenGL-specific CgGL runtime routines. 

OpenGL, GLUT, and the Cg and CgGL runtimes are supported on Windows, OS X, 
Linux, and Solaris so this demo compiles and runs on all of these operating systems.  The 
demo automatically selects the most appropriate profile for your hardware.  Cg supports 
multi-vendor OpenGL profiles (namely, arbvp1 and arbfp1) so the demo works on 
GPUs from ATI, NVIDIA, or any other OpenGL implementation, such as Brian Paul’s 
open source Mesa library, that exposes the multi-vendor ARB_vertex_program and 
ARB_fragment_program OpenGL extensions. 

2.1. CgFX Demo Source Code Walkthrough 

The cgfx_bumpdemo demo consists of the following four source files: 

1. cgfx_bumpdemo.c—ANSI C source code for the CgFX-based demo. 
2. brick_image.h—Header file containing RGB8 image data for a mipmapped 

128x128 normal map for a brick pattern. 
3. nmap_image.h—Header file containing RGB8 image data for a normalization 

vector cube map with 32x32 faces. 
4. cgfx_bumpdemo.cgfx—CgFX effect file. 

Later, we will go through cgfx_bumpdemo.c line-by-line. 

2.2. Pre-defined Texture Data 

To keep the demo self-contained and maintain the focus on how the Cg runtime loads and 
configures the CgFX effect and then renders with the effect, this demo uses static texture 
image data included in the two header files.  These two image data header files are the 
same ones used in the prior cg_bumpdemo example. 

The data in these header files are used to construct OpenGL texture objects for a brick 
pattern normal map 2D texture and a “vector normalization” cube map.  These texture 
objects are sampled by the fragment program.  

The data in the two headers files consists of hundreds of comma-separated numbers (I’ll 
save you the tedium of publishing all the numbers in this article…).  Rather than static 
data compiled into an executable, a typical application would read normal map textures 
from on-disk image files or convert a height-field image file to a normal map.  Likewise, 

                                                 

† Documentation, source code, and pre-compiled GLUT libraries are available from 
http://www.opengl.org/developers/documentation/glut.html  

http://www.opengl.org/developers/documentation/glut.html


 8 

a “normalization vector” cube map is typically procedurally generated rather than loaded 
from static data. 

2.3. The Effect File Contents 

The heart of the demo’s shading is encapsulated within the bumpdemo.cgfx effect file.  
The demo reads this effect file when the demo begins running.  The demo uses the Cg 
runtime to create an effect from bumpdemo.cgfx and then selects a valid technique for 
rendering the demo’s bump-mapped torus. 

2.3.1. Cg Programs within the Effect File 

The CgFX file begins with the Cg vertex and fragment programs needed by the effect.  
These functions are explained in Chapter 8 (Bump Mapping) of The Cg Tutorial.   

Rather than rehash the background, theory, and operation of these Cg programs, you 
should consult Chapter 8 of The Cg Tutorial.  Pages 200 to 204 explain the construction 
of the brick pattern normal map.  Pages 206 to 208 explain the construction and 
application of a normalization cube map.  Pages 208 to 211 explains specular bump 
mapping, including the C8E4f_specSurf fragment program.  Pages 211 to 218 explain 
texture-space bump mapping.  Pages 218 to 224 explain the construction of the per-vertex 
coordinate system needed for texture-space bump mapping for the special case of an 
object (the torus) that is generated from parametric equations by the C8E6v_torus vertex 
program. 

2.3.2. Effect Parameters within the Effect File 

After the Cg programs in cgfx_bumpdemo.cgfx, there are a set of effect parameters.  
These effect parameters drive the input parameters for the Cg programs. 

Most of the effect parameters have reasonable default initializations and so can simply be 
left alone.  These include the torus size parameters (OuterRadius and InnerRadius) and 
the light and material colors (Ambient, DiffuseMaterial, SpecularMaterial, and 
LightColor).  Providing a default value for an effect parameter is simply a matter of 
assigning a value to the parameter.  Example: 

float OuterRadius = 6; 
float InnerRadius = 2; 
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To help an application know which effect parameters contain colors and what the 
expected component range is for these parameters, the light and material color parameters 
include appropriate annotations.  Example: 

float Ambient< 
  string type = "ambient"; 
  float minValue = 0.0; 
  float maxValue = 1.0; 
> = 0.3; 

The cgfx_bumpdemo application does not actually use these annotation (it does not even 
query them), but these annotations could be used by other applications that seek to load 
the effect.  Using effect-specific annotations can be very powerful but is beyond the 
scope of this tutorial. Note that annotations can include strings. 

Two other parameters (normalMap and normalizeCube) define sampler effect 
parameters.  A sampler in Cg provides a means to sample a texture object (effectively, 
performing a texture lookup).  Because the texture objects are created by the application, 
conventional initialization of sampler parameters does not make much sense.  However 
you can instead specify some sampling state appropriate for textures using a special 
sampler_state keyword to assign a set of sampler states to a sampler effect parameter.  
For example, you can indicate the proper filtering and wrap modes as well as whether 
mipmaps should be automatically generated for the texture.  Examples: 

sampler2D normalMap = sampler_state { 
  generateMipMap = true; 
  minFilter = LinearMipMapLinear; 
  magFilter = Linear; 
}; 
 
samplerCUBE normalizeCube = sampler_state { 
  minFilter = Linear; 
  magFilter = Linear; 
  wrapS = ClampToEdge; 
  wrapT = ClampToEdge; 
}; 

Other effect parameters (ModelViewProj, LightPosition, and EyePosition) control 
the scene’s spatial arrangement.  While the default initialization of these parameters can 
provide an initial spatial arrangement for the scene, we expect these effect parameters 
will be updated to animate the rendered scene.  In this particular demo, we expect to 
rotate the viewer around the torus to observe how the lighting changes so every frame 
will update the eye position. 

The Cg runtime allows us to query by name or semantic, or to iterate through all the 
parameters in an effect.  Handles to each parameter can then be used to query and set the 
values of these effect parameters.  This is identical to how the Cg runtime allows 
parameters for programs to be queried and set.  However effect parameters are more 
powerful because a single effect parameter can drive program parameters for multiple 
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programs belonging to different passes of different techniques.  Also since program 
parameters in a vertex or fragment program state assignment are specified as expressions, 
they can combine multiple effect parameters to compute each program parameter for the 
vertex or fragment program. 

As we will see, an effect can be parameterized with high-level effect parameters that 
drive program parameters automatically.  For example, the C8E4f_specSurf fragment 
program expects its parameter named LMd to contain the light color and diffuse material 
color pre-multiplied together.  Likewise its LMs parameter expects to contain the light 
color and specular material color pre-multiplied together.  Effect parameters allow us to 
specify the light color, the diffuse material color, and specular material color 
independently and have the Cg runtime perform the necessary pre-multiplication. 

Because effect parameters drive the values of program parameters through programmable 
expressions, effect parameters can be more abstract than program parameters without 
compromising the performance of vertex and fragment programs. 

2.3.3. Techniques within the Effect File 

Once some effect parameters and Cg parameters have been specified, we can specify a 
set of techniques that use those Cg programs and effect parameters. 

We define four techniques for four different combinations of OpenGL profiles supported 
by Cg.  This allows the demo to select the best available technique for the effect based on 
the GPU capabilities available when the demo is run.  The techniques are: 

1. bumpdemo_nv40—Targets the full fragment and vertex capabilities of NVIDIA’s 
GeForce 6 and 7 Series of GPUs (designated by their architectural family code 
name “nv40”).   This technique compiles the effect’s Cg vertex and fragment 
programs for the vp40 and fp40 profiles respectively. 

2. bumpdemo_arb—Targets the fragment and vertex capabilities of the 
ARB_vertex_program and ARB_fragment_program multi-vendor extensions 
established as OpenGL Architectural Review Board (ARB) standards.  This 
technique compiles the effect’s Cg vertex and fragment programs for the arbvp1 
and arbfp1 profiles respectively. 

3. bumpdemo_nv30—Targets the fragment and vertex capabilities of NVIDIA’s 
GeForce FX Series of GPUs (designated by their architectural family code name 
“nv30”).   This technique compiles the effect’s Cg vertex and fragment programs 
for the vp30 and fp30 profiles respectively. 

4. bumpdemo_nv20— Targets the more limited fragment and vertex capabilities of 
NVIDIA’s GeForce3 and GeForce 4 Ti GPUs (designated by their architectural 
family code name “nv20”).   This technique compiles the effect’s Cg vertex and 
fragment programs for the vp20 and fp20 profiles respectively. 

All four techniques are identical with the exception of the vertex and fragment profiles 
they specify when compiling the VertexProgram and FragmentProgram state 
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assignments.  This allows each technique to be specialized to the capabilities of a specific 
GPU architecture for optimal performance. 

They are all quite similar and the bumpdemo_arb technique has already been listed earlier 
so here is the bumpdemo_nv40 technique: 

technique bumpdemo_nv40 { 
  pass { 
    FragmentProgram = compile fp40 
      C8E4f_specSurf(Ambient, 
                     float4(DiffuseMaterial  * LightColor, 1), 
                     float4(SpecularMaterial * LightColor, 1), 
                     normalMap, normalizeCube, norm alizeCube); 
    VertexProgram = compile vp40 
      C8E6v_torus(LightPosition, EyePosition, Model ViewProj, 
                  float2(OuterRadius, InnerRadius)); 
  } 
} 

While these techniques are different only in their Cg profiles, a given technique for an 
effect could be implemented differently, often using entirely different Cg programs.  For 
example, one technique might account for shadowing for more realism while another 
version of the same effect might skip shadows or compute intermediate values with more 
precision. 

3. On to the C Code 

Now that we understand the effect that cgfx_bumpdemo will use, it’s time to dissect 
cgfx_bumpdemo.c line-by-line as promised (we’ll skip comments in the source code if 
the comments are redundant with the discussion below). 

3.1. Initial Declarations 

#include <math.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <GL/glut.h> 
#include <Cg/cg.h> 
#include <Cg/cgGL.h> 

The first three includes are basic ANSI C standard library includes.  We will be using 
sin, cos, printf, exit, and NULL.  We rely on the GLUT header file to include the 
necessary OpenGL and OpenGL Utility Library (GLU) headers. 

The <Cg/cg.h> header contains generic routines for loading and compiling Cg programs 
and CgFX effects but does not contain routines that call the 3D API to configure the Cg 
programs and CgFX effects for rendering.  The generic Cg routines begin with a cg 
prefix; the generic Cg types begin with a CG prefix; and the generic Cg macros and 
enumerations begin with a CG_ prefix. 
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The <Cg/cgGL.h> contains the OpenGL-specific routines for configuring Cg programs 
for rendering with OpenGL.  The OpenGL-specific Cg routines begin with a cgGL prefix; 
the OpenGL-specific Cg types begin with a CGGL prefix; and the OpenGL-specific Cg 
macros and enumerations begin with a CGGL_ prefix. 

Technically, the <Cg/cgGL.h> header includes <Cg/cg.h> so we do not have to explicitly 
include <Cg/cg.h> but we include both to remind you that we will be calling both 
generic Cg routines and OpenGL-specific Cg routines. 

3.1.1. Cg Runtime Variables 

Next, we will list all global variables we plan to use.  We use the my prefix to indicate 
global variables that we define (to make it crystal clear what names we are defining 
rather than those names defined by header files).  When we declare a variable of a type 
defined by the Cg runtime, we use the myCg prefix to remind you that the variable is for 
use with the Cg runtime. 

CGcontext   myCgContext; 
CGeffect    myCgEffect; 
CGtechnique myCgTechnique; 
CGparameter myCgEyePositionParam, 
            myCgModelViewProjParam; 

These are the global Cg runtime variables the demo initializes and uses.  We need a 
single Cg compilation context (myCgContext).  Think of your Cg compilation context as 
the “container” for all the Cg handles you manipulate.  Typically your program requires 
just one Cg compilation context. 

We need one Cg effect (myCgEffect) for when we load bumpdemo.cgfx. 

We need one Cg technique (myCgTechnique) for the particular technique we will use to 
render the torus.  While there are four possible techniques, we will select the first 
technique valid for the GPU upon which the demo is actually running. 

We need handles for the two effect parameters that we plan to set as the demo animates.  
We do not plan to change the default initialization of most of the effect parameters so we 
need not keep effect parameter handles for these parameters. 

In a real program, you’ll probably have more Cg effects, techniques, and effect 
parameters than shown in this simple example.  You may have hundreds depending on 
how complicated the shading is in your application.  Keep in mind that this demo is 
trying to be very simple. 
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3.1.2. Demo Initialization 

static void initCg(); 
static void initOpenGL(); 
static void display(void); 
static void keyboard(unsigned char c, int x, int y); 

The demo first declares various routines, described later, used by the demo’s main 
routine. 

int main( int argc, char **argv) 
{ 
  glutInitDisplayMode( GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH); 
  glutInitWindowSize(400, 400); 
  glutInit(&argc, argv); 
  glutCreateWindow("cgfx_bumpdemo"); 

The main routine creates a GLUT window with an associated OpenGL rendering context. 

  initCgFX(); 
  initOpenGL(); 

Then CgFX objects are initialized along with OpenGL rendering state.   

  glutDisplayFunc(display); 
  glutKeyboardFunc(keyboard); 
  glutMainLoop(); 
  return 0; 
} 

The demo registers callbacks for displaying the window, resizing the window, and 
accepting keyboard input.  Finally GLUT event processing begins. 

3.1.3. Error Reporting Helper Routine 

Cg initialization depends on a helper routine for reporting Cg-related errors: 

static void checkForCgError( const char *situation) 
{ 
  CGerror error; 
  const char *string = cgGetLastErrorString(&error); 
 
  if (error != CG_NO_ERROR) { 
    printf("cgfx_bumpdemo: %s: %s\n", situation, string); 
    if (error == CG_COMPILER_ERROR) { 
      printf("%s\n", cgGetLastListing(myCgContext)); 
    } 
    exit(1); 
  } 
} 

Cg runtime routines report errors by setting a global error value.  Calling the 
cgGetLastErrorString routine both returns a human-readable string describing the last 
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generated Cg error and writes an error code of type CGerror.  CG_NO_ERROR (defined to 
be zero) means there was no error.  As a side-effect, cgGetLastErrorString also resets 
the global error value to CG_NO_ERROR.  The Cg runtime also includes the simpler 
function cgGetError that just returns and then resets the global error code if you just 
want the error code and don’t need a human-readable string too. 

The checkForCgError routine is used to ensure proper error checking within the demo.  
If an error has occurred, the routine prints an error message including the situation 
string and translated Cg error value string, and then exits the demo. 

When the error returned is CG_COMPILER_ERROR that means there are also compiler error 
messages.  So checkForCgError then calls cgGetLastListing to obtain a pointer to the 
compiler error message and prints it out too.  For example, if your CgFX effect file had a 
syntax error, you’d see the compiler’s error messages including the line numbers where 
the compiler identified problems. 

While “just exiting” is fine for a demo, real applications will want to properly handle any 
errors generated.  In general, you don’t have to be so paranoid as to call 
cgGetLastErrorString after every Cg runtime routine.  Check the runtime API 
documentation for each routine to see the reasons it can fail; when in doubt, check for 
failures. 

3.1.4. Cg Initialization 

static void initCgFX(void) 
{ 
  myCgContext = cgCreateContext(); 
  checkForCgError("creating Cg context"); 
  cgGLRegisterStates(myCgContext); 
  cgGLSetManageTextureParameters(myCgContext, CG_TRUE); 
  checkForCgError("configuring Cg context"); 

First we create a Cg context, register the standard states (if you fail to do this, your Cg 
context will lack the standard states needed for processing standard 3D API state 
assignments—alternatively you could load your own implementations of the standard 
CgFX states), and request that the Cg runtime manage texture binds (saving your 
application the trouble when applying techniques). 

  myCgEffect = cgCreateEffectFromFile(myCgContext, "bumpdemo.cgfx", NULL); 
  checkForCgError("creating bumpdemo.cgfx effect");  
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Now we read the bumpdemo.cgfx effect file to create an effect. 

  myCgTechnique = cgGetFirstTechnique(myCgEffect); 
  while (myCgTechnique && cgValidateTechnique(myCgTechniqu e) == CG_FALSE) { 
    fprintf( stderr,  
      "cgfx_bumpdemo: Technique %s did not validate .  Skipping.\n", 
      cgGetTechniqueName(myCgTechnique)); 
    myCgTechnique = cgGetNextTechnique(myCgTechnique); 
  } 
  if (myCgTechnique) { 
    fprintf( stderr, "cgfx_bumpdemo: Using technique %s.\n", 
      cgGetTechniqueName(myCgTechnique)); 
  } else { 
    fprintf( stderr, "cgfx_bumpdemo: No valid technique\n"); 
    exit(1); 
  } 

We iterate in order through the techniques defined by the effect.  We attempt to validate 
each technique.  This is because the techniques are listed in the effect file in roughly the 
order of most-optimal to least-optimal.  As soon as we find a technique that is valid for 
our GPU, we choose that technique and go on.  If we find no valid technique, our GPU is 
not capable of rendering the effect so we exit with an error. 

  myCgModelViewProjParam = 
    cgGetEffectParameterBySemantic(myCgEffect, "ModelViewProjection"); 
  if (!myCgModelViewProjParam) { 
    fprintf( stderr, 
      "cgfx_bumpdemo: no parameter with ModelViewPr ojection semantic\n"); 
    exit(1); 
  } 
  myCgEyePositionParam = 
    cgGetNamedEffectParameter(myCgEffect, "EyePosition"); 
  if (!myCgEyePositionParam) { 
    fprintf( stderr, "cgfx_bumpdemo: no parameter named EyePosition\n" ); 
    exit(1); 
  } 
} 

As discussed earlier, most of the effect parameters have appropriate defaults.  However if 
we want to set effect parameters to other values, we need to query a handle for such 
effect parameters.  In this case, we want to animate the eye position and track OpenGL’s 
modelview and projection matrices. 

We can query effect parameters by iterating through the entire list (with 
cgGetFirstEffectParameter and cgGetNextParameter) or query the effect 
parameters by either name or semantic as shown above.  Once we have the handle to an 
effect parameter we can query its name, type, value, semantic, and other information.  
We can also set its value and other properties. 

A more sophisticated demo would iterate over and query all the effect parameters and 
inspect their annotations to determine how to interface the application’s data to the effect.  
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This allows such demos to operate with a much boarder range of effects.  This demo is 
intentionally simplistic so it just queries by name the parameters it expects. 

3.1.5. Texture Data 

Before explaining how we initialize OpenGL, for completeness we discuss how the 
necessary textures are loaded.  This code exactly matches the cg_bumpdemo source code. 

/* OpenGL texture object (TO) handles. */ 
enum { 
  TO_NORMALIZE_VECTOR_CUBE_MAP = 1, 
  TO_NORMAL_MAP = 2, 
}; 

The TO_ prefixed enumerants provide numbers for use as OpenGL texture object names. 

static const GLubyte 
myBrickNormalMapImage[3*(128*128+64*64+32*32+16*16+ 8*8+4*4+2*2+1*1)] = { 
/* RGB8 image data for mipmapped 128x128 normal map  for a brick pattern */ 
#include "brick_image.h" 
}; 
 
static const GLubyte 
myNormalizeVectorCubeMapImage[6*3*32*32] = { 
/* RGB8 image data for normalization vector cube ma p with 32x32 faces */ 
#include "normcm_image.h" 
}; 

These static, constant arrays include the header files containing the data for the normal 
map’s brick pattern and the “normalization vector” cube map.  Each texel is 3 unsigned 
bytes (one for red, green, and blue).  While each byte of the texel format is unsigned, 
normal map components, as well as the vector result of normalizing an arbitrary direction 
vector, are logically signed values within the [-1,1] range.  To accommodate signed 
values with OpenGL’s conventional GL_RGB8 unsigned texture format, the unsigned [0,1] 
range is expanded in the fragment program to a signed [-1,1] range.  This is the reason for 
the expand helper function called by the C8E4f_specSurf fragment program (see 
Appendix A). 

The normal map has mipmaps so there is data for the 128x128 level, and then, each of the 
successively downsampled mipmap levels.  However this version of the demo asks the 
driver to generate the mipmaps for the normal map instead by using a sampler state 
assignment to request mipmap generation. 

The “normalization vector” cube map has six 32x32 faces without mipmaps. 

3.1.6. Initializing Sampler Effect Parameters 

To fully initialize the OpenGL state required, we need to associate the OpenGL texture 
objects for the normal map and normalization cube map textures with their respective 
sampler effect parameters. 
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static void useSamplerParameter( CGeffect effect, 
                                 const char *paramName, 
                                 GLuint texobj) 
{ 
  CGparameter param; 
 
  param = cgGetNamedEffectParameter(effect, paramName); 
  if (!param) { 
    fprintf( stderr, "cgfx_bumpdemo: expected effect parameter named % s\n", 
      paramName); 
    exit(1); 
  } 
  cgGLSetTextureParameter(param, texobj); 
  cgSetSamplerState(param); 
} 

We query the named effect parameter and then use cgGLSetTextureParameter to set an 
OpenGL texture object for the sampler.  Next we use cgSetSamplerState to make the 
appropriate OpenGL calls to set the sampler_state state settings for the sampler effect 
parameter.  This ensures each sampler’s texture object is configured with the effect’s 
intended filtering and wrap modes and mipmap generation occurs if requested. 

3.1.7. OpenGL Rendering State Initialization 

static void initOpenGL( void) 
{ 
  const GLubyte *image; 
  unsigned int face; 
 
  glPixelStorei( GL_UNPACK_ALIGNMENT, 1); /* Tightly packed texture data. */ 

By default, OpenGL’s assumes each image scanline is aligned to begin on 4 byte 
boundaries.  However, RGB8 data (3 bytes per pixel) is usually tightly packed so a 1 byte 
alignment is appropriate.  That’s indeed the case for the RGB8 pixels in our static arrays 
used to initialize our textures.  If you didn’t know about this OpenGL pitfall before, you 
do now.‡ 

                                                 

‡ Being aware of pitfalls such as this one can save you a lot of time debugging.  This and other OpenGL 
pitfalls are enumerated in my article “Avoiding 19 Common OpenGL Pitfalls” found here 
http://developer.nvidia.com/object/Avoiding_Common_ogl_Pitfalls.html  An earlier HTML version of the  
article (with just 16 pitfalls) is found here 
http://www.opengl.org/developers/code/features/KilgardTechniques/oglpitfall/oglpitfall.html  

http://developer.nvidia.com/object/Avoiding_Common_ogl_Pitfalls.html
http://www.opengl.org/developers/code/features/KilgardTechniques/oglpitfall/oglpitfall.html
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/* OpenGL tokens for cube maps missing from Windows  version of <GL/gl.h> */ 
#define GL_TEXTURE_CUBE_MAP                 0x8513 
#define GL_TEXTURE_CUBE_MAP_POSITIVE_X      0x8515 
  glBindTexture( GL_TEXTURE_CUBE_MAP, TO_NORMALIZE_VECTOR_CUBE_MAP); 
  useSamplerParameter(myCgEffect, "normalizeCube", 
                      TO_NORMALIZE_VECTOR_CUBE_MAP) ; 
  /* Load each 32x32 face (without mipmaps) of rang e-compressed "normalize 
     vector" cube map. */ 
  for (face = 0, image = myNormalizeVectorCubeMapImage; 
       face < 6; 
       face++, image += 3*32*32) { 
    glTexImage2D( GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, 
      GL_RGB8, 32, 32, 0, GL_RGB, GL_UNSIGNED_BYTE, image); 
  } 

First we bind the texture object for the “normalization vector” cube map§ intended to 
quickly normalize the 3D lighting vectors that are passed as texture coordinates.  Calling 
useSamplerParameter binds this effect’s sampler to the just created normalization cube 
map and sets the sampler state as requested by the effect.  The cube map texture has six 
faces but there is no need for mipmaps.  Each face is packed into the 
myNormalizeVectorCubeMapImage array right after the prior face with the faces ordered 
in the order of the sequential texture cube map face OpenGL enumerants. 

  glBindTexture( GL_TEXTURE_2D, TO_NORMAL_MAP); 
  useSamplerParameter(myCgEffect, "normalMap", 
                      TO_NORMAL_MAP); 
  glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB8, 128, 128, 0, 
    GL_RGB, GL_UNSIGNED_BYTE, myBrickNormalMapImage ); 

Next we bind to the texture object for our brick pattern normal map 2D texture, call 
useSamplerParameter to bind this effect’s sampler to the just created normal map and 
set the sampler state as requested by the effect, and then load the base level of the normal 
map (from which mipmaps will be automatically generated because mipmap generation 
is specified in the effect parameter’s sampler_state initialization). 

  glEnable( GL_DEPTH_TEST); 
  glMatrixMode( GL_PROJECTION); 
  glLoadIdentity(); 
  gluPerspective( 
    60.0,   /* Field of view in degree */ 
    1.0,    /* Aspect ratio */  
    0.1,    /* Z near */ 
    100.0); /* Z far */ 
  glMatrixMode( GL_MODELVIEW); 
  glClearColor(0.1, 0.3, 0.6, 0.0);  /* Blue background */ 
}  

                                                 

§ Using a “normalization vector” cube map allows our demo to work on older DirectX 8-class GPUs that 
lacked the shading generality to normalize vectors mathematically.  Ultimately as more capable GPUs 
become ubiquitous, use of normalization cube maps is sure to disappear in favor of normalizing a vector 
mathematically.  A technique using a different Cg program could use Cg’s normalize standard library 
routine instead. 
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Finally we enable depth testing, establish a perspective projection transform, and set the 
background color to blue.  Alternatively we could enable the depth test in a state 
assignment within each technique’s pass but this would set the depth test every time we 
apply the technique.  It is easier to simply leave the depth test always enabled since we 
never need it disabled for this demo. 

3.2. Displaying the Window 

Earlier in the code, we forward declared the display callback.  Now is the time to 
discuss what the display routine does and how exactly we render our bump-mapped 
torus using the textures and Cg vertex and fragment programs we’ve loaded. 

3.2.1. Rendering a 2D Mesh to Generate a Torus 

In the course of updating the window, the display callback invokes the drawFlatPatch 
subroutine.  This subroutine renders a flat 2D mesh with immediate-mode OpenGL 
commands.  This routine is unchanged from the cg_bumpdemo version of this demo. 

/* Draw a flat 2D patch that can be "rolled & bent"  into a 3D torus by 
   a vertex program. */  
void 
drawFlatPatch( float rows, float columns) 
{ 
  const float m = 1.0f/columns;  
  const float n = 1.0f/rows;  
  int i, j; 
 
  for (i=0; i<columns; i++) { 
    glBegin( GL_QUAD_STRIP); 
    for (j=0; j<=rows; j++) { 
      glVertex2f(i*m, j*n); 
      glVertex2f((i+1)*m, j*n); 
    } 
    glVertex2f(i*m, 0); 
    glVertex2f((i+1)*m, 0); 
    glEnd(); 
  } 
} 

The mesh consists of a number of adjacent quad strips.  The C8E6v_torus vertex 
program will take these 2D vertex coordinates and use them as parametric coordinates for 
evaluating the position of vertices on a torus. 

Nowadays it’s much faster to use OpenGL vertex arrays, particularly with vertex buffer 
objects, to render geometry, but for this simple demo, immediate mode rendering is 
easier. 



 20 

 

Figure 8-7 from The Cg Tutorial is replicated to illustrate how a 2D mesh could be 
procedurally “rolled and bent” into a torus by a vertex program. 

3.2.2. The Display Callback 

/* Initial scene state */ 
static float myEyeAngle = 0; 

The viewer rotates around the torus and bobs up and down based on the demo’s 
animation of myEyeAngle. 

static void display(void) 
{ 
  const int sides = 20, rings = 40; 
  const float eyeRadius = 18.0, 
              eyeElevationRange = 8.0; 
  float eyePosition[3]; 

The display callback has a number of constants that control the torus size and 
tessellation and how the torus is viewed. 

  CGpass pass; 

In the course of applying our chosen technique, we need a handle to a CgFX pass. 

  glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 
  eyePosition[0] = eyeRadius * sin(myEyeAngle); 
  eyePosition[1] = eyeElevationRange * sin(myEyeAng le); 
  eyePosition[2] = eyeRadius * cos(myEyeAngle); 
 
  glLoadIdentity(); 
  gluLookAt( 
    eyePosition[0], eyePosition[1], eyePosition[2],   
    0.0 ,0.0,  0.0,   /* XYZ view center */ 
    0.0, 1.0,  0.0);  /* Up is in positive Y direct ion */ 
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The viewing transform is re-specified each frame.  The eye position is a function of 
myEyeAngle.  By animating this variable, the viewer rotates around the torus with a 
sinusoidally varying elevation.  Because specular bump mapping is view-dependent, the 
specular lighting varies over the torus as the viewer rotates around. 

  cgGLSetStateMatrixParameter(myCgModelViewProjPara m, 
    CG_GL_MODELVIEW_PROJECTION_MATRIX, 
    CG_GL_MATRIX_IDENTITY); 
  cgSetParameter3fv(myCgEyePositionParam, eyePositi on); 

We set the effect parameter for the modelview-projection matrix to the current OpenGL 
modelview-projection matrix (even though in this demo we aren’t actually changing it—
we could move and rotate the torus if we did). 

  pass = cgGetFirstPass(myCgTechnique); 
  while (pass) { 
    cgSetPassState(pass); 

This begins the “guts” of the rendering where we apply our chosen technique.  All our 
techniques involve only a single pass, but the code is written so it could iterate through a 
sequence of passes if our technique did provide multiple passes. 

We get the first pass for our chosen technique with cgGetFirstPass.  Then 
cgSetPassState sets all the state assignments for the pass.  This includes evaluating as 
necessary any state assignment expressions to determine their updated values.  The 
appropriate OpenGL API commands are issued to bind to the pass’s vertex and fragment 
program (as established when we called cgGLRegisterStates from main). 

    drawFlatPatch(sides, rings); 

Then we render the flat patch with drawFlatPatch which renders the bump-mapped 
torus using the effect loaded from bumpdemo.cgfx. 

    cgResetPassState(pass); 

We clean up any OpenGL state modified by cgSetPassState by calling 
cgResetPassState.  In this case, the state is restored to OpenGL’s initial state.  This 
helps keep our state assignments from unintentionally affecting subsequent rendering. 

    pass = cgGetNextPass(pass); 
  } 

We request the next pass in the technique and repeat until we run out of passes.  All four 
techniques in our effect only have a single pass so this is not really necessary.  But it but 
would be if multi-pass techniques were involved. 

  glutSwapBuffers(); 
} 
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We complete the rendering by performing a buffer swap to display the results. 

3.3. Keyboard Processing 

Along with the display callback, we also forward declared and registered the keyboard 
callback.  Now it’s time to see how the demo responses to simple keyboard input.  This 
code is unchanged from the original cg_bumpdemo source code. 

3.3.1. Animating the Eye Position 

static void advanceAnimation( void) 
{  
  myEyeAngle += 0.05f; 
  if (myEyeAngle > 2*3.14159) 
    myEyeAngle -= 2*3.14159; 
  glutPostRedisplay(); 
} 

In order to animate the changing eye position so the view varies, the advanceAnimation 
callback is registered as the GLUT idle function.  The routine advances myEyeAngle and 
posts a request for GLUT to redraw the window with glutPostRedisplay.  GLUT calls 
the idle function repeatedly when there are no other events to process. 

3.3.2. The Keyboard Callback 

static void keyboard( unsigned char c, int x, int y) 
{ 
  static int animating = 0; 
 
  switch (c) { 
  case ' ': 
    animating = !animating; /* Toggle */ 
    glutIdleFunc(animating ? advanceAnimation : NULL); 
    break; 

The space bar toggles animation of the scene by registering and de-registering the 
advanceAnimation routine as the idle function. 

  case 27:  /* Esc key */ 
    cgDestroyEffect(myCgEffect); 
    cgDestroyContext(myCgContext); 
    exit(0); 
    break; 
  } 
} 

The Esc key exits the demo.  While it is not necessary to do so since the demo is exiting, 
the calls to cgDestroyEffect and cgDestroyContext deallocate the Cg runtime objects, 
along with their associated OpenGL state. 
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4. The Demo in Action 

The images below show the rendered bump-mapped torus initially (left) and while 
animating (right). 

   

5. Conclusions 

Using CgFX functionality, I have rewritten the cg_bumpdemo demo with considerably 
fewer lines of source code.  More importantly, the shading effect is encapsulated in a 
single CgFX file. 

You can use the CgFX shading system to better isolate shading effects from the 
applications that apply those effects.  The concepts of techniques, passes, and state 
assignments provide a clean framework to structure your effects for maximal platform-
independence.  Annotations allow you to keep meta-information about effect parameters 
and other effect objects within the effect file. 

I encourage you to explore CgFX and particularly NVIDIA’s FX Composer**  integrated 
development environment for authoring effect files. 

                                                 

**  Download it today from http://developer.nvidia.com/object/fx_composer_home.html 

http://developer.nvidia.com/object/fx_composer_home.html
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Appendix A: bumpdemo.cgfx Effect File 

Cg Vertex Program 

void C8E6v_torus( float2 parametric : POSITION, 
 
             out float4 position       : POSITION, 
             out float2 oTexCoord      : TEXCOORD0, 
             out float3 lightDirection : TEXCOORD1, 
             out float3 halfAngle      : TEXCOORD2, 
 
         uniform float3 lightPosition,  // Object-space  
         uniform float3 eyePosition,    // Object-space 
         uniform float4x4 modelViewProj, 
         uniform float2 torusInfo) 
{ 
  const float pi2 = 6.28318530;  // 2 times Pi 
  // Stetch texture coordinates counterclockwise 
  // over torus to repeat normal map in 6 by 2 patt ern 
  float M = torusInfo[0]; 
  float N = torusInfo[1]; 
  oTexCoord = parametric * float2(-6, 2); 
  // Compute torus position from its parameteric eq uation 
  float cosS, sinS; 
  sincos(pi2 * parametric.x, sinS, cosS); 
  float cosT, sinT; 
  sincos(pi2 * parametric.y, sinT, cosT); 
  float3 torusPosition = float3((M + N * cosT) * cosS, 
                                (M + N * cosT) * si nS, 
                                N * sinT); 
  position = mul(modelViewProj, float4(torusPosition, 1)); 
  // Compute per-vertex rotation matrix 
  float3 dPds = float3(-sinS*(M+N*cosT), cosS*(M+N*cosT), 0 ); 
  float3 norm_dPds = normalize(dPds); 
  float3 normal = float3(cosS * cosT, sinS * cosT, sinT); 
  float3 dPdt = cross(normal, norm_dPds); 
  float3x3 rotation = float3x3(norm_dPds, 
                               dPdt, 
                               normal); 
  // Rotate object-space vectors to texture space 
  float3 eyeDirection = eyePosition - torusPosition; 
  lightDirection = lightPosition - torusPosition; 
  lightDirection = mul(rotation, lightDirection); 
  eyeDirection = mul(rotation, eyeDirection); 
  halfAngle = normalize( normalize(lightDirection) + 
                        normalize(eyeDirection)); 
} 
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Cg Fragment Program 

float3 expand( float3 v) { return (v-0.5)*2; } 
 
void C8E4f_specSurf( float2 normalMapTexCoord : TEXCOORD0, 
                    float3 lightDirection    : TEXCOORD1, 
                    float3 halfAngle         : TEXCOORD2, 
 
               out float4 color : COLOR, 
 
           uniform float  ambient, 
           uniform float4 LMd, // Light-material diffuse 
           uniform float4 LMs, // Light-material specular 
           uniform sampler2D   normalMap, 
           uniform samplerCUBE normalizeCube, 
           uniform samplerCUBE normalizeCube2) 
{ 
  // Fetch and expand range-compressed normal 
  float3 normalTex = tex2D(normalMap, normalMapTexCoord).xyz; 
  float3 normal = expand(normalTex); 
  // Fetch and expand normalized light vector 
  float3 normLightDirTex = texCUBE(normalizeCube, 
                                   lightDirection). xyz; 
  float3 normLightDir = expand(normLightDirTex); 
  // Fetch and expand normalized half-angle vector 
  float3 normHalfAngleTex = texCUBE(normalizeCube2, 
                                    halfAngle).xyz;  
  float3 normHalfAngle = expand(normHalfAngleTex); 
  
  // Compute diffuse and specular lighting dot prod ucts 
  float diffuse = saturate( dot(normal, normLightDir)); 
  float specular = saturate( dot(normal, normHalfAngle)); 
  // Successive multiplies to raise specular to 8th  power 
  float specular2 = specular*specular; 
  float specular4 = specular2*specular2; 
  float specular8 = specular4*specular4; 
 
  color = LMd*(ambient+diffuse) + LMs*specular8; 
} 
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Effect Parameters 

float4x4 ModelViewProj : ModelViewProjection; 
float OuterRadius = 6; 
float InnerRadius = 2; 
float3 LightPosition = { -8, 0, 15 }; 
float3 EyePosition = { 0, 0, 18 }; 
 
float Ambient< 
  string type = "ambient"; 
  float minValue = 0.0; 
  float maxValue = 1.0; 
> = 0.3; 
 
float3 DiffuseMaterial< 
  string type = "color"; 
  float3 minValue = float3(0,0,0); 
  float3 maxValue = float3(1,1,1); 
> = { 0.9, 0.6, 0.3 }; 
 
float3 SpecularMaterial< 
  string type = "color"; 
  float3 minValue = float3(0,0,0); 
  float3 maxValue = float3(1,1,1); 
> = { 1, 1, 1 }; 
 
float3 LightColor< 
  string type = "color"; 
  float3 minValue = float3(0,0,0); 
  float3 maxValue = float3(1,1,1); 
> = { 1.0, 0.9, 0.9 }; 
 
sampler2D normalMap = sampler_state { 
  generateMipMap = true; 
  minFilter = LinearMipMapLinear; 
  magFilter = Linear; 
}; 
 
samplerCUBE normalizeCube = sampler_state { 
  minFilter = Linear; 
  magFilter = Linear; 
  wrapS = ClampToEdge; 
  wrapT = ClampToEdge; 
}; 
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Techniques 

// Because cgfx_bumpdemo.c picks the first valid te chnique,  
// list techniques in relative order of preference. .. 
 
technique bumpdemo_nv40 { 
  pass { 
    FragmentProgram = compile fp40 
      C8E4f_specSurf(Ambient, 
                     float4(DiffuseMaterial  * LightColor, 1), 
                     float4(SpecularMaterial * LightColor, 1), 
                     normalMap, normalizeCube, norm alizeCube); 
    VertexProgram = compile vp40 
      C8E6v_torus(LightPosition, EyePosition, Model ViewProj, 
                  float2(OuterRadius, InnerRadius)); 
  } 
} 
 
technique bumpdemo_nv30 { 
  pass { 
    FragmentProgram = compile fp30 
      C8E4f_specSurf(Ambient, 
                     float4(DiffuseMaterial  * LightColor, 1), 
                     float4(SpecularMaterial * LightColor, 1), 
                     normalMap, normalizeCube, norm alizeCube); 
    VertexProgram = compile vp30 
      C8E6v_torus(LightPosition, EyePosition, Model ViewProj, 
                  float2(OuterRadius, InnerRadius)); 
  } 
} 
 
technique bumpdemo_arb { 
  pass { 
    FragmentProgram = compile arbfp1 
      C8E4f_specSurf(Ambient, 
                     float4(DiffuseMaterial  * LightColor, 1), 
                     float4(SpecularMaterial * LightColor, 1), 
                     normalMap, normalizeCube, norm alizeCube); 
    VertexProgram = compile arbvp1 
      C8E6v_torus(LightPosition, EyePosition, Model ViewProj, 
                  float2(OuterRadius, InnerRadius)); 
  } 
} 
 
technique bumpdemo_nv20 { 
  pass { 
    FragmentProgram = compile fp20 
      C8E4f_specSurf(Ambient, 
                     float4(DiffuseMaterial  * LightColor, 1), 
                     float4(SpecularMaterial * LightColor, 1), 
                     normalMap, normalizeCube, norm alizeCube); 
    VertexProgram = compile vp20 
      C8E6v_torus(LightPosition, EyePosition, Model ViewProj, 
                  float2(OuterRadius, InnerRadius)); 
  } 
} 
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