It has been only three years since the first GPU Gems book was introduced, and some areas of real-time graphics have truly become ultrarealistic. Chapter 14, “Advanced Techniques for Realistic Real-Time Skin Rendering,” illustrates this evolution beautifully, describing a skin rendering technique that works so well that the data acquisition and animation will become the most challenging problem in rendering human characters for the next couple of years.

All this progress has been fueled by a sustained rhythm of GPU innovation. These processing units continue to become faster and more flexible in their use. Today’s GPUs can process enormous amounts of data and are used not only for rendering 3D scenes, but also for processing images or performing massively parallel computing, such as financial statistics or terrain analysis for finding new oil fields.

Whether they are used for computing or graphics, GPUs need a software interface to drive them, and we are in the midst of an important transition. The new generation of APIs brings additional orthogonality and exposes new capabilities such as generating geometry programmatically. On the computing side, the CUDA architecture lets developers use a C-like language to perform computing tasks rather than forcing the programmer to use the graphics pipeline. This architecture will allow developers without a graphics background to tap into the immense potential of the GPU.

More than 200 chapters were submitted by the GPU programming community, covering a large spectrum of GPU usage ranging from pure 3D rendering to nongraphics applications. Each of them went through a rigorous review process conducted both by NVIDIA’s engineers and by external reviewers.

We were able to include 41 chapters, each of which went through another review, during which feedback from the editors and peer reviewers often significantly improved the content. Unfortunately, we could not include some excellent chapters, simply due to the space restriction of the book. It was difficult to establish the final table of contents, but we would like to thank everyone who sent a submission.
Intended Audience

For the graphics-related chapters, we expect the reader to be familiar with the fundamentals of computer graphics including graphics APIs such as DirectX and OpenGL, as well as their associated high-level programming languages, namely HLSL, GLSL, or Cg. Anyone working with interactive 3D applications will find in this book a wealth of applicable techniques for today’s and tomorrow’s GPUs.

Readers interested in computing and CUDA will find it best to know parallel computing concepts. C programming knowledge is also expected.

Trying the Code Samples

*GPU Gems 3* comes with a disc that includes samples, movies, and other demonstrations of the techniques described in this book. You can also go to the book’s Web page to find the latest updates and supplemental materials: developer.nvidia.com/gpugems3.

Acknowledgments

This book represents the dedication of many people—especially the numerous authors who submitted their most recent work to the GPU community by contributing to this book. Without a doubt, these inspirational and powerful chapters will help thousands of developers push the envelope in their applications.

Our section editors—Cyril Zeller, Evan Hart, Ignacio Castaño Aguado, Kevin Bjorke, Kevin Myers, and Nolan Goodnight—took on an invaluable role, providing authors with feedback and guidance to make the chapters as good as they could be. Without their expertise and contributions above and beyond their usual workload, this book could not have been published.

Ensuring the clarity of *GPU Gems 3* required numerous diagrams, illustrations, and screen shots. A lot of diligence went into unifying the graphic style of about 500 figures, and we thank Michael Fornalski and Jim Reed for their wonderful work on these. We are grateful to Huey Nguyen and his team for their support for many of our projects. We also thank Rory Loeb for his contribution to the amazing book cover design and many other graphic elements of the book.

We would also like to thank Catherine Kilkenny and Teresa Saffaie for tremendous help with copyediting as chapters were being worked on.
Randy Fernando, the editor of the previous *GPU Gems* books, shared his wealth of experience acquired in producing those volumes.

We are grateful to Kurt Akeley for writing our insightful and forward-looking foreword.

At Addison-Wesley, Peter Gordon, John Fuller, and Kim Boedigheimer managed this project to completion before handing the marketing aspect to Curt Johnson. Christopher Keane did fantastic work on the copyediting and typesetting.

The support from many executive staff members from NVIDIA was critical to this endeavor: Tony Tamasi and Dan Vivoli continually value the creation of educational material and provided the resources necessary to accomplish this project.

We are grateful to Jen-Hsun Huang for his continued support of the *GPU Gems* series and for creating an environment that encourages innovation and teamwork.

We also thank everyone at NVIDIA for their support and for continually building the technology that changes the way people think about computing.

*Hubert Nguyen*

*NVIDIA Corporation*