Re-implementing the |
Follow-up Cg Runtime Tutorial with CgFX’

Mark J. Kilgard
NVIDIA Corporation
Austin, Texas

April 23, 2006

The source code discussed in this tutorial is

installed by the Cg Toolkit installer for Windows at
c:\Program Fil es\NVI DI A Cor por at i on\ Cg\ exanpl es\ OpenG.\ advanced\ cgf x_bunpdeno

This whitepaper continues a tutorial | wrote a year ago titled “A Follo@gRuntime
Tutorial for Readers ofhe Cg Tutorial”in which | presented a complete OpenGL demo
written in ANSI C that renders a procedurally-generated bump-mapped torus using Cg
programs discussed Trhe Cg Tutorigl a book | co-wrote about Cg programming.

Now | present the same demo but re-implement it with CgFX, a shadingsfétein

built around Cg. CgFX is a file format and an associated runtime API for dagcaibi
complete shading effect that includes Cg programs, how these Cg prograrnshireed

into potentially multiple rendering passes, how the input parameters ferghaggrams

are computed, how other non-programmable GPU state should be configured, and finally
annotations so an application can appropriately associate its application-#tate t

effect’s input parameters and rendering passes.

CgFX allows us to package a complete shading effect as a single uraéaed#g more
easily tweaked and shared among multiple applications. Re-implementing thalorig
demo in CgFX also results in less application code.

The original whitepaper’s demo program is catlgdounpdeno so the new CgFX-based
demo is calledgf x_bunpdeno. Before walking you through the complete source code
for cgf x_bunpdeno, | first explain the rationale for CgFX and how CgFX structures the
specification of a shading effect.

" You have permission to redistribute or make digitehard copy of this article for non-commercial o
educational use.

" The Cg Tutoriaby Randima (Randy) Fernando and Mark J. KilganLislished by Addison-Wesley
(ISBN 0321194969, 336 pages). The book is nowaiai in Japanese translation (ISBN4-939007-55-3).

1. The Why and What of CgFX

CgFX addresses the fact that Cg programs, even though written in an expregsive hi
level language, do not completely express what is required to use a pa@igylsogram
properly for a given shading effect. For one thing, you often need both a vertex and
fragment program to be used simultaneously. You also need to know how non-
programmable state such as blending or depth testing should be configured. The
complete effect may even require multiple rendering passes, perforrageiticular

order. And because of the differences in graphics hardware you must support or varying
requirements for rendering quality and performance, multiple implemamtadf a

particular effect—termetechniquesn CgFX—may be required. Finally the parameters

of the effect may require meta-information about the parameters suclir asliderange

or how the parameter is computed from other parameters. The big advantage of CgFX is
you combine everything needed to render a shading effect in a single place.

If you simply use Cg programs to implement a given rendering effect, yaluwpi
embedding “application/effect glue” knowledge about your rendering effgeciur

application code. This makes it difficult for a rendering effect to be authoredlation

from your particular application. Artists and programmers working with shadfegts
should be able to treat shading as a form of 3D “content” that can be createddiweake
deployed, and reused in much the same ways texture images and geometric models for
3D games and applications are managed as art resources that are distitice fr
applications that create and use them.

For example, you might author an awesome shading effect to create the rqpeéra
volumetric fog (or human skin or glowing lava or whatever) in your prototype rewgderi
system. Now your manager/publisher/client wants your effect in aahtf@D engine
yesterday. The question is: How can you successfully author a shadingvéfieat
tying it to a particular application? CgFX answers this question.

The goal of CgFX is to separate a particular rendering effect from theatjpgi—or
even better—the multiple applications that can rendapplythe effect.

An effect—in the CgFX use of the term—is a shading algorithm and everything needed to
utilize it that can be authored independently from the 3D application that @tymat

renders the effect. In short, an effect should be a form of content that can bedauthore
tweaked, deployed, and reused without having to change the applications that use the
effect.

1.1. Platform-independence for Effects

To provide the broadest benefits, this decoupling should also provide platform-
independence both for content creation and deployment of effects. This independence
includes:

* 3D APl independence (across mainstream OpenGL, OpenGL ES, Direct3D, or
“direct to the hardware” APIs),

» Operating system independence (across Windows, Linux, OS X, Solaris, or
embedded systems),

» Graphics hardware vendor independence (whether NVIDIA or ATI), and

» Graphics platform independence (across PC, console, handheld device, or
embedded devices).

Because CgFX builds upon Cg that already supports all the above platform variations,
CgFX provides a uniquely interoperable basis for encapsulating shadiaig eftach

CgFX file contains multiple Cg functions, type declarations, effect pdaeasyand
techniques.

1.2. The Structure of a CgFX Effect

Every valid CgFX file has the same basic syntax and structure for spgafyieffect.
When parsed by the Cg compiler, a CgFX file is preprocessed by a conventional C
preprocessor so you can wsef i ne, #i ncl ude, and#i f def as you do when writing C
or C++ code.

The CgFX file syntax for an effect is broken into two types of constructs:

1. Techniques, and
2. Cg code that is referenced by expressions found within the techniques.

The Cg code and technigues can be more or less arbitrarily interleaved as ©gg
functions, types, and variables are declared before being referenced.

The Cg code within a CgFX file may specify Cg functions, type definitionsetieck
parametergbasically Cg variable definitions). Each technique defines the
implementation of a particular version of the effect and typically does sodrgmeing
Cg code from within Cg expressions found within the technique. A single eféentdy
specify multiple techniques for the same effect. One effect may be desigriee best
guality on the latest-and-greatest GPU available while another effgdteriatended for
lowest-common denominator rendering capabilities.

Each technique specifies its optional name and contains a sequence of passeise Lik
eachpassspecifies its optional name and contains a sequence of state assignments. Each
state assignmei$ a name/value pair that assigns the value of some expression (written
using the fully expressiveness of the Cg programming language) to a named state

3

A statein CgFX is something such as whether blending is enabled or what fragment
program should be bound. The value of a state assignment’s expression and the named
state’s type must match. Each state’s name and type correspond to songestaede

3D API state or some user-specified state. Expressions can reference@ms, type
definitions, and parameters declared earlier in the file. Expressionstéassggnments

can also use Cg standard library routines just as expressions in Cg programs ca

Here is an example of one of the techniques feghx_bunpdeno. cgf x file:

t echni que bumpdemo_arb {
pass {
Fragnment Program= conpile arbfpl
C8EA4f_specSurf(Ambient,
f | oat 4(DiffuseMaterial * LightColor, 1),
f | oat 4(SpecularMaterial * LightColor, 1),

normalMap, normalizeCube, norm alizeCube);
Vert exProgram= conpile arbvpl
C8E6v_torus(LightPosition, EyePosition, Model ViewProj,

f | oat 2(OuterRadius, InnerRadius));

}
}

(The complete contents biinpdeno. cgf x are found in Appendix A.)

This technique is rather simple since it only implements a single pass. plssti-
techniques list more than opass definition. This technique has two state assignments
to bind a vertex and fragment program.

1.2.1. Program State Assignments

TheFr agnent ProgramandVer t exPr ogr amstate assignments are somewhat “special”
because they each expect a value that is a valid compiled Cg programonjine:
keyword is followed by a Cg profile nama 6f p1 for the multi-vendor OpenGL

ARB_f ragment _pr ogr amprofile andar bvp1 for the multi-vendor OpenGL

ARB_vert ex_pr ogr amprofile) followed by a Cg entry function declared earlier in the
file. The function name is followed by an ordered parameter list; howeveruntidn
parameters declared as f or mare listed in this parameter list. In other words, output
parameters and varying input parameters such as the vertex position or texture
coordinates are excluded. Each parameter in the list is a Cg expressionltizésya a
value for the respective uniform parameter of the entry function. Often phession is
either a constant or simply references some effect parameter, but it adoitizeily
complex.

Take a look at this expression from thegnent Pr ogr amstate assignment above:

f | oat 4(DiffuseMaterial * LightColor, 1)

Notice how this expression multiplies the 3-compoment useMat eri al and
Li ght Col or parameters together and forces tfiedmponent to be one. It is the value

4

resulting from the evaluation of this expression that provides the value of the second
uniform parameten) for theCseaf _specSurf fragment program.

When a state assignmenskgtin the course of applying a technique (the Cg runtime API
calls to set the state assignments of a pass are discussed later), then@gitenaties in
order over each state assignment for the selected pass. The Cg runtuatesval
expressions using the current values of any referenced effect parameletermine the
value for each state assignment. Then the Cg runtime assigns the resuliésgwaéhe
corresponding state.

How does the Cg runtime evaluate expressions? In the course of the Cg rurdiing cre
the effect, the Cg compiler (which exists within the Cg runtime) pangesftect and
builds (compiles) each expression into a data structure that can be evaluatedivital
machine (which also exists within the Cg runtime). Typically these expnesare quite
simple (often merely constants or direct references to effect pnanso the expense of
evaluating such expressions is quite low.

As a consequence of setting a state assignment, the Cg runtime (or possgtbna c
user-registered state callback) issues the appropriate 3D APl comasaodsgted with

each state. In the case of thegnent Progr amandVer t exPr ogr amstate assignments
shown above, this means binding to the proper compiled program object and setting that
program’s parameters to the respective value of each evaluated expression.

Once all the state assignments for a pass have been set, the applicatioderanbjects
and the appropriate GPU processing occurs.

1.2.2. State Assignments for Other Non-programmable State

The state assignments for Cg programs are special because they involwapiiation
of Cg programs. Other state assignments can control non-programmable 3BtAPI s
such as blending and are typically simpler to specify. For example, to make [sass
enablesSrcAlphdOneMinusSrcAlphalending, you could write this state assignment
within a pass definition:

BlendEnable = true;
BlendFunc = i nt 2(SrcAlpha, OneMinusSrcAlpha);

These state assignments BbendEnabl e andBl endFunc are registered to set the
respective state within the conventional 3D hardware rendering pipeline. Bt awsth
asBl endFunc that is most conveniently specified with enumerated names, such names
are pre-registered for the state values.

Complex effects often involve the combination of state assignments for proghdenm
and non-programmable states. With the CgFX runtime you can even registen cust
states to extend CgFX to handle unanticipated or effect-specific. states

1.3. Annotations

Along with Cg code and techniques, CgFX files can also associate annotattoesaetit
technique, pass, program, or effect parameteramkotationis a typed name/value pair
that can be queried (inspected) by applications using the Cg runtime. The purpose of a
annotation is to associate some meta-information with the annotated object that an
application can use to apply the effect properly.

Here is an example:

f | oat 3 DiffuseMaterial<
stri ng type = "color";
f I oat 3 minValue = float3(0,0,0);
f I oat 3 maxValue = float3(1,1,1);
>={0.9,0.6,0.3}

The angle brackets after the effect parameter rmamfauseMat eri al delimit a sequence
of annotations. In this example, three annotations are specified.

How annotations are used is entirely application dependent. The expectationfifet¢hat e
authors and 3D application developers desiring to share effects would agree to an
appropriate set of annotations. For examplet yipe, mi nval ue, andmaxVal ue

annotations would allow an effect editor to display a color chooser widget with the
appropriate numeric range for setting théf useMat eri al effect parameter.

1.4. CgFX Runtime API Support

As of Cg Toolkit version 1.4, the Cg runtime API includes support for loading and using
CgFX files. When we discusgf x_bunpdeno. ¢, we will see portions of this API for

CgFX in action. Support for CgFX is not a layer upon Cg but rather a first-class
capability implemented within the Cg runtime.

2. A Complete CgFX Demo

What follows is thecompletesource code for a CgFX-based versiongfbunpdeno.
Hence this new demo is callegf x_bunpdeno.

The demo’s CgFX effect file, namednpdeno. cgf x, contains two Cg programs taken
directly from Chapter 8 (Bump Mapping) ©he Cg Tutorial The Cg programs are
included in the appendix at the end of this article; please cartseIl€g Tutoriafor an
explanation of the programs and the underlying bump mapping background and
mathematics.

The demo renders with OpenGL and interfaces with the window system via the cross-
platform OpenGL Utility Toolkit (GLUT)" To interface the application with the Cg
programs, the demo calls the generic Cg and OpenGL-specific CgGL runtime routines

OpenGL, GLUT, and the Cg and CgGL runtimes are supported on Windows, OS X,

Linux, and Solaris so this demo compiles and runs on all of these operating systems. The
demo automatically selects the most appropriate profile for your hardwgreupports
multi-vendor OpenGL profiles (hamelyt, bvpl andar bf p1) so the demo works on

GPUs from ATI, NVIDIA, or any other OpenGL implementation, such as Brian aul’

open source Mesa library, that exposes the multi-vesridiver t ex_pr ogr amand

ARB_f ragment _pr ogramOpenGL extensions.

2.1. CgFX Demo Source Code Walkthrough
Thecgf x_bunmpdeno demo consists of the following four source files:

1. cgf x_bunpdeno. c—ANSI C source code for the CgFX-based demo.

2. brick_i mge. h—Header file containing RGB8 image data for a mipmapped
128x128 normal map for a brick pattern.

3. nmap_i mage. h—Header file containing RGB8 image data for a normalization
vector cube map with 32x32 faces.

4. cgf x_bunpdeno. cgf x—CgFX effect file.

Later, we will go throughgf x_bunpdeno. c line-by-line.

2.2. Pre-defined Texture Data

To keep the demo self-contained and maintain the focus on how the Cg runtime loads and
configures the CgFX effect and then renders with the effect, this demo usetestare

image data included in the two header files. These two image data hiesdgrefthe

same ones used in the pre@r_bunpdeno example.

The data in these header files are used to construct OpenGL texture abjadisi¢ck
pattern normal map 2D texture and a “vector normalization” cube map. These texture
objects are sampled by the fragment program.

The data in the two headers files consists of hundreds of comma-separated ntlinbers (|
save you the tedium of publishing all the numbers in this article...). Rather than stati
data compiled into an executable, a typical application would read normal mapgexture
from on-disk image files or convert a height-field image file to a normal mae@wise,

" Documentation, source code, and pre-compiled Glibf&ries are available from
http://www.opengl.org/developers/documentation/giliml

http://www.opengl.org/developers/documentation/glut.html

a “normalization vector” cube map is typically procedurally generateér#an loaded
from static data.

2.3. The Effect File Contents

The heart of the demo’s shading is encapsulated withisuth®leno. cgf x effect file.

The demo reads this effect file when the demo begins running. The demo uses the Cg
runtime to create an effect frasanpdeno. cgf x and then selects a valid technique for
rendering the demo’s bump-mapped torus.

2.3.1. Cg Programs within the Effect File

The CgFX file begins with the Cg vertex and fragment programs needed byettte eff
These functions are explained in Chapter 8 (Bump MappingheiCg Tutorial

Rather than rehash the background, theory, and operation of these Cg programs, you
should consult Chapter 8 ®he Cg Tutorial Pages 200 to 204 explain the construction

of the brick pattern normal map. Pages 206 to 208 explain the construction and
application of a normalization cube map. Pages 208 to 211 explains specular bump
mapping, including these4f _specSurf fragment program. Pages 211 to 218 explain
texture-space bump mapping. Pages 218 to 224 explain the construction of the per-vertex
coordinate system needed for texture-space bump mapping for the special case of a
object (the torus) that is generated from parametric equations bgahe t or us vertex
program.

2.3.2. Effect Parameters within the Effect File

After the Cg programs iegf x_bunpdeno. cgf x, there are a set of effect parameters.
These effect parameters drive the input parameters for the Cg programs.

Most of the effect parameters have reasonable default initialization® @ad simply be
left alone. These include the torus size parametere(Radi us andl nner Radi us) and
the light and material coloravbi ent, Di f f useMat eri al , Specul ar Mat eri al , and

Li ght Col or). Providing a default value for an effect parameter is simply a matter of
assigning a value to the parameter. Example:

fl oat QuterRadi us
fl oat | nnerRadi us

6,
2,

To help an application know which effect parameters contain colors and what the
expected component range is for these parameters, the light and makeriphcameters
include appropriate annotations. Example:

fl oat Anmbi ent<
string type = "anbi
fl oat m nVal ue 0.
fl oat maxVal ue 1.
> = 0.3;

ien
O
0;

Thecgf x_bunpdeno application does not actually use these annotation (it does not even
guery them), but these annotations could be used by other applications that seek to load
the effect. Using effect-specific annotations can be very powerful but isthéye

scope of this tutorial. Note that annotations can include strings.

Two other parameteradr mal Map andnor mal i zeCube) define sampler effect

parameters. Aamplerin Cg provides a means to sample a texture object (effectively,
performing a texture lookup). Because the texture objects are created pplibatian,
conventional initialization of sampler parameters does not make much sense.eHowev
you can instead specify some sampling state appropriate for textures ysatip s

sanpl er _st at e keyword to assign a set of sampler states to a sampler effect parameter.
For example, you can indicate the proper filtering and wrap modes aswdiether
mipmaps should be automatically generated for the texture. Examples:

sanpl er 2DnormalMap = sanpl er _state{
gener ateM pMap = true;

m nFilter = LinearM pMapLi near;
magFi [ter = Linear;
g
sanpl er CUBE normalizeCube = sampl er _state {

m nFilter = Linear;

magFi I ter = Linear;

wrapS= C anpToEdge;

wrapT = C anpToEdge;
¥

Other effect parameterstdel Vi ewPr oj , Li ght Posi ti on, andEyePosi ti on) control

the scene’s spatial arrangement. While the default initialization of them®gtars can
provide an initial spatial arrangement for the scene, we expect thesepafi@meters

will be updated to animate the rendered scene. In this particular demo, wetexpect
rotate the viewer around the torus to observe how the lighting changes so every frame
will update the eye position.

The Cg runtime allows us to query by name or semantic, or to iterate through all the
parameters in an effect. Handles to each parameter can then be used to quethand set
values of these effect parameters. This is identical to how the Cg runtows all
parameters for programs to be queried and set. However effect paraanetase

powerful because a single effect parameter can drive program parafeetmultiple

programs belonging to different passes of different techniques. Also sincenprogra
parameters in a vertex or fragment program state assignment areegpesifixpressions,
they can combine multiple effect parameters to compute each program earf@mitte
vertex or fragment program.

As we will see, an effect can be parameterized with high-leveltgfé@ameters that
drive program parameters automatically. For examplesab& _specSur f fragment
program expects its parameter namei to contain the light color and diffuse material
color pre-multiplied together. Likewise its8s parameter expects to contain the light
color and specular material color pre-multiplied together. Effect pagasratow us to
specify the light color, the diffuse material color, and specular mateta
independently and have the Cg runtime perform the necessary pre-multiplication.

Because effect parameters drive the values of program parameters throgighmmable

expressions, effect parameters can be more abstract than program paraitietat
compromising the performance of vertex and fragment programs.

2.3.3. Techniques within the Effect File

Once some effect parameters and Cg parameters have been specified,peeitaa s
set of techniques that use those Cg programs and effect parameters.

We define four techniques for four different combinations of OpenGL profiles supported

by Cg. This allows the demo to select the best available technique foratiebefed on
the GPU capabilities available when the demo is run. The techniques are:

1. bunmpdeno_nv40—Targets the full fragment and vertex capabilities of NVIDIA’s
GeForce 6 and 7 Series of GPUs (designated by their architecturigl ¢acte
name “nv40”). This technique compiles the effect’'s Cg vertex and fragment
programs for thep40 andf p40 profiles respectively.

2. bunpdeno_ar b—Targets the fragment and vertex capabilities of the
ARB_vert ex_programandARB_fragnent _pr ogr ammulti-vendor extensions
established as OpenGL Architectural Review Board (ARB) standards. Thi
technique compiles the effect’'s Cg vertex and fragment programs faridiet
andar bf p1 profiles respectively.

3. bunpdeno_nv30—Targets the fragment and vertex capabilities of NVIDIA’s
GeForce FX Series of GPUs (designated by their architectundl/feode name

“nv30”). This technique compiles the effect’s Cg vertex and fragment programs

for thevp30 andf p30 profiles respectively.

4. bunpdeno_nv20— Targets the more limited fragment and vertex capabilities of
NVIDIA’s GeForce3 and GeForce 4 Ti GPUs (designated by their actiméd
family code name “nv20”). This technique compiles the effect’s Cg vertex and
fragment programs for the20 andf p20 profiles respectively.

All four techniques are identical with the exception of the vertex and fragmeiteprof
they specify when compiling ther t exPr ogr amandFr agnent Pr ogr amstate

10

assignments. This allows each technique to be specialized to the capabititsgseacific
GPU architecture for optimal performance.

They are all quite similar and thempdeno_ar b technique has already been listed earlier
so here is theunpdeno_nv40 technique:

t echni que bumpdemo_nv40 {
pass {
Fragnment Program= conpil e fp40
C8EA4f_specSurf(Ambient,
f | oat 4(DiffuseMaterial * LightColor, 1),
f | oat 4(SpecularMaterial * LightColor, 1),

normalMap, normalizeCube, norm alizeCube);
Vert exProgram= conpile vp40
C8E6v_torus(LightPosition, EyePosition, Model ViewProj,

f | oat 2(OuterRadius, InnerRadius));

}
}

While these techniques are different only in their Cg profiles, a given tpehfor an
effect could be implemented differently, often using entirely differentr@grpms. For
example, one technique might account for shadowing for more realism while another
version of the same effect might skip shadows or compute intermediate valuesone
precision.

3. Ontothe C Code

Now that we understand the effect thgtx_bunpdeno will use, it's time to dissect
cgf x_bunpdeno. ¢ line-by-line as promised (we’ll skip comments in the source code if
the comments are redundant with the discussion below).

3.1. Initial Declarations

#i ncl ude <math.h>

#i ncl ude <stdlib.h>

#i ncl ude <stdio.h>

#i ncl ude <GL/glut.h>
#i ncl ude <Cg/cg.h>

#i ncl ude <Cg/cgGL.h>

The first three includes are basic ANSI C standard library includes. Weewiking
sin,cos, printf,exit,andNuLL. We rely on the GLUT header file to include the
necessary OpenGL and OpenGL Utility Library (GLU) headers.

The<cCg/ cg. h> header contains generic routines for loading and compiling Cg programs
and CgFX effects but does not contain routines that call the 3D API to configure the Cg
programs and CgFX effects for rendering. The generic Cg routines beginagith a

prefix; the generic Cg types begin witlc@aprefix; and the generic Cg macros and
enumerations begin withGs_ prefix.

11

The<Cg/ cg@L. h> contains the OpenGL-specific routines for configuring Cg programs
for rendering with OpenGL. The OpenGL-specific Cg routines begin wigfeaprefix;
the OpenGL-specific Cg types begin witlh@eL prefix; and the OpenGL-specific Cg
macros and enumerations begin witbcaL_ prefix.

Technically, the<Cg/ cgGL. h> header includesCg/ cg. h> so we do not have to explicitly
include<cg/ cg. h> but we include both to remind you that we will be calling both
generic Cg routines and OpenGL-specific Cg routines.

3.1.1. Cg Runtime Variables

Next, we will list all global variables we plan to use. We usenghgrefix to indicate
global variables that we define (to make it crystal clear what namasengefining
rather than those names defined by header files). When we declare a&\afrabipe
defined by the Cg runtime, we use theeg prefix to remind you that the variable is for
use with the Cg runtime.

CCGcont ext myCgContext;

CCeffect myCgEffect;

CQ& echni que myCgTechnique;

CCGpar anet er myCgEyePositionParam,
myCgModelViewProjParam;

These are the global Cg runtime variables the demo initializes and uses. Vde need
single Cg compilation contexin(CgCont ext). Think of your Cg compilation context as
the “container” for all the Cg handles you manipulate. Typically your prograuires
just one Cg compilation context.

We need one Cg effeaty(CgEf f ect) for when we loadunpdeno. cgf x.

We need one Cg technique/€gTechni que) for the particular technique we will use to
render the torus. While there are four possible techniques, we will seleicsthe f
technique valid for the GPU upon which the demo is actually running.

We need handles for the two effect parameters that we plan to set as the deatesanim
We do not plan to change the default initialization of most of the effect paranetees s
need not keep effect parameter handles for these parameters.

In a real program, you’ll probably have more Cg effects, techniques, aot effe
parameters than shown in this simple example. You may have hundreds depending on
how complicated the shading is in your application. Keep in mind that this demo is
trying to be very simple.

12

3.1.2. Demo Initialization

static voi dinitCg();

static voi d initOpenGL();

static voi d display(void);

static voi d keyboard(unsigned char c, int x, int y);

The demo first declares various routines, described later, used by the deinno’s
routine.

int main(i nt argc, char **argv)
{
gl utlnitDi spl ayMbde(GLUT_RGB| GLUT_DOUBLE| GLUT_DEPTH);
gl ut I ni t WndowSi ze (400, 400);
gl ut I ni t (&argc, argv);
gl ut Cr eat eW ndow("cgfx_bumpdemo");

Thenmai n routine creates a GLUT window with an associated OpenGL rendering context

initCgFX();
initOpenGL();

Then CgFX objects are initialized along with OpenGL rendering state.

gl ut Di spl ayFunc(display);

gl ut Keyboar dFunc(keyboard);
gl ut Mai nLoop();

returnO;

}

The demo registers callbacks for displaying the window, resizing the window, and
accepting keyboard input. Finally GLUT event processing begins.

3.1.3. Error Reporting Helper Routine

Cg initialization depends on a helper routine for reporting Cg-related errors:

static voi d checkForCgError(const char *situation)

{
CCerror error;
const char *string = cgGet Last Error St ri ng(&error);
i f (error!= CG_NO_ERROR) {
pri nt f ("cgfx_bumpdemo: %s: %s\n", situation, string);
if (error == CG_COWPI LER_ERROR) {
printf ("%s\n", cgCet Last Li sti ng(myCgContext));
exi t (1);
}

Cg runtime routines report errors by setting a global error value. §#ikn
cgGet Last Error St ri ng routine both returns a human-readable string describing the last

13

generated Cg error and writes an error code of &gper or . CG_NO_ERROR (defined to

be zero) means there was no error. As a side-efig@tt Last Error St ri ng also resets
the global error value toG_NO ERROR. The Cg runtime also includes the simpler
functioncgGet Err or that just returns and then resets the global error code if you just
want the error code and don’t need a human-readable string too.

ThecheckFor CgEr r or routine is used to ensure proper error checking within the demao.
If an error has occurred, the routine prints an error message includisig thaei on
string and translated Cg error value string, and then exits the demao.

When the error returned @& _COWPI LER_ERROR that means there are also compiler error
messages. StheckFor CgError then callgGet Last Li sti ng to obtain a pointer to the
compiler error message and prints it out too. For example, if your CgFX étdtad a
syntax error, you'd see the compiler’'s error messages including the firteeraiwhere

the compiler identified problems.

While “just exiting” is fine for a demo, real applications will want to properlydi@ any
errors generated. In general, you don’t have to be so paranoid as to call

cgGet Last Error St ri ng after every Cg runtime routine. Check the runtime API
documentation for each routine to see the reasons it can fail; when in doubt, check for
failures.

3.1.4. Cq Initialization

static voi d initCgFX(void)

myCgContext = cgCr eat eCont ext ();
checkForCgError("creating Cg context");

cgG.Regi st er St at es(myCgContext);

cg@.Set ManageText ur ePar anet er s(myCgContext, CG_TRUE);
checkForCgError("configuring Cg context");

First we create a Cg context, register the standard states (ifiytmuda this, your Cg
context will lack the standard states needed for processing standard 3DtAPI sta
assignments—alternatively you could load your own implementations of the standard
CgFX states), and request that the Cg runtime manage texture binds (saving y
application the trouble when applying techniques).

myCgEffect = cgCr eat eEf f ect Fr onFi | e(myCgContext, "bumpdemo.cgfx", NULL);
checkForCgError("creating bumpdemo.cgfx effect”);

14

Now we read theunpdeno. cgf x effect file to create an effect.

myCgTechnique = cgGet Fi r st Techni que(myCgEffect);
whi | e (myCgTechnique && cgValidateTechnique(myCgTechniqu e) == CG_FALSE) {
fprintf(stderr,
"cgfx_bumpdemo: Technique %s did not validate . Skipping.\n",
cgGet Techni queNanme(myCgTechnique));
myCgTechnique = cgGet Next Techni que(myCgTechnique);

i f (myCgTechnique) {
fprintf(stderr, "cgfx_bumpdemo: Using technique %s.\n",
cgGet Techni queNane(myCgTechnique));

} else{
fprintf(stderr, "cgfx_bumpdemo: No valid technique\n™);
exit (1);

}

We iterate in order through the techniques defined by the effect. We attempdateval

each technique. This is because the techniques are listed in the effeatdilghly the

order of most-optimal to least-optimal. As soon as we find a technique that is valid for
our GPU, we choose that technique and go on. If we find no valid technique, our GPU is
not capable of rendering the effect so we exit with an error.

myCgModelViewProjParam =
cgGet Ef f ect Par anmet er BySemant i c(myCgEffect, "ModelViewProjection™);
i f (ImyCgModelViewProjParam) {
fprintf(stderr,
"cgfx_bumpdemo: no parameter with ModelViewPr ojection semantic\n®);
exit (1);
}
myCgEyePositionParam =
cgCet NanmedEf f ect Par anet er (myCgEffect, "EyePosition");
i f (ImyCgEyePositionParam) {
fprintf(stderr, "cgfx_bumpdemo: no parameter named EyePosition\n");
exit (1);
}
}

As discussed earlier, most of the effect parameters have appropriatésdeftawever if
we want to set effect parameters to other values, we need to query a handta for s

effect parameters. In this case, we want to animate the eye position andpeacl G

modelview and projection matrices.

We can query effect parameters by iterating through the entireviibt (

cgGet Fi r st Ef f ect Par amet er andcgGet Next Par anet er) or query the effect

parameters by either name or semantic as shown above. Once we have the laandle t
effect parameter we can query its name, type, value, semantic, and othertinfarma
We can also set its value and other properties.

A more sophisticated demo would iterate over and query all the effect pasaareter
inspect their annotations to determine how to interface the application’® datadffect.

15

This allows such demos to operate with a much boarder range of effects. Taisdem
intentionally simplistic so it just queries by name the parameters it&xpe

3.1.5. Texture Data

Before explaining how we initialize OpenGL, for completeness we dismygshe
necessary textures are loaded. This code exactly matches bhw@pdeno source code.

[* OpenGL texture object (TO) handles. */
enum{
TO_NORMALIZE_VECTOR_CUBE_MAP =1,
TO_NORMAL_MAP = 2,

¥

TheTo_prefixed enumerants provide numbers for use as OpenGL texture object names.

static const GLubyte

myBrickNormalMaplmage[3*(128*128+64*64+32*32+16*16+ 8*8+4*4+2*2+1*1)] = {
/* RGB8 image data for mipmapped 128x128 normal map for a brick pattern */
#i ncl ude "brick_image.h"

h

static const GLubyte

myNormalizeVectorCubeMaplimage[6*3*32*32] = {

/* RGB8 image data for normalization vector cube ma p with 32x32 faces */
#i ncl ude "normcm_image.h"

h

These static, constant arrays include the header files containing tierdaanormal

map’s brick pattern and the “normalization vector” cube map. Each texel is 3 unsigned
bytes (one for red, green, and blue). While each byte of the texel formaigisaths

normal map components, as well as the vector result of normalizing an arbiteatiodir
vector, are logically signed values within the [-1,1] range. To accommodaéglsig

values with OpenGL’s conventional_RGB8 unsigned texture format, the unsigned [0,1]
range is expanded in the fragment program to a signed [-1,1] range. This astirefor
theexpand helper function called by these4f _specSur f fragment program (see
Appendix A).

The normal map has mipmaps so there is data for the 128x128 level, and then, each of the
successively downsampled mipmap levels. However this version of the demo asks the
driver to generate the mipmaps for the normal map instead by using a sanler sta
assignment to request mipmap generation.

The “normalization vector” cube map has six 32x32 faces without mipmaps.
3.1.6. Initializing Sampler Effect Parameters
To fully initialize the OpenGL state required, we need to associate the OpexiGiet

objects for the normal map and normalization cube map textures with their nespecti
sampler effect parameters.

16

stati c voi d useSamplerParameter(CCef f ect effect,
const char *paramName,
GLui nt texobj)

{

CGpar anet er param;

param = cgCet NanmedEf f ect Par anet er (effect, paramName);
i f (param) {
fprintf(stderr, "cgfx bumpdemo: expected effect parameter named % s\n",
paramName);
exit(1);

cgGLSet Text ur ePar anet er (param, texobj);
cgSet Sanpl er St at e(param);
}

We query the named effect parameter and therd®&eSet Text ur ePar anet er to set an
OpenGL texture object for the sampler. Next weagset Sanpl er St at e to make the
appropriate OpenGL calls to set twmpl er _st at e State settings for the sampler effect
parameter. This ensures each sampler’s texture object is configured vatfedts
intended filtering and wrap modes and mipmap generation occurs if requested.

3.1.7. OpenGL Rendering State Initialization

static voi dinitOpenGL(voi d)
{

const GLubyt e *image;
unsi gned i nt face;

gl Pi xel St orei (G._UNPACK_ALI GNMVENT, 1); /* Tightly packed texture data. */

By default, OpenGL'’s assumes each image scanline is aligned to begin on 4 byte
boundaries. However, RGB8 data (3 bytes per pixel) is usually tightly packed soea 1 byt
alignment is appropriate. That's indeed the case for the RGBS pixels in touastays

used to initialize our textures. If you didn’t know about this OpenGL pitfall before, y

do now:

* Being aware of pitfalls such as this one can yaxea lot of time debugging. This and other OpenGL
pitfalls are enumerated in my article “Avoiding C®@mmon OpenGL Pitfalls” found here
http://developer.nvidia.com/object/Avoiding Commonql Pitfalls.html An earlier HTML version of the
article (with just 16 pitfalls) is found here

http://www.opengl.org/developers/code/features/&itr echniqgues/oglpitfall/oglpitfall.htrnl

17

http://developer.nvidia.com/object/Avoiding_Common_ogl_Pitfalls.html
http://www.opengl.org/developers/code/features/KilgardTechniques/oglpitfall/oglpitfall.html

/* OpenGL tokens for cube maps missing from Windows version of <GL/gl.h> */
#def i ne GL_TEXTURE_CUBE_MAP 0x8513
#def i ne GL_TEXTURE_CUBE_MAP_PCSI TI VE_X 0x8515
gl Bi ndText ur e(G._TEXTURE_CUBE_MAP, TO_NORMALIZE_VECTOR_CUBE_MAP);
useSamplerParameter(myCgEffect, "normalizeCube",
TO_NORMALIZE_VECTOR_CUBE_MAP) ;
/* Load each 32x32 face (without mipmaps) of rang e-compressed "normalize
vector" cube map. */
for (face = 0, image = myNormalizeVectorCubeMaplmage;
face < 6;
face++, image += 3*32*32) {
gl Tex!l mage2D(GL_TEXTURE_CUBE_MAP_PGCSI TI VE_X + face, 0,
G._RGBS, 32, 32, 0, GL_RGB, GL_UNSI GNED_BYTE, image);
}

First we bind the texture object for the “normalization vector” cube’imégnded to

quickly normalize the 3D lighting vectors that are passed as texture coesdii@lling
useSanpl er Par amet er binds this effect’s sampler to the just created normalization cube
map and sets the sampler state as requested by the effect. The cubeureapdedix
faces but there is no need for mipmaps. Each face is packed into the

myNor mal i zeVect or CubeMapl mage array right after the prior face with the faces ordered
in the order of the sequential texture cube map face OpenGL enumerants.

gl Bi ndText ur e(G._TEXTURE_2D, TO_NORMAL_MAP);
useSamplerParameter(myCgEffect, "normalMap",
TO_NORMAL_MAP);
gl Texl mage2D(GL_TEXTURE_2D, 0, G._RGBS, 128, 128, 0,
G._RGB, GL_UNSI GNED BYTE, myBrickNormalMaplmage);

Next we bind to the texture object for our brick pattern normal map 2D texture, call
useSanpl er Par anet er to bind this effect’s sampler to the just created normal map and
set the sampler state as requested by the effect, and then load the bhas¢hHeveormal
map (from which mipmaps will be automatically generated because mipmaptgemer

is specified in the effect parametesisml er _st at e initialization).

gl Enabl e(GL_DEPTH_TEST);

gl Mat ri xMode(GL_PRQIECTI ON);

gl Loadl denti ty();

gl uPer specti ve(

60.0, /* Field of view in degree */

1.0, /* Aspect ratio */

0.1, /*Znear*

100.0); /* Z far */

gl Mat ri xMode(GL_MODELVI EW;

gl A ear Col or (0.1, 0.3, 0.6, 0.0); /* Blue background */

$ Using a “normalization vector” cube map allows demo to work on older DirectX 8-class GPUs that
lacked the shading generality to normalize veatsashematically. Ultimately as more capable GPUs
become ubiquitous, use of normalization cube magsiie to disappear in favor of normalizing a vecto
mathematically. A technique using a different @€ggoam could use Cgisor mal i ze standard library
routine instead.

18

Finally we enable depth testing, establish a perspective projection tranafut set the
background color to blue. Alternatively we could enable the depth test in a state
assignment within each technique’s pass but this would set the depth test everg time
apply the technique. It is easier to simply leave the depth test alwaysdesiabkewe
never need it disabled for this demo.

3.2. Displaying the Window

Earlier in the code, we forward declared tihepl ay callback. Now is the time to
discuss what thei spl ay routine does and how exactly we render our bump-mapped
torus using the textures and Cg vertex and fragment programs we’ve loaded.

3.2.1. Rendering a 2D Mesh to Generate a Torus

In the course of updating the window, thepl ay callback invokes ther awrFl at Pat ch
subroutine. This subroutine renders a flat 2D mesh with immediate-mode OpenGL
commands. This routine is unchanged fromcieunpdeno version of this demo.

/* Draw a flat 2D patch that can be "rolled & bent" into a 3D torus by
a vertex program. */

voi d

drawFlatPatch(fl oat rows, fl oat columns)

const fl oat m=1.0f/columns;
const fl oat n=1.0ffrows;
intij;
for (i=0; i<columns; i++) {
gl Begi n(G._QUAD_STRI P);
for (j=0; j<=rows; j++) {
gl Vert ex2f (i*m, j*n);
gl Vert ex2f ((i+1)*m, j*n);
}
gl Vert ex2f (i*m, 0);
gl Vert ex2f ((i+1)*m, 0);
gl End();

}
}

The mesh consists of a number of adjacent quad stripsC8EBe t or us vertex
program will take these 2D vertex coordinates and use them as parametrinatesrttir
evaluating the position of vertices on a torus.

Nowadays it's much faster to use OpenGL vertex arrays, particulaHyeitex buffer

objects, to render geometry, but for this simple demo, immediate mode rendering is
easier.

19

Figure 8-7 fromThe Cg Tutoriais replicated to illustrate how a 2D mesh could be
procedurally “rolled and bent” into a torus by a vertex program.

3.2.2. The Display Callback

/* Initial scene state */
static float myEyeAngle =0;

The viewer rotates around the torus and bobs up and down based on the demo’s
animation ofryEyeAngl e.

static voi d display(void)
{

const int sides = 20, rings = 40;

const fl oat eyeRadius = 18.0,
eyeElevationRange = 8.0;

f | oat eyePosition[3];

Thedi spl ay callback has a number of constants that control the torus size and
tessellation and how the torus is viewed.

C3pass pass;
In the course of applying our chosen technique, we need a handle to a CgFX pass.

gl d ear (GL_COLOR BUFFER BI T| GL_DEPTH_BUFFER BI T);

eyePosition[0] = eyeRadius * sin(myEyeAngle);
eyePosition[1] = eyeElevationRange * sin(myEyeAng le);
eyePosition[2] = eyeRadius * cos(myEyeAngle);

glLoadldentity();
gluLookAt(
eyePosition[0], eyePosition[1], eyePosition[2],
0.0,0.0, 0.0, /* XYZ view center */
0.0, 1.0, 0.0); /* Up s in positive Y direct ion */

20

The viewing transform is re-specified each frame. The eye position istaofunf
myEyeAngl e. By animating this variable, the viewer rotates around the torus with a
sinusoidally varying elevation. Because specular bump mapping is view-depehéeent
specular lighting varies over the torus as the viewer rotates around.

cgGLSetStateMatrixParameter(myCgModelViewProjPara m,
CG_GL_MODELVIEW_PROJECTION_MATRIX,
CG_GL_MATRIX_IDENTITY);

cgSetParameter3fv(myCgEyePositionParam, eyePositi on);

We set the effect parameter for the modelview-projection matrix to thent@penGL
modelview-projection matrix (even though in this demo we aren’t actually clgaitgin
we could move and rotate the torus if we did).

pass = cgGetFirstPass(myCgTechnique);
while (pass) {
cgSetPassState(pass);

This begins the “guts” of the rendering where we apply our chosen technique. All our
techniques involve only a single pass, but the code is written so it could iteraightlaro
sequence of passes if our technique did provide multiple passes.

We get the first pass for our chosen technique wgttet Fi r st Pass. Then

cgSet PassSt at e sets all the state assignments for the pass. This includes evaluating as
necessary any state assignment expressions to determine their updatedNaues
appropriate OpenGL APl commands are issued to bind to the pass’s vertex andtfragme
program (as established when we catlgd_Regi st er St at es from mai n).

drawFlatPatch(sides, rings);

Then we render the flat patch withawrl at Pat ch which renders the bump-mapped
torus using the effect loaded framanpdeno. cgf x.

cgResetPassState(pass);

We clean up any OpenGL state modifiedclgget PassSt at e by calling
cgReset PassSt at e. In this case, the state is restored to OpenGL’s initial state. This
helps keep our state assignments from unintentionally affecting subsequent genderin

pass = cgGetNextPass(pass);

}
We request the next pass in the technique and repeat until we run out of passes. All four
techniques in our effect only have a single pass so this is not really necegsaitybut
would be if multi-pass techniques were involved.

glutSwapBuffers();

21

We complete the rendering by performing a buffer swap to display the results
3.3. Keyboard Processing

Along with thedi spl ay callback, we also forward declared and registereddiieoar d
callback. Now it's time to see how the demo responses to simple keyboard input. This
code is unchanged from the origirgl bunpdeno source code.

3.3.1. Animating the Eye Position

static voi d advanceAnimation(voi d)

myEyeAngle += 0.05f;
i f (myEyeAngle > 2*3.14159)
myEyeAngle -= 2*3.14159;
gl ut Post Redi spl ay();
}

In order to animate the changing eye position so the view variesj\taeceAni mat i on
callback is registered as the GLUT idle function. The routine advanegsAngl e and
posts a request for GLUT to redraw the window witht Post Redi spl ay. GLUT calls
the idle function repeatedly when there are no other events to process.

3.3.2. The Keyboard Callback

static voidkeyboard(unsigned charc, intx, inty)

{

static int animating =0;

switch (c){

case'"

animating = !lanimating; I* Toggle */
gl ut I dl eFunc(animating ? advanceAnimation : NULL);
br eak;

The space bar toggles animation of the scene by registering and dexiregjthe
advanceAni mat i on routine as the idle function.

case 27: [* Esc key */
cgDest r oyEf f ect (myCgEffect);
cgDest r oyCont ext (myCgContext);
exi t (0);
br eak;

}
}

The Esc key exits the demo. While it is not necessary to do so since the demngs exiti
the calls tacgDest r oyEf f ect andcgDest r oyCont ext deallocate the Cg runtime objects,
along with their associated OpenGL state.

22

4. The Demo in Action

The images below show the rendered bump-mapped torus initially (left) and while
animating (right).

B cofx_bumpdemo |Z| |E||'>__(| B cpfx_bumpdemo |Z| |E| |'>__(|

5. Conclusions

Using CgFX functionality, | have rewritten thg_bunpdero demo with considerably
fewer lines of source code. More importantly, the shading effect is encagdsaolate
single CgFX file.

You can use the CgFX shading system to better isolate shading effects from the
applications that apply those effects. The concepts of techniques, passes, and state
assignments provide a clean framework to structure your effects for alg{atform-
independence. Annotations allow you to keep meta-information about effect parameters
and other effect objects within the effect file.

| encourage you to explore CgFX and particularly NVIDIA’s FX Composetegrated
development environment for authoring effect files.

” Download it today frontittp://develop

a

http://developer.nvidia.com/object/fx_composer_home.html

Appendix A: bumpdemo.cgfx Effect File

Cg Vertex Program

voi d C8E6v_torus(

out
out
out
out

f | oat 2 parametric : PQOSI TI ON,

f | oat 4 position

f |l oat 2 oTexCoord

f I oat 3 lightDirection :
f | oat 3 halfAngle

uni form f | oat 3 lightPosition,

uni form f | oat 3 eyePosition,

uni form f | oat 4x4 modelViewProj,
uni form f | oat 2 torusinfo)

const fl oat pi2 =6.28318530;

/I Stetch texture coordinates counterclockwise
/I over torus to repeat normal map in 6 by 2 patt
fl oat M = torusinfo[0];
fl oat N = torusinfo[l];

oTexCoord = parametric *

f | oat 2(-6, 2);

/I Compute torus position from its parameteric eq

fl oat cosS, sinS;

si ncos(pi2 * parametric.x, sinS, cosS);
fl oat cosT, sinT,;
si ncos(pi2 * parametric.y, sinT, cosT);

f | oat 3 torusPosition =

position =

(M + N *cosT) * si
N * sinT);
(modelViewProj, f | oat 4(torusPosition, 1));
/I Compute per-vertex rotation matrix
f | oat 3 dPds = float3(-sinS*(M+N*cosT), cosS*(M+N*cosT), 0
fl oat 3 norm_dPds = normal i ze(dPds);

nul

f1 oat 3 normal =

PGsSI TI ON,

TEXCOCRDO,
TEXCOCRDL,
TEXCOORD2,

/I Object-space
/I Object-space

/I 2 times Pi

ern

uation

fl oat 3((M + N * cosT) * cosS,

ns,

f I oat 3(cosS * cosT, sinS * cosT, sinT);

float3dPdt= cross(normal, norm_dPds);

f | oat 3x3 rotation = f I oat 3x3(norm_dPds,
dPdt,
normal);

/I Rotate object-space vectors to texture space

f | oat 3 eyeDirection = eyePaosition - torusPosition;

lightDirection = lightPosition - torusPosition;

lightDirection =
eyeDirection =
halfAngle =

nul (rotation, lightDirection);
mul (rotation, eyeDirection);

nor mal i ze(nor mal i ze(lightDirection) +
nor mal i ze(eyeDirection));

24

Cg Fragment Program

fl oat 3 expand(fl oat3v){ return (v-0.5)*2; }

voi d C8E4f_specSurf(fl oat 2 normalMapTexCoord : TEXCOORDO,
f 1 oat 3 lightDirection : TEXCOORD1,
f 1 oat 3 halfAngle : TEXCOORD2,

out f 1l oat4 color: COLOR,

uni form fl oat ambient,

uni form fl oat4 LMd, // Light-material diffuse
uni form fl oat4 LMs, // Light-material specular
uni f orm sanpl er 2D normalMap,

uni f or m sanpl er CUBE normalizeCube,

uni f or m sanpl er CUBE normalizeCube?2)

/I Fetch and expand range-compressed normal
f I oat 3 normalTex = t ex2D(normalMap, normalMapTexCoord).xyz;
f I oat 3 normal = expand(normalTex);
/I Fetch and expand normalized light vector
f | oat 3 normLightDirTex = t exCUBE(normalizeCube,
lightDirection). Xyz;
f I oat 3 normLightDir = expand(normLightDirTex);
/I Fetch and expand normalized half-angle vector
f | oat 3 normHalfAngleTex = t ex CUBE(normalizeCube2,
halfAngle).xyz;
f I oat 3 normHalfAngle = expand(normHalfAngleTex);

/I Compute diffuse and specular lighting dot prod ucts
f I oat diffuse = sat ur at e(dot (normal, normLightDir));
f | oat specular = sat ur at e(dot (normal, normHalfAngle));
/I Successive multiplies to raise specular to 8th power

f | oat specular2 = specular*specular;
f | oat specular4 = specular2*specular2;
f | oat specular8 = specular4*specular4;

color = LMd*(ambient+diffuse) + LMs*specular8;

}

25

Effect Parameters

f | oat 4x4 ModelViewProj : Model Vi ewPr o ect i on;
f 1 oat OuterRadius = 6;

f1 oat InnerRadius = 2;

f | oat 3 LightPosition ={-8, 0, 15 };

f | oat 3 EyePosition={0, 0, 18 };

fl oat Ambient<
stri ng type = "ambient";
fl oat minValue = 0.0;
f1 oat maxValue = 1.0;
>=0.3;

f | oat 3 DiffuseMaterial<
stri ng type = "color";
f I oat 3 minValue = float3(0,0,0);
f I oat 3 maxValue = float3(1,1,1);
>={0.9,0.6,03}

f | oat 3 SpecularMaterial<
stri ng type = "color";
f I oat 3 minValue = float3(0,0,0);
f I oat 3 maxValue = float3(1,1,1);
>={1,1,1}

f | oat 3 LightColor<
stri ng type = "color";
f I oat 3 minValue = float3(0,0,0);
f I oat 3 maxValue = float3(1,1,1);
>={1.0,0.9,09}

sanmpl er2DnormalMap = sanpl er _state {
generateM pMap = true;

m nFilter = LinearM pMaplLi near;
magFi |l ter = Linear;
3
sanpl er CUBE normalizeCube = sampl er _state {
mnFilter = Linear;
magFi |l ter = Linear;
w apS= d anpToEdge;
wrapT = C anpToEdge;
h

26

Techniques

/I Because cgfx_bumpdemo.c picks the first valid te chnique,
/I list techniques in relative order of preference.

t echni que bumpdemo_nv40 {
pass {
Fragment Program= conpil e fp40
C8EA4f_specSurf(Ambient,
f | oat 4(DiffuseMaterial * LightColor, 1),
f | oat 4(SpecularMaterial * LightColor, 1),

normalMap, normalizeCube, norm alizeCube);
Vert exProgram= conpile vp40
C8E6v_torus(LightPosition, EyePosition, Model ViewProj,
f | oat 2(OuterRadius, InnerRadius));
}

}
t echni que bumpdemo_nv30 {

pass {

Fragment Program= conpile fp30
C8EA4f_specSurf(Ambient,
f | oat 4(DiffuseMaterial * LightColor, 1),
f | oat 4(SpecularMaterial * LightColor, 1),

normalMap, normalizeCube, norm alizeCube);
Vert exProgram= conpile vp30
C8E6v_torus(LightPosition, EyePosition, Model ViewProj,
f | oat 2(OuterRadius, InnerRadius));
}

}
t echni que bumpdemo_arb {

pass {

Fragment Program= conpile arbfpl
C8EA4f_specSurf(Ambient,
f | oat 4(DiffuseMaterial * LightColor, 1),
f | oat 4(SpecularMaterial * LightColor, 1),

normalMap, normalizeCube, norm alizeCube);
Vert exProgram= conpile arbvpl
C8E6v_torus(LightPosition, EyePosition, Model ViewProj,
f | oat 2(OuterRadius, InnerRadius));
}

}
t echni que bumpdemo_nv20 {

pass {

Fragnment Program= conpile fp20
C8EA4f_specSurf(Ambient,
f | oat 4(DiffuseMaterial * LightColor, 1),
f | oat 4(SpecularMaterial * LightColor, 1),

normalMap, normalizeCube, norm alizeCube);
Vert exProgram= conpile vp20
C8E6v_torus(LightPosition, EyePosition, Model ViewProj,
f | oat 2(OuterRadius, InnerRadius));
}
}

27

	1 The Why and What of CgFX
	1.1 Platform-independence for Effects
	1.2 The Structure of a CgFX Effect
	1.2.1 Program State Assignments
	1.2.2 State Assignments for Other Non-programmable State

	1.3 Annotations
	1.4 CgFX Runtime API Support

	2 A Complete CgFX Demo
	2.1 CgFX Demo Source Code Walkthrough
	2.2 Pre-defined Texture Data
	2.3 The Effect File Contents
	2.3.1 Cg Programs within the Effect File
	2.3.2 Effect Parameters within the Effect File
	2.3.3 Techniques within the Effect File

	3 On to the C Code
	3.1 Initial Declarations
	3.1.1 Cg Runtime Variables
	3.1.2 Demo Initialization
	3.1.3 Error Reporting Helper Routine
	3.1.4 Cg Initialization
	3.1.5 Texture Data
	3.1.6 Initializing Sampler Effect Parameters
	3.1.7 OpenGL Rendering State Initialization

	3.2 Displaying the Window
	3.2.1 Rendering a 2D Mesh to Generate a Torus
	3.2.2 The Display Callback

	3.3 Keyboard Processing
	3.3.1 Animating the Eye Position
	3.3.2 The Keyboard Callback

	4 The Demo in Action
	5 Conclusions

