Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

NVIDIA makes no warranty or representation that the techniques described herein are free from any Intellectual Property claims. The reader assumes all risk of any such claims based on his or her use of these techniques.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearson.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Sanders, Jason.
CUDA by example : an introduction to general-purpose GPU programming / Jason Sanders, Edward Kandrot.
p. cm.
Includes index.
1. Application software—Development. 2. Computer architecture. 3. Parallel programming (Computer science) I. Kandrot, Edward. II. Title.
QA76.76.A655S25 2010
005.2'75—dc22
2010017618

Copyright © 2011 NVIDIA Corporation

All rights reserved. Printed in the United States of America. This publication is protected by copy-right, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.

First printing, July 2010
Contents

Foreword .. xiii
Preface ... xv
Acknowledgments xvii
About the Authors xix

1 WHY CUDA? WHY NOW? 1

1.1 Chapter Objectives ... 2
1.2 The Age of Parallel Processing 2
1.2.1 Central Processing Units 2
1.3 The Rise of GPU Computing 4
1.3.1 A Brief History of GPUs 4
1.3.2 Early GPU Computing 5
1.4 CUDA .. 6
1.4.1 What Is the CUDA Architecture? 7
1.4.2 Using the CUDA Architecture 7
1.5 Applications of CUDA 8
1.5.1 Medical Imaging 8
1.5.2 Computational Fluid Dynamics 9
1.5.3 Environmental Science 10
1.6 Chapter Review ... 11
CONTENTS

2 GETTING STARTED 13

2.1 Chapter Objectives ... 14
2.2 Development Environment 14
 2.2.1 CUDA-Enabled Graphics Processors 14
 2.2.2 NVIDIA Device Driver 16
 2.2.3 CUDA Development Toolkit 16
 2.2.4 Standard C Compiler 18
2.3 Chapter Review ... 19

3 INTRODUCTION TO CUDA C 21

3.1 Chapter Objectives ... 22
3.2 A First Program .. 22
 3.2.1 Hello, World! .. 22
 3.2.2 A Kernel Call ... 23
 3.2.3 Passing Parameters 24
3.3 Querying Devices ... 27
3.4 Using Device Properties 33
3.5 Chapter Review .. 35

4 PARALLEL PROGRAMMING IN CUDA C 37

4.1 Chapter Objectives ... 38
4.2 CUDA Parallel Programming 38
 4.2.1 Summing Vectors .. 38
 4.2.2 A Fun Example ... 46
4.3 Chapter Review .. 57
5 THREAD COOPERATION

5.1 Chapter Objectives .. 60
5.2 Splitting Parallel Blocks ... 60
 5.2.1 Vector Sums: Redux ... 60
 5.2.2 GPU Ripple Using Threads 69
5.3 Shared Memory and Synchronization 75
 5.3.1 Dot Product ... 76
 5.3.1 Dot Product Optimized (Incorrectly) 87
 5.3.2 Shared Memory Bitmap .. 90
5.4 Chapter Review ... 94

6 CONSTANT MEMORY AND EVENTS

6.1 Chapter Objectives .. 96
6.2 Constant Memory ... 96
 6.2.1 Ray Tracing Introduction 96
 6.2.2 Ray Tracing on the GPU 98
 6.2.3 Ray Tracing with Constant Memory 104
 6.2.4 Performance with Constant Memory 106
6.3 Measuring Performance with Events 108
 6.3.1 Measuring Ray Tracer Performance 110
6.4 Chapter Review ... 114

7 TEXTURE MEMORY

7.1 Chapter Objectives .. 116
7.2 Texture Memory Overview .. 116
Contents

10 Streams

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Chapter Objectives</td>
<td>186</td>
</tr>
<tr>
<td>10.2 Page-Locked Host Memory</td>
<td>186</td>
</tr>
<tr>
<td>10.3 CUDA Streams</td>
<td>192</td>
</tr>
<tr>
<td>10.4 Using a Single CUDA Stream</td>
<td>192</td>
</tr>
<tr>
<td>10.5 Using Multiple CUDA Streams</td>
<td>198</td>
</tr>
<tr>
<td>10.6 GPU Work Scheduling</td>
<td>205</td>
</tr>
<tr>
<td>10.7 Using Multiple CUDA Streams Effectively</td>
<td>208</td>
</tr>
<tr>
<td>10.8 Chapter Review</td>
<td>211</td>
</tr>
</tbody>
</table>

11 CUDA on Multiple GPUs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Chapter Objectives</td>
<td>214</td>
</tr>
<tr>
<td>11.2 Zero-Copy Host Memory</td>
<td>214</td>
</tr>
<tr>
<td>11.2.1 Zero-Copy Dot Product</td>
<td>214</td>
</tr>
<tr>
<td>11.2.2 Zero-Copy Performance</td>
<td>222</td>
</tr>
<tr>
<td>11.3 Using Multiple GPUs</td>
<td>224</td>
</tr>
<tr>
<td>11.4 Portable Pinned Memory</td>
<td>230</td>
</tr>
<tr>
<td>11.5 Chapter Review</td>
<td>235</td>
</tr>
</tbody>
</table>

12 The Final Countdown

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Chapter Objectives</td>
<td>238</td>
</tr>
<tr>
<td>12.2 CUDA Tools</td>
<td>238</td>
</tr>
<tr>
<td>12.2.1 CUDA Toolkit</td>
<td>238</td>
</tr>
<tr>
<td>12.2.2 CUFFT</td>
<td>239</td>
</tr>
<tr>
<td>12.2.3 CUBLAS</td>
<td>239</td>
</tr>
<tr>
<td>12.2.4 NVIDIA GPU Computing SDK</td>
<td>240</td>
</tr>
</tbody>
</table>
12.2.5 NVIDIA Performance Primitives ... 241
12.2.6 Debugging CUDA C ... 241
12.2.7 CUDA Visual Profiler ... 243
12.3 Written Resources ... 244
 12.3.1 Programming Massively Parallel Processors: A Hands-On Approach ... 244
 12.3.2 CUDA U ... 245
 12.3.3 NVIDIA Forums ... 246
12.4 Code Resources .. 246
 12.4.1 CUDA Data Parallel Primitives Library 247
 12.4.2 CULAtools .. 247
 12.4.3 Language Wrappers .. 247
12.5 Chapter Review .. 248

A ADVANCED ATOMICS ... 249
 A.1 Dot Product Revisited ... 250
 A.1.1 Atomic Locks .. 251
 A.1.2 Dot Product Redux: Atomic Locks .. 254
 A.2 Implementing a Hash Table ... 258
 A.2.1 Hash Table Overview .. 259
 A.2.2 A CPU Hash Table .. 261
 A.2.3 Multithreaded Hash Table ... 267
 A.2.4 A GPU Hash Table .. 268
 A.2.5 Hash Table Performance ... 276
 A.3 Appendix Review ... 277

Index ... 279
This book shows how, by harnessing the power of your computer’s graphics process unit (GPU), you can write high-performance software for a wide range of applications. Although originally designed to render computer graphics on a monitor (and still used for this purpose), GPUs are increasingly being called upon for equally demanding programs in science, engineering, and finance, among other domains. We refer collectively to GPU programs that address problems in nongraphics domains as general-purpose. Happily, although you need to have some experience working in C or C++ to benefit from this book, you need not have any knowledge of computer graphics. None whatsoever! GPU programming simply offers you an opportunity to build—and to build mightily—on your existing programming skills.

To program NVIDIA GPUs to perform general-purpose computing tasks, you will want to know what CUDA is. NVIDIA GPUs are built on what’s known as the CUDA Architecture. You can think of the CUDA Architecture as the scheme by which NVIDIA has built GPUs that can perform both traditional graphics-rendering tasks and general-purpose tasks. To program CUDA GPUs, we will be using a language known as CUDA C. As you will see very early in this book, CUDA C is essentially C with a handful of extensions to allow programming of massively parallel machines like NVIDIA GPUs.

We’ve geared CUDA by Example toward experienced C or C++ programmers who have enough familiarity with C such that they are comfortable reading and writing code in C. This book builds on your experience with C and intends to serve as an example-driven, “quick-start” guide to using NVIDIA’s CUDA C programming language. By no means do you need to have done large-scale software architecture, to have written a C compiler or an operating system kernel, or to know all the ins and outs of the ANSI C standards. However, we do not spend time reviewing C syntax or common C library routines such as malloc() or memcpy(), so we will assume that you are already reasonably familiar with these topics.
You will encounter some techniques that can be considered general parallel programming paradigms, although this book does not aim to teach general parallel programming techniques. Also, while we will look at nearly every part of the CUDA API, this book does not serve as an extensive API reference nor will it go into gory detail about every tool that you can use to help develop your CUDA C software. Consequently, we highly recommend that this book be used in conjunction with NVIDIA’s freely available documentation, in particular the NVIDIA CUDA Programming Guide and the NVIDIA CUDA Best Practices Guide. But don’t stress out about collecting all these documents because we’ll walk you through everything you need to do.

Without further ado, the world of programming NVIDIA GPUs with CUDA C awaits!
Chapter 4

Parallel Programming in CUDA C

In the previous chapter, we saw how simple it can be to write code that executes on the GPU. We have even gone so far as to learn how to add two numbers together, albeit just the numbers 2 and 7. Admittedly, that example was not immensely impressive, nor was it incredibly interesting. But we hope you are convinced that it is easy to get started with CUDA C and you’re excited to learn more. Much of the promise of GPU computing lies in exploiting the massively parallel structure of many problems. In this vein, we intend to spend this chapter examining how to execute parallel code on the GPU using CUDA C.
4.1 Chapter Objectives

Through the course of this chapter, you will accomplish the following:

- You will learn one of the fundamental ways CUDA exposes its parallelism.
- You will write your first parallel code with CUDA C.

4.2 CUDA Parallel Programming

Previously, we saw how easy it was to get a standard C function to start running on a device. By adding the __global__ qualifier to the function and by calling it using a special angle bracket syntax, we executed the function on our GPU. Although this was extremely simple, it was also extremely inefficient because NVIDIA’s hardware engineering minions have optimized their graphics processors to perform hundreds of computations in parallel. However, thus far we have only ever launched a kernel that runs serially on the GPU. In this chapter, we see how straightforward it is to launch a device kernel that performs its computations in parallel.

4.2.1 SUMMING VECTORS

We will contrive a simple example to illustrate threads and how we use them to code with CUDA C. Imagine having two lists of numbers where we want to sum corresponding elements of each list and store the result in a third list. Figure 4.1 shows this process. If you have any background in linear algebra, you will recognize this operation as summing two vectors.
CPU VECTOR SUMS

First we’ll look at one way this addition can be accomplished with traditional C code:

```c
#include "../common/book.h"

#define N 10

void add( int *a, int *b, int *c ) {
    int tid = 0;  // this is CPU zero, so we start at zero
    while (tid < N) {
        c[tid] = a[tid] + b[tid];
        tid += 1;  // we have one CPU, so we increment by one
    }
}

int main( void ) {
    int a[N], b[N], c[N];

    // fill the arrays 'a' and 'b' on the CPU
    for (int i=0; i<N; i++) {
        a[i] = -i;
        b[i] = i * i;
    }

    add( a, b, c );
}
```

Figure 4.1 Summing two vectors
Most of this example bears almost no explanation, but we will briefly look at the add() function to explain why we overly complicated it.

We compute the sum within a while loop where the index tid ranges from 0 to \(N-1\). We add corresponding elements of \(a[]\) and \(b[]\), placing the result in the corresponding element of \(c[]\). One would typically code this in a slightly simpler manner, like so:

```
void add( int *a, int *b, int *c ) {
    for (i=0; i < N; i++) {
        c[i] = a[i] + b[i];
    }
}
```

Our slightly more convoluted method was intended to suggest a potential way to parallelize the code on a system with multiple CPUs or CPU cores. For example, with a dual-core processor, one could change the increment to 2 and have one core initialize the loop with \(tid = 0\) and another with \(tid = 1\). The first core would add the even-indexed elements, and the second core would add the odd-indexed elements. This amounts to executing the following code on each of the two CPU cores:
Of course, doing this on a CPU would require considerably more code than we have included in this example. You would need to provide a reasonable amount of infrastructure to create the worker threads that execute the function add() as well as make the assumption that each thread would execute in parallel, a scheduling assumption that is unfortunately not always true.

GPU VECTOR SUMS

We can accomplish the same addition very similarly on a GPU by writing add() as a device function. This should look similar to code you saw in the previous chapter. But before we look at the device code, we present main(). Although the GPU implementation of main() is different from the corresponding CPU version, nothing here should look new:

```c
#include "../common/book.h"

#define N 10

int main( void ) {
    int a[N], b[N], c[N];
    int *dev_a, *dev_b, *dev_c;

    // allocate the memory on the GPU
    HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) );

    // fill the arrays 'a' and 'b' on the CPU
    for (int i=0; i<N; i++) {
        a[i] = -i;
        b[i] = i * i;
    }
```
You will notice some common patterns that we employ again:

- We allocate three arrays on the device using calls to `cudaMalloc()`: two arrays, `dev_a` and `dev_b`, to hold inputs, and one array, `dev_c`, to hold the result.

- Because we are environmentally conscientious coders, we clean up after ourselves with `cudaFree()`.

- Using `cudaMemcpy()`, we copy the input data to the device with the parameter `cudaMemcpyHostToDevice` and copy the result data back to the host with `cudaMemcpyDeviceToHost`.

- We execute the device code in `add()` from the host code in `main()` using the triple angle bracket syntax.
As an aside, you may be wondering why we fill the input arrays on the CPU. There is no reason in particular why we need to do this. In fact, the performance of this step would be faster if we filled the arrays on the GPU. But we intend to show how a particular operation, namely, the addition of two vectors, can be implemented on a graphics processor. As a result, we ask you to imagine that this is but one step of a larger application where the input arrays \(a[] \) and \(b[] \) have been generated by some other algorithm or loaded from the hard drive by the user. In summary, it will suffice to pretend that this data appeared out of nowhere and now we need to do something with it.

Moving on, our \(\text{add()} \) routine looks similar to its corresponding CPU implementation:

```c
__global__ void add( int *a, int *b, int *c ) {
    int tid = blockIdx.x; // handle the data at this index
    if (tid < N)
        c[tid] = a[tid] + b[tid];
}
```

Again we see a common pattern with the function \(\text{add()} \):

- We have written a function called \(\text{add()} \) that executes on the device. We accomplished this by taking C code and adding a __global__ qualifier to the function name.

So far, there is nothing new in this example except it can do more than add 2 and 7. However, there are two noteworthy components of this example: The parameters within the triple angle brackets and the code contained in the kernel itself both introduce new concepts.

Up to this point, we have always seen kernels launched in the following form:

```c
kernel<<<1,1>>>( param1, param2, ... );
```

But in this example we are launching with a number in the angle brackets that is not 1:

```c
add<<<N,1>>>( dev_a, dev_b, dev_c );
```

What gives?
Recall that we left those two numbers in the angle brackets unexplained; we stated vaguely that they were parameters to the runtime that describe how to launch the kernel. Well, the first number in those parameters represents the number of parallel blocks in which we would like the device to execute our kernel. In this case, we’re passing the value N for this parameter.

For example, if we launch with `kernel<<<2,1>>()`, you can think of the runtime creating two copies of the kernel and running them in parallel. We call each of these parallel invocations a block. With `kernel<<<256,1>>()`, you would get 256 blocks running on the GPU. Parallel programming has never been easier.

But this raises an excellent question: The GPU runs N copies of our kernel code, but how can we tell from within the code which block is currently running? This question brings us to the second new feature of the example, the kernel code itself. Specifically, it brings us to the variable `blockIdx.x`:

```c
__global__ void add( int *a, int *b, int *c ) {
    int tid = blockIdx.x;  // handle the data at this index
    if (tid < N)
        c[tid] = a[tid] + b[tid];
}
```

At first glance, it looks like this variable should cause a syntax error at compile time since we use it to assign the value of `tid`, but we have never defined it. However, there is no need to define the variable `blockIdx`; this is one of the built-in variables that the CUDA runtime defines for us. Furthermore, we use this variable for exactly what it sounds like it means. It contains the value of the block index for whichever block is currently running the device code.

Why, you may then ask, is it not just `blockIdx`? Why `blockIdx.x`? As it turns out, CUDA C allows you to define a group of blocks in two dimensions. For problems with two-dimensional domains, such as matrix math or image processing, it is often convenient to use two-dimensional indexing to avoid annoying translations from linear to rectangular indices. Don’t worry if you aren’t familiar with these problem types; just know that using two-dimensional indexing can sometimes be more convenient than one-dimensional indexing. But you never have to use it. We won’t be offended.
When we launched the kernel, we specified N as the number of parallel blocks. We call the collection of parallel blocks a grid. This specifies to the runtime system that we want a one-dimensional grid of N blocks (scalar values are interpreted as one-dimensional). These threads will have varying values for blockIdx.x, the first taking value 0 and the last taking value $N-1$. So, imagine four blocks, all running through the same copy of the device code but having different values for the variable blockIdx.x. This is what the actual code being executed in each of the four parallel blocks looks like after the runtime substitutes the appropriate block index for blockIdx.x:

<table>
<thead>
<tr>
<th>BLOCK 1</th>
<th>BLOCK 2</th>
<th>BLOCK 3</th>
<th>BLOCK 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>global void add(int *a, int *b, int *c) { int tid = 0; if (tid < N) c[tid] = a[tid] + b[tid]; }</td>
<td>global void add(int *a, int *b, int *c) { int tid = 1; if (tid < N) c[tid] = a[tid] + b[tid]; }</td>
<td>global void add(int *a, int *b, int *c) { int tid = 2; if (tid < N) c[tid] = a[tid] + b[tid]; }</td>
<td>global void add(int *a, int *b, int *c) { int tid = 3; if (tid < N) c[tid] = a[tid] + b[tid]; }</td>
</tr>
</tbody>
</table>

If you recall the CPU-based example with which we began, you will recall that we needed to walk through indices from 0 to $N-1$ in order to sum the two vectors. Since the runtime system is already launching a kernel where each block will have one of these indices, nearly all of this work has already been done for us. Because we’re something of a lazy lot, this is a good thing. It affords us more time to blog, probably about how lazy we are.

The last remaining question to be answered is, why do we check whether tid is less than N? It should always be less than N, since we’ve specifically launched our kernel such that this assumption holds. But our desire to be lazy also makes us paranoid about someone breaking an assumption we’ve made in our code. Breaking code assumptions means broken code. This means bug reports, late...
nights tracking down bad behavior, and generally lots of activities that stand between us and our blog. If we didn’t check that tid is less than N and subsequently fetched memory that wasn’t ours, this would be bad. In fact, it could possibly kill the execution of your kernel, since GPUs have sophisticated memory management units that kill processes that seem to be violating memory rules.

If you encounter problems like the ones just mentioned, one of the HANDLE_ERROR() macros that we’ve sprinkled so liberally throughout the code will detect and alert you to the situation. As with traditional C programming, the lesson here is that functions return error codes for a reason. Although it is always tempting to ignore these error codes, we would love to save you the hours of pain through which we have suffered by urging that you check the results of every operation that can fail. As is often the case, the presence of these errors will not prevent you from continuing the execution of your application, but they will most certainly cause all manner of unpredictable and unsavory side effects downstream.

At this point, you’re running code in parallel on the GPU. Perhaps you had heard this was tricky or that you had to understand computer graphics to do general-purpose programming on a graphics processor. We hope you are starting to see how CUDA C makes it much easier to get started writing parallel code on a GPU. We used the example only to sum vectors of length 10. If you would like to see how easy it is to generate a massively parallel application, try changing the 10 in the line #define N 10 to 10000 or 50000 to launch tens of thousands of parallel blocks. Be warned, though: No dimension of your launch of blocks may exceed 65,535. This is simply a hardware-imposed limit, so you will start to see failures if you attempt launches with more blocks than this. In the next chapter, we will see how to work within this limitation.

4.2.2 A FUN EXAMPLE

We don’t mean to imply that adding vectors is anything less than fun, but the following example will satisfy those looking for some flashy examples of parallel CUDA C.

The following example will demonstrate code to draw slices of the Julia Set. For the uninitiated, the Julia Set is the boundary of a certain class of functions over complex numbers. Undoubtedly, this sounds even less fun than vector addition and matrix multiplication. However, for almost all values of the function’s
parameters, this boundary forms a fractal, one of the most interesting and beautiful curiosities of mathematics.

The calculations involved in generating such a set are quite simple. At its heart, the Julia Set evaluates a simple iterative equation for points in the complex plane. A point is not in the set if the process of iterating the equation diverges for that point. That is, if the sequence of values produced by iterating the equation grows toward infinity, a point is considered outside the set. Conversely, if the values taken by the equation remain bounded, the point is in the set.

Computationally, the iterative equation in question is remarkably simple, as shown in Equation 4.1.

Equation 4.1

\[Z_{n+1} = Z_n^2 + C \]

Computing an iteration of Equation 4.1 would therefore involve squaring the current value and adding a constant to get the next value of the equation.

CPU JULIA SET

We will examine a source listing now that will compute and visualize the Julia Set. Since this is a more complicated program than we have studied so far, we will split it into pieces here. Later in the chapter, you will see the entire source listing.

```c
int main( void ) {
    CPUBitmap bitmap( DIM, DIM );
    unsigned char *ptr = bitmap.get_ptr();

    kernel( ptr );

    bitmap.display_and_exit();
}
```

Our main routine is remarkably simple. It creates the appropriate size bitmap image using a utility library provided. Next, it passes a pointer to the bitmap data to the kernel function.
The computation kernel does nothing more than iterate through all points we care to render, calling \texttt{julia()} on each to determine membership in the Julia Set. The function \texttt{julia()} will return 1 if the point is in the set and 0 if it is not in the set. We set the point's color to be red if \texttt{julia()} returns 1 and black if it returns 0. These colors are arbitrary, and you should feel free to choose a color scheme that matches your personal aesthetics.

```c
int julia( int x, int y ) {
    const float scale = 1.5;
    float jx = scale * (float)(DIM/2 - x)/(DIM/2);
    float jy = scale * (float)(DIM/2 - y)/(DIM/2);

    cuComplex c(-0.8, 0.156);
    cuComplex a(jx, jy);

    int i = 0;
    for (i=0; i<200; i++) {
        a = a * a + c;
        if (a.magnitude2() > 1000)
            return 0;
    }

    return 1;
}
```
This function is the meat of the example. We begin by translating our pixel coordinate to a coordinate in complex space. To center the complex plane at the image center, we shift by $\text{DIM}/2$. Then, to ensure that the image spans the range of -1.0 to 1.0, we scale the image coordinate by $\text{DIM}/2$. Thus, given an image point at (x, y), we get a point in complex space at $(\text{DIM}/2 - x)/\text{DIM}/2, (\text{DIM}/2 - y)/\text{DIM}/2)$.

Then, to potentially zoom in or out, we introduce a scale factor. Currently, the scale is hard-coded to be 1.5, but you should tweak this parameter to zoom in or out. If you are feeling really ambitious, you could make this a command-line parameter.

After obtaining the point in complex space, we then need to determine whether the point is in or out of the Julia Set. If you recall the previous section, we do this by computing the values of the iterative equation $Z_{n+1} = Z_n^2 + C$. Since C is some arbitrary complex-valued constant, we have chosen $-0.8 + 0.156i$ because it happens to yield an interesting picture. You should play with this constant if you want to see other versions of the Julia Set.

In the example, we compute 200 iterations of this function. After each iteration, we check whether the magnitude of the result exceeds some threshold (1,000 for our purposes). If so, the equation is diverging, and we can return 0 to indicate that the point is not in the set. On the other hand, if we finish all 200 iterations and the magnitude is still bounded under 1,000, we assume that the point is in the set, and we return 1 to the caller, kernel().

Since all the computations are being performed on complex numbers, we define a generic structure to store complex numbers.

```c
struct cuComplex {
    float r;
    float i;
    cuComplex( float a, float b ) : r(a), i(b) {} 
    float magnitude2( void ) { return r * r + i * i; }
    cuComplex operator*(const cuComplex& a) {
        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
    }
    cuComplex operator+(const cuComplex& a) {
        return cuComplex(r+a.r, i+a.i);
    }
};
```
The class represents complex numbers with two data elements: a single-precision real component r and a single-precision imaginary component i. The class defines addition and multiplication operators that combine complex numbers as expected. (If you are completely unfamiliar with complex numbers, you can get a quick primer online.) Finally, we define a method that returns the magnitude of the complex number.

GPU JULIA SET

The device implementation is remarkably similar to the CPU version, continuing a trend you may have noticed.

```c
int main( void ) {
    CPUBitmap bitmap( DIM, DIM );
    unsigned char *dev_bitmap;

    HANDLE_ERROR( cudaMemcpy( (void**)&dev_bitmap,
                                  bitmap.image_size() ) );

    dim3 grid(DIM,DIM);
    kernel<<<grid,1>>>( dev_bitmap );

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(),
                                  dev_bitmap,
                                  bitmap.image_size(),
                                  cudaMemcpyDeviceToHost ) );

    bitmap.display_and_exit();

    cudaFree( dev_bitmap );
}
```

This version of `main()` looks much more complicated than the CPU version, but the flow is actually identical. Like with the CPU version, we create a $\text{DIM} \times \text{DIM}$
bitmap image using our utility library. But because we will be doing computation on a GPU, we also declare a pointer called `dev_bitmap` to hold a copy of the data on the device. And to hold data, we need to allocate memory using `cudaMalloc()`.

We then run our `kernel()` function exactly like in the CPU version, although now it is a `__global__` function, meaning it will run on the GPU. As with the CPU example, we pass `kernel()` the pointer we allocated in the previous line to store the results. The only difference is that the memory resides on the GPU now, not on the host system.

The most significant difference is that we specify how many parallel blocks on which to execute the function `kernel()`. Because each point can be computed independently of every other point, we simply specify one copy of the function for each point we want to compute. We mentioned that for some problem domains, it helps to use two-dimensional indexing. Unsurprisingly, computing function values over a two-dimensional domain such as the complex plane is one of these problems. So, we specify a two-dimensional grid of blocks in this line:

```c
    dim3 grid(DIM,DIM);
```

The type `dim3` is not a standard C type, lest you feared you had forgotten some key pieces of information. Rather, the CUDA runtime header files define some convenience types to encapsulate multidimensional tuples. The type `dim3` represents a three-dimensional tuple that will be used to specify the size of our launch. But why do we use a three-dimensional value when we oh-so-clearly stated that our launch is a two-dimensional grid?

Frankly, we do this because a three-dimensional, `dim3` value is what the CUDA runtime expects. Although a three-dimensional launch grid is not currently supported, the CUDA runtime still expects a `dim3` variable where the last component equals 1. When we initialize it with only two values, as we do in the statement `dim3 grid(DIM,DIM)`, the CUDA runtime automatically fills the third dimension with the value 1, so everything here will work as expected. Although it’s possible that NVIDIA will support a three-dimensional grid in the future, for now we’ll just play nicely with the kernel launch API because when coders and APIs fight, the API always wins.
We then pass our `dim3` variable `grid` to the CUDA runtime in this line:

```c
kernel<<<grid,1>>>( dev_bitmap);
```

Finally, a consequence of the results residing on the device is that after executing `kernel()`, we have to copy the results back to the host. As we learned in previous chapters, we accomplish this with a call to `cudaMemcpy()`, specifying the direction `cudaMemcpyDeviceToHost` as the last argument.

```c
HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(),
                           dev_bitmap,
                           bitmap.image_size(),
                           cudaMemcpyDeviceToHost ) );
```

One of the last wrinkles in the difference of implementation comes in the implementation of `kernel()`.

```c
__global__ void kernel( unsigned char *ptr ) {
    // map from threadIdx/BlockIdx to pixel position
    int x = blockIdx.x;
    int y = blockIdx.y;
    int offset = x + y * blockDim.x;

    // now calculate the value at that position
    int juliaValue = julia( x, y );
    ptr[offset*4 + 0] = 255 * juliaValue;
    ptr[offset*4 + 1] = 0;
    ptr[offset*4 + 2] = 0;
    ptr[offset*4 + 3] = 255;
}
```

First, we need `kernel()` to be declared as a `__global__` function so it runs on the device but can be called from the host. Unlike the CPU version, we no longer need nested `for()` loops to generate the pixel indices that get passed
to \texttt{julia()}. As with the vector addition example, the CUDA runtime generates these indices for us in the variable \texttt{blockIdx}. This works because we declared our grid of blocks to have the same dimensions as our image, so we get one block for each pair of integers \((x, y)\) between \((0, 0)\) and \((\text{DIM}-1, \text{DIM}-1)\).

Next, the only additional information we need is a linear offset into our output buffer, \texttt{ptr}. This gets computed using another built-in variable, \texttt{gridDim}. This variable is a constant across all blocks and simply holds the dimensions of the grid that was launched. In this example, it will always be the value \((\text{DIM}, \text{DIM})\). So, multiplying the row index by the grid width and adding the column index will give us a unique index into \texttt{ptr} that ranges from \(0\) to \((\text{DIM} \times \text{DIM}) - 1\).

\begin{verbatim}
int offset = x + y * gridDim.x;
\end{verbatim}

Finally, we examine the actual code that determines whether a point is in or out of the Julia Set. This code should look identical to the CPU version, continuing a trend we have seen in many examples now.

\begin{verbatim}
__device__ int julia(int x, int y) {
 const float scale = 1.5;
 float jx = scale * (float)(DIM/2 - x)/(DIM/2);
 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

 cuComplex c(-0.8, 0.156);
 cuComplex a(jx, jy);

 int i = 0;
 for (i=0; i<200; i++) {
 a = a * a + c;
 if (a.magnitude2() > 1000)
 return 0;
 }

 return 1;
}
\end{verbatim}
Again, we define a `cuComplex` structure that defines a method for storing a complex number with single-precision floating-point components. The structure also defines addition and multiplication operators as well as a function to return the magnitude of the complex value.

```c
struct cuComplex {
    float r;
    float i;
    cuComplex( float a, float b ) : r(a), i(b) {}
    __device__ float magnitude2( void ) {
        return r * r + i * i;
    }
    __device__ cuComplex operator*(const cuComplex& a) {
        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
    }
    __device__ cuComplex operator+(const cuComplex& a) {
        return cuComplex(r+a.r, i+a.i);
    }
};
```

Notice that we use the same language constructs in CUDA C that we use in our CPU version. The one difference is the qualifier `__device__`, which indicates that this code will run on a GPU and not on the host. Recall that because these functions are declared as `__device__` functions, they will be callable only from other `__device__` functions or from `__global__` functions.

Since we’ve interrupted the code with commentary so frequently, here is the entire source listing from start to finish:

```c
#include "../common/book.h"
#include "../common/cpu_bitmap.h"

#define DIM 1000
```
struct cuComplex {
 float r;
 float i;
 cuComplex(float a, float b) : r(a), i(b) {}

 __device__ float magnitude2(void) {
 return r * r + i * i;
 }

 __device__ cuComplex operator*(const cuComplex& a) {
 return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
 }

 __device__ cuComplex operator+(const cuComplex& a) {
 return cuComplex(r+a.r, i+a.i);
 }
};

__device__ int julia(int x, int y) {
 const float scale = 1.5;
 float jx = scale * (float)(DIM/2 - x)/(DIM/2);
 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

 cuComplex c(-0.8, 0.156);
 cuComplex a(jx, jy);

 int i = 0;
 for (i=0; i<200; i++) {
 a = a * a + c;
 if (a.magnitude2() > 1000)
 return 0;
 }

 return 1;
}
__global__ void kernel(unsigned char *ptr) {
 // map from threadIdx/BlockIdx to pixel position
 int x = blockIdx.x;
 int y = blockIdx.y;
 int offset = x + y * gridDim.x;

 // now calculate the value at that position
 int juliaValue = julia(x, y);
 ptr[offset*4 + 0] = 255 * juliaValue;
 ptr[offset*4 + 1] = 0;
 ptr[offset*4 + 2] = 0;
 ptr[offset*4 + 3] = 255;
}

int main(void) {
 CPUBitmap bitmap(DIM, DIM);
 unsigned char *dev_bitmap;

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,
 bitmap.image_size()));

 dim3 grid(DIM,DIM);
 kernel<<<grid,1>>>(dev_bitmap);

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap,
 bitmap.image_size(),
 cudaMemcpyDeviceToHost));
 bitmap.display_and_exit();

 HANDLE_ERROR(cudaFree(dev_bitmap));
}

When you run the application, you should see an animating visualization of the Julia Set. To convince you that it has earned the title “A Fun Example,” Figure 4.2 shows a screenshot taken from this application.
Congratulations, you can now write, compile, and run massively parallel code on a graphics processor! You should go brag to your friends. And if they are still under the misconception that GPU computing is exotic and difficult to master, they will be most impressed. The ease with which you accomplished it will be our secret. If they’re people you trust with your secrets, suggest that they buy the book, too.

We have so far looked at how to instruct the CUDA runtime to execute multiple copies of our program in parallel on what we called blocks. We called the collection of blocks we launch on the GPU a grid. As the name might imply, a grid can be either a one- or two-dimensional collection of blocks. Each copy of the kernel can determine which block it is executing with the built-in variable blockIdx. Likewise, it can determine the size of the grid by using the built-in variable gridDim. Both of these built-in variables proved useful within our kernel to calculate the data index for which each block is responsible.
add() function, CPU vector sums, 40–44
add_to_table() kernel, GPU hash table, 272
ALUs [arithmetic logic units]
 CUDA Architecture, 7
 using constant memory, 96
anim_and_exit() method, GPU ripples, 70
anim_gpu() routine, texture memory, 123, 129
animation
 GPU Julia Set example, 50–57
 GPU ripple using threads, 69–74
 heat transfer simulation, 121–125
animExit(), 149
asynchronous call
 cudaMemcpyAsync() as, 197
 using events with, 109
atomic locks
 GPU hash table, 274–275
 overview of, 251–254
atomicAdd()
 atomic locks, 251–254
 histogram kernel using global memory, 180
 not supporting floating-point numbers, 251
atomicCAS(), GPU lock, 252–253
atomicExch(), GPU lock, 253–254
atomics, 163–184
 advanced, 249–277
 compute capability of NVIDIA GPUs, 164–167
 dot product and, 248–251
 hash tables. see hash tables
 histogram computation, CPU, 171–173
 histogram computation, GPU, 173–179
 histogram computation, overview, 170
 histogram kernel using global memory atomics, 179–181
 histogram kernel using shared/global memory atomics, 181–183
 for minimum compute capability, 167–168
 locks, 251–254
 operations, 168–170
 overview of, 163–164, 249
 summary review, 183–184, 277
B
bandwidth, constant memory saving, 106–107
Basic Linear Algebra Subprograms (BLAS), CUBLAS library, 239–240
bin counts, CPU histogram computation, 171–173
BLAS [Basic Linear Algebra Subprograms], CUBLAS library, 239–240
blend_kernel()
 2D texture memory, 131–133
 texture memory, 127–129
blockDim variable
 2D texture memory, 132–133
 dot product computation, 76–78, 85
 dot product computation, incorrect optimization, 88
 dot product computation with atomic locks, 255–256
 dot product computation, zero-copy memory, 221–222
 GPU hash table implementation, 272
 GPU ripple using threads, 72–73
 GPU sums of a longer vector, 63–65
 GPU sums of arbitrarily long vectors, 66–67
 graphics interoperability, 145
 histogram kernel using global memory atomics, 179–180
 histogram kernel using shared/global memory atomics, 182–183
 multiple CUDA streams, 200
 ray tracing on GPU, 102
 shared memory bitmap, 91
 temperature update computation, 119–120
blocks
 defined, 57
 GPU Julia Set, 51
 GPU vector sums, 44–45
 hardware-imposed limits on, 46
 splitting into threads. see parallel blocks, splitting
 into threads
breast cancer, CUDA applications for, 8–9
bridges, connecting multiple GPUs, 224
buckets, hash table
 concept of, 259–260
 GPU hash table implementation, 269–275
 multithreaded hash tables and, 267–268
buffers, declaring shared memory, 76–77

C
 cache [] shared memory variable
 declaring buffer of shared memory named, 76–77
 dot product computation, 79–80, 85–86
 dot product computation with atomic locks, 255–256
 cacheIndex, incorrect dot product optimization, 88
 caches, texture, 116–117
callbacks, GPUMANimBitmap user registration
 for, 149
Cambridge University, CUDA applications, 9–10
camera
 ray tracing concepts, 97–98
 ray tracing on GPU, 99–104
cellular phones, parallel processing in, 2
central processing units. see CPUs (central
 processing units)
cleaning agents, CUDA applications for, 10–11
clickDrag(), 149
clock speed, evolution of, 2–3
code, breaking assumptions, 45–46
code resources, CUDA, 246–248
collision resolution, hash tables, 260–261
color
 CPU Julia Set, 48–49
 early days of GPU computing, 5–6
 ray tracing concepts, 98
compiler
 for minimum compute capability, 167–168
 standard C, for GPU code, 18–19
complex numbers
 defining generic class to store, 49–50
 storing with single-precision floating-point
 components, 54
computational fluid dynamics, CUDA applications
 for, 9–10
compute capability
 compiling for minimum, 167–168
cudaChooseDevice() and, 141
 defined, 164
 of NVIDIA GPUs, 164–167
 overview of, 141–142
computer games, 3D graphic development for, 4–5
constant memory
 accelerating applications with, 95
 measuring performance with events, 108–110
 measuring ray tracer performance, 110–114
 overview of, 96
 performance with, 106–107
 ray tracing introduction, 96–98
 ray tracing on GPU, 98–104
 ray tracing with, 104–106
 summary review, 114
__constant__ function
 declaring memory as, 104–106
 performance with constant memory, 106–107
copy_const_kernel() kernel
 2D texture memory, 133
 using texture memory, 129–130
copy_constant_kernel(), computing temperature updates, 119–121
CPUAnimBitmap class, creating GPU ripple, 69–70, 147–148
CPUs (central processing units)
evolution of clock speed, 2–3
evolution of core count, 3
freeing memory, see free(), C language hash tables, 261–267
histogram computation on, 171–173
as host in this book, 23
thread management and scheduling in, 72
vector sums, 39–41
verifying GPU histogram using reverse CPU histogram, 175–176
CUBLAS library, 239–240
cuComplex structure, CPU Julia Set, 48–49
cuComplex structure, GPU Julia Set, 53–55
CUDA, Supercomputing for the Masses, 245–246
CUDA Architecture
computational fluid dynamic applications, 9–10
defined, 7
environmental science applications, 10–11
first application of, 7
medical imaging applications, 8–9
resource for understanding, 244–245
using, 7–8
CUDA C
computational fluid dynamic applications, 9–10
CUDA development toolkit, 16–18
CUDA-enabled graphics processor, 14–16
debugging, 241–242
development environment setup. see development environment setup
development of, 7
environmental science applications, 10–11
getting started, 13–20
medical imaging applications, 8–9
NVIDIA device driver, 16
on multiple GPUs. see GPUs (graphics processing units), multi-system
overview of, 21–22
parallel programming in. see parallel programming, CUDA
passing parameters, 24–27
querying devices, 27–33
standard C compiler, 18–19
summary review, 19, 35
using device properties, 33–35
writing first program, 22–24
CUDA Data Parallel Primitives Library (CUDPP), 246
CUDA event API, and performance, 108–110
CUDA Memory Checker, 242
CUDA streams
GPU work scheduling with, 205–208
multiple, 198–205, 208–210
overview of, 192
single, 192–198
summary review, 211
CUDA Toolkit, 238–240
in development environment, 16–18
CUDA tools
CUBLAS library, 239–240
CUDA Toolkit, 238–239
CUFFT library, 239
debugging CUDA C, 241–242
GPU Computing SDK download, 240–241
NVIDIA Performance Primitives, 241
overview of, 238
Visual Profiler, 243–244
CUDA Zone, 167
cuda_malloc_test(), page-locked memory, 189
cudaBindTexture(), texture memory, 126–127
cudaBindTexture2D(), texture memory, 134
cudaChannelFormatDesc(), binding 2D textures, 134
cudaChooseDevice() defined, 34
GPUAnimBitmap initialization, 150
for valid ID, 141–142
cudaD39SetDirect3DDevice(), DirectX interoperability, 160–161
cudaDeviceMapHost(), zero-copy memory dot product, 221
cudaDeviceProp structure
cudaChooseDevice() working with, 141
multiple CUDA streams, 200
overview of, 28–31
single CUDA streams, 193–194
using device properties, 34
CUDA-enabled graphics processors, 14–16
cudaEventCreate() 2D texture memory, 134
CUDA streams, 192, 194, 201
GPU hash table implementation, 274–275
GPU histogram computation, 173, 177
measuring performance with events, 108–110, 112
page-locked host memory application, 188–189
performing animation with GPUAnimBitmap, 158
ray tracing on GPU, 100
standard host memory dot product, 215
texture memory, 124
zero-copy host memory, 215, 217
cudaEventDestroy()
defined, 112
GPU hash table implementation, 275
GPU histogram computation, 175, 178
heat transfer simulation animation, 122
heat transfer using graphics interoperability, 157
measuring performance with events, 111–113
page-locked host memory, 189–190
texture memory, 136
zero-copy host memory, 217, 220

cudaEventElapsedTime()
2D texture memory, 130
CUDA streams, 198, 204
defined, 112
GPU hash table implementation, 275
GPU histogram computation, 175, 178
heat transfer simulation animation, 122
heat transfer using graphics interoperability, 157
measuring performance with events, 108–109
measuring ray tracer performance, 110–113
page-locked host memory, 188–190
ray tracing on GPU, 100
standard host memory dot product, 216
using texture memory, 129–130

cudaEventSynchronize()
2D texture memory, 130
GPU hash table implementation, 275
GPU histogram computation, 175, 178
heat transfer simulation animation, 122
heat transfer using graphics interoperability, 157
measuring performance with events, 109, 111, 113
page-locked host memory, 188, 190
standard host memory dot product, 216

cudaFree()
allocating portable pinned memory, 235
CPU vector sums, 42
CUDA streams, 198, 205
defined, 26–27
dot product computation, 84, 87
dot product computation with atomic locks, 258
GPU hash table implementation, 269–270, 275
GPU ripple using threads, 69
GPU sums of arbitrarily long vectors, 69
multiple CPUs, 229
page-locked host memory, 189–190
ray tracing on GPU, 101
ray tracing with constant memory, 105
shared memory bitmap, 91
standard host memory dot product, 217

cudaFreeHost()
allocating portable pinned memory, 233
CUDA streams, 198, 204
defined, 190
freeing buffer allocated with
cudaHostAlloc(), 190
zero-copy memory dot product, 220
CUDA-GDB debugging tool, 241–242

cudaGetDevice()
CUDA streams, 193, 200
device properties, 34
zero-copy memory dot product, 220

cudaGetDeviceCount()
device properties, 34
getting count of CUDA devices, 28
multiple CPUs, 224–225

cudaGetDeviceProperties()
determining if GPU is integrated or discrete, 223
multiple CUDA streams, 200
querying devices, 33–35
zero-copy memory dot product, 220

cudaGLSetGLDevice()
graphics interoperability with OpenGL, 150
preparing CUDA to use OpenGL driver, 142

cudaGraphicsGLRegisterBuffer()
143, 151
cudaGraphicsMapFlagsNone()
143
cudaGraphicsMapFlagsReadOnly()
143
cudaGraphicsMapFlagsWriteDiscard()
143
cudaGraphicsUnmapResources()
144

cudaHostAlloc()
CUDA streams, 195, 202
malloc() versus, 186–187
page-locked host memory application, 187–192
zero-copy memory dot product, 217–220

cudaHostAllocDefault()
CUDA streams, 195, 202
default pinned memory, 214
page-locked host memory, 189–190

cudaHostAllocMapped() flag
default pinned memory, 214
portable pinned memory, 231
zero-copy memory dot product, 217–218

cudaHostAllocPortable() flag
portable pinned memory, 230–235
zero-copy memory dot product, 217–218
cudaHostGetDevicePointer()
portable pinned memory, 234
zero-copy memory dot product, 218–219

cudaMalloc() , 124
2D texture memory, 133–135
allocating device memory using, 26
CPU vector sums application, 42
CUDA streams, 194, 201–202
dot product computation, 82, 86
dot product computation, standard host memory, 215
dot product computation with atomic locks, 256
GPU hash table implementation, 269, 274–275
GPU Julia Set, 51
GPU lock function, 253
GPU ripple using threads, 70
GPU sums of arbitrarily long vectors, 68
measuring ray tracer performance, 110, 112
portable pinned memory, 234
ray tracing on GPU, 100
ray tracing with constant memory, 105
shared memory bitmap, 90
using multiple CPUs, 228
using texture memory, 127

cudamemcheck, 242

cudaMemcpy()
2D texture binding, 136
copying data between host and device, 27
CPU vector sums application, 42
dot product computation, 82–83, 86
dot product computation with atomic locks, 257
GPU hash table implementation, 270, 274–275
GPU histogram computation, 174–175
GPU Julia Set, 52
GPU lock function implementation, 253
GPU ripple using threads, 70
GPU sums of arbitrarily long vectors, 68
heat transfer simulation animation, 122–125
measuring ray tracer performance, 111
page-locked host memory and, 187, 189
ray tracing on GPU, 101
standard host memory dot product, 216
using multiple CPUs, 228–229

cudamemcpyAsync()
GPU work scheduling, 206–208
multiple CUDA streams, 203, 208–210
single CUDA streams, 196
timeline of intended application execution using multiple streams, 199

cudamemcpyToDeviceToHost()
CPU vector sums application, 42
dot product computation, 82, 86–87
GPU hash table implementation, 270
GPU histogram computation, 174–175
GPU Julia Set, 52
GPU sums of arbitrarily long vectors, 68
multiple CUDA streams, 204
page-locked host memory, 190
ray tracing on GPU, 101
shared memory bitmap, 91
standard host memory dot product, 216
using multiple CPUs, 229

cudamemcpyHostToDevice()
CPU vector sums application, 42
dot product computation, 86
GPU sums of arbitrarily long vectors, 68
implementing GPU lock function, 253
measuring ray tracer performance, 111
multiple CPUs, 228
multiple CUDA streams, 203
page-locked host memory, 189
standard host memory dot product, 216

cudamemcpyToSymbol(), constant memory, 105–106
cudamemset()
GPU hash table implementation, 269
GPU histogram computation, 174

CUDA.NET project, 247
cudasetdevice()
allocating portable pinned memory, 231–232, 233–234
using device properties, 34
using multiple CPUs, 227–228

cudasetdeviceflags()
allocating portable pinned memory, 231, 234
zero-copy memory dot product, 221
cudastreamcreate(), 194, 201
cudastreamdestroy(), 198, 205
cudastreamsynchronize(), 197–198, 204
cudathreadsynchronize(), 219
cudacalltexture(), 2D texture memory, 136–137

CUDPP [CUDA Data Parallel Primitives Library], 246
CUFFT library, 239
CULA tools, 246
current animation time, GPU ripple using threads, 72–74

D

detectors, CUDA applications, 10–11
dev_bitmap pointer, GPU Julia Set, 51
development environment setup
CUDA Toolkit, 16–18
CUDA-enabled graphics processor, 14–16
NVIDIA device driver, 16
standard C compiler, 18–19
summary review, 19
INDEX

device drivers, 16
device overlap, GPU, 194, 198–199
__device__ function
 GPU hash table implementation, 268–275
 GPU Julia Set, 54
devices
 getting count of CUDA, 28
 GPU vector sums, 41–46
 passing parameters, 25–27
 querying, 27–33
 use of term in this book, 23
 using properties of, 33–35
devPtr, graphics interoperability, 144
dim3
 variable grid, GPU Julia Set, 51–52
DIMxDIM
 bitmap image, GPU Julia Set, 49–51, 53
direct memory access (DMA), for page-locked memory, 186
DirectX
 adding standard C to, 7
 breakthrough in GPU technology, 5–6
 GeForce 8800 GTX, 7
 graphics interoperability, 160–161
discrete GPUs, 222–224
display accelerators, 2D, 4
DMA (direct memory access), for page-locked memory, 186
dot product computation
 optimized incorrectly, 87–90
 shared memory and, 76–87
 standard host memory version of, 215–217
 using atomics to keep entirely on GPU, 250–251, 254–258
dot product computation, multiple GPUs
 allocating portable pinned memory, 230–235
 using, 224–229
 zero-copy, 217–222
 zero-copy performance, 223
Dr. Dobb’s CUDA, 245–246
DRAMs, discrete GPUs with own dedicated, 222–223
draw_func, graphics interoperability, 144–146

e
end_thread(), multiple CPUs, 226
environmental science, CUDA applications for, 10–11
event timer: see timer, event
 computing elapsed time between recorded, see cudaEventElapsedTime()
 creating, see cudaEventCreate()
 GPU histogram computation, 173
 measuring performance with, 95
 measuring ray tracer performance, 110–114

overview of, 108–110
 recording, see cudaEventRecord()
 stopping and starting, see cudaEventDestroy()
 summary review, 114
EXIT_FAILURE(), passing parameters, 26

F
fAnim(), storing registered callbacks, 149
Fast Fourier Transform library, NVIDIA, 239
first program, writing, 22–24
flags, in graphics interoperability, 143
float_to_color() kernels, in graphics interoperability, 157
floating-point numbers
 atomic arithmetic not supported for, 251
 CUDA Architecture designed for, 7
 early days of GPU computing not able to handle, 6
 FORTRAN applications
 CUBLAS compatibility with, 239–240
 language wrapper for CUDA C, 246
 forums, NVIDIA, 246
 fractals. see Julia Set example
free(), C language
 cudaFree() versus, 26–27
 dot product computation with atomic locks, 258
 GPU hash table implementation, 275
 multiple CPUs, 227
 standard host memory dot product, 217

G
GeForce 256, 5
GeForce 8800 GTX, 7
generate_frame(), GPU ripple, 70, 72–73, 154
generic classes, storing complex numbers with, 49–50
GL_PIXEL_UNPACK_BUFFER_ARB target, OpenGL
 interoperation, 151
glBindBuffer()
 creating pixel buffer object, 143
 graphics interoperability, 146
glBufferData()
 pixel buffer object, 143
 graphics interoperability, 146
glDrawPixels()
 graphics interoperability, 146
 overview of, 154–155
glGenBuffers()
 pixel buffer object, 143
 global memory atomics
 GPU compute capability requirements, 167
 histogram kernel using, 179–181
 histogram kernel using shared and, 181–183
INDEX

HANDLE_ERROR() macro, continued
heat transfer simulation animation, 122–125
measuring ray tracer performance, 110–114
page-locked host memory application, 188–189
passing parameters, 26
paying attention to, 46
portable pinned memory, 231–235
ray tracing on GPU, 100–101
ray tracing with constant memory, 104–105
standard host memory dot product, 215–217
texture memory, 127, 129
zero-copy memory dot product, 217–222

Hardware
decoupling parallelization from method of executing, 66
performing atomic operations on memory, 167

Hardware limitations
GPU sums of arbitrarily long vectors, 65–69
number of blocks in single launch, 46
number of threads per block in kernel launch, 63

Hash function
CPU hash table implementation, 261–267
GPU hash table implementation, 268–275

Overview of, 259–261

Hash tables
cpu, 259–261
GPU, 268–275
multithreaded, 267–268
performance, 276–277

Summary review, 277

Heat transfer simulation
2D texture memory, 131–137
animating, 121–125
computing temperature updates, 119–121
with graphics interoperability, 154–160
simple heating model, 117–118
using texture memory, 125–131

"Hello, World" example
kernel call, 23–24
passing parameters, 24–27
writing first program, 22–23

Highly Optimized Object-oriented Many-particle Dynamics (HOOMD), 10–11

Histogram computation
on CPUs, 171–173
on GPUs, 173–179
overview, 170

Histogram kernel
using global memory atomics, 179–181
using shared/global memory atomics, 181–183

hit() method, ray tracing on GPU, 99, 102

HOOMD (Highly Optimized Object-oriented Many-particle Dynamics), 10–11

Hosts
allocating memory to, see malloc()
CPU vector sums, 39–41
cuda C blurring device code and, 26
page-locked memory, 186–192
passing parameters, 25–27
use of term in this book, 23
zero-copy host memory, 214–222

Idle_func() member, GPUAnimBitmap, 154

IEEE requirements, ALUs, 7
increment operator (x++), 168–170

Initialization
CPU hash table implementation, 263, 266
CPU histogram computation, 171
GLUT, 142, 150, 173–174
GPUAnimBitmap, 149

Inner products. see dot product computation

Integrated GPUs, 222–224
Interleaved operations, 169–170
Interoperation. see graphics interoperability

Julia_set() function, 48–49, 53
Julia Set example
CPU application of, 47–50
GPU application of, 50–57
overview of, 46–47

Kernel
2D texture memory, 131–133
blockIdx.x variable, 44
call to, 23–24
defined, 23
GPU histogram computation, 176–178
GPU Julia Set, 49–52
GPU ripple performing animation, 154
GPU ripple using threads, 70–72
GPU sums of a longer vector, 63–65

Graphics interoperability, 139–142, 144–146
"Hello, World" example of call to, 23–24
launching with number in angle brackets that is not 1, 43–44
passing parameters to, 24–27
ray tracing on GPU, 102–104
texture memory, 127–131
key_func, graphics interoperability, 144–146
keys
- CPU hash table implementation, 261–267
- GPU hash table implementation, 269–275
- hash table concepts, 259–260

L
- language wrappers, 246–247
- LAPACK (Linear Algebra Package), 246
- light effects, ray tracing concepts, 97
- Linux, standard C compiler for, 19
- Lock structure, 254–258, 268–275
- locks, atomic, 251–254

M
- Macintosh OS X, standard C compiler, 19
- main() routine
 - 2D texture memory, 133–136
 - CPU hash table implementation, 266–267
 - CPU histogram computation, 171
 - dot product computation, 81–84
 - dot product computation with atomic locks, 255–256
 - GPU hash table implementation, 273–275
 - GPU histogram computation, 173
 - GPU Julia Set, 47, 50–51
 - GPU ripple using threads, 69–70
 - GPU vector sums, 41–42
 - graphics interoperability, 144
 - page-locked host memory application, 190–192
 - ray tracing on GPU, 99–100
 - ray tracing with constant memory, 104–106
 - shared memory bitmap, 90
 - single CUDA streams, 193–194
 - zero-copy memory dot product, 220–222
- malloc()
 - cudaHostAlloc() versus, 186
 - cudaMemcpy() versus, 190
 - cudaMalloc() versus, 26
 - ray tracing on GPU, 100
- mammograms, CUDA applications for medical imaging, 9
- maxThreadsPerBlock field, device properties, 63
- media and communications processors (MCPs), 223
- medical imaging, CUDA applications for, 8–9
- memcpy(), C language, 27
- memory
 - allocating device, see cudaMalloc()
 - constant. see constant memory
 - CUDA Architecture creating access to, 7
 - early days of GPU computing, 6
 - executing device code that uses allocated, 70
 - freeing. see cudaFree(); free(), C language

GPU histogram computation, 173–174
- page-locked host (pinned), 186–192
- querying devices, 27–33
- shared. see shared memory texture. see texture memory use of term in this book, 23
- Memory Checker, CUDA, 242
- memset(), C language, 174
- Microsoft Windows, Visual Studio C compiler, 18–19
- Microsoft.NET, 247
- multicore revolution, evolution of CPUs, 3
- multiplication, in vector dot products, 76
- multithreaded hash tables, 267–268
- mutex, GPU lock function, 252–254

N
- nForce media and communications processors (MCPs), 222–223
- NVIDIA
 - compute capability of various GPUs, 164–167
 - creating 3D graphics for consumers, 5
 - creating CUDA C for GPU, 7
 - creating first GPU built with CUDA Architecture, 7
 - CUBLAS library, 239–240
 - CUDA-GPU computing SDK download, 18, 240–241
 - Parallel NSight debugging tool, 242
 - Performance Primitives, 241
 - products containing multiple GPUs, 224
 - Visual Profiler, 243–244
- NVIDIA CUDA Programming Guide, 31

O
- offset, 2D texture memory, 133
- on-chip caching. see constant memory; texture memory
 - one-dimensional blocks
 - GPU sums of a longer vector, 63
 - two-dimensional blocks versus, 44
- online resources. see resources, online
- OpenGL
 - creating GPUAnimBitmap, 148–152
 - in early days of GPU computing, 5–6
 - generating image data with kernel, 139–142
 - interoperation, 142–147
 - writing 3D graphics, 4
- operations, atomic, 168–170
- optimization, incorrect dot product, 87–90
INDEX

P
page-locked host memory
allocating as portable pinned memory, 230–235
overview of, 186–187
restricted use of, 187
single CUDA streams with, 195–197
parallel blocks
GPU Julia Set, 51
GPU vector sums, 45
parallel blocks, splitting into threads
GPU sums of arbitrarily long vectors, 65–69
GPU sums of longer vector, 63–65
GPU vector sums using threads, 61–63
overview of, 60
vector sums, 60–61
Parallel NSight debugging tool, 242
parallel processing
evolution of CPUs, 2–3
past perception of, 1
parallel programming, CUDA
CPU vector sums, 39–41
element, CPU Julia Set application, 47–50
example, GPU Julia Set application, 50–57
element, overview, 46–47
GPU vector sums, 41–46
overview of, 38
summary review, 56
summing vectors, 38–41
parameter passing, 24–27, 40, 72
PC gaming, 3D graphics for, 4–5
PCI Express slots, adding multiple GPUs to, 224
performance
constant memory and, 106–107
evolution of CPUs, 2–3
hash table, 276
launching kernel for GPU histogram computation, 176–177
measuring with events, 108–114
page-locked host memory and, 187
zero-copy memory and, 222–223
pinned memory
allocating as portable, 230–235
cudaHostAllocDefault() getting default, 214
as page-locked memory. see page-locked host memory
pixel buffer objects (PBO), OpenGL, 142–143
pixel shaders, early days of GPU computing, 5–6
pixels, number of threads per block, 70–74
portable computing devices, 2
Programming Massively Parallel Processors: A Hands-on Approach (Kirk, Hwu), 244
properties
cudaDeviceProp structure. see
cudaDeviceProp structure
maxThreadsPerBlock field for device, 63
reporting device, 31
using device, 33–35
PyCUDA project, 246–247
Python language wrappers for CUDA C, 246
Q
querying, devices, 27–33
R
rasterization, 97
ray tracing
concepts behind, 96–98
with constant memory, 104–106
on GPU, 98–104
measuring performance, 110–114
read-modify-write operations
atomic operations as, 168–170, 251
using atomic locks, 251–254
read-only memory. see constant memory; texture memory
reductions
dot products as, 83
overview of, 250
shared memory and synchronization for, 79–81
references, texture memory, 126–127, 131–137
registration
bufferObj with cudaGraphicsGLRegisterBuffer(), 151
callback, 149
rendering, GPUs performing complex, 139
resource variable
creating GPUAnimBitmap, 148–152
graphics interoperation, 141
resources, online
CUDA code, 246–248
CUDA Toolkit, 16
CUDA University, 245
CUDPP, 246
CULAtools, 246
Dr. Dobb’s CUDA, 246
GPU Computing SDK code samples, 18
language wrappers, 246–247
NVIDIA device driver, 16
NVIDIA forums, 246
standard C compiler for Mac OS X, 19
Visual Studio C compiler, 18
resources, written
 CUDA U, 245–246
 forums, 246
 programming massive parallel processors, 244–245
 ripple, GPU
 with graphics interoperability, 147–154
 producing, 69–74
routine()
 allocating portable pinned memory, 232–234
 using multiple CPUs, 226–228
 Russian nesting doll hierarchy, 164
S
 scalable link interface (SLI), adding multiple GPUs with, 224
 scale factor, CPU Julia Set, 49
 scientific computations, in early days, 6
screenshots
 animated heat transfer simulation, 126
 GPU Julia Set example, 57
 GPU ripple example, 74
 graphics interoperability example, 147
 ray tracing example, 103–104
 rendered with proper synchronization, 93
 rendered without proper synchronization, 92
shading languages, 6
shared data buffers, kernel/OpenGL rendering interoperability, 142
shared memory
 atomics, 167, 181–183
 bitmap, 90–93
 CUDA Architecture creating access to, 7
 dot product, 76–87
 dot product optimized incorrectly, 87–90
 and synchronization, 75
 Silicon Graphics, OpenGL library, 4
 simulation
 animation of, 121–125
 challenges of physical, 117
 computing temperature updates, 119–121
 simple heating model, 117–118
 SLI [scalable link interface], adding multiple GPUs with, 224
 spatial locality
 designing texture caches for graphics with, 116
 heat transfer simulation animation, 125–126
 split parallel blocks. see parallel blocks, splitting into threads
 standard C compiler
 compiling for minimum compute capability, 167–168
development environment, 18–19
kernel call, 23–24
start event, 108–110
start_thread(), multiple CPUs, 226–227
stop event, 108–110
streams
 CUDA, overview of, 192
 CUDA, using multiple, 198–205, 208–210
 CUDA, using single, 192–198
 GPU work scheduling and, 205–208
 overview of, 185–186
 page-locked host memory and, 186–192
 summary review, 211
 supercomputers, performance gains in, 3
superfactors, environmental devastation of, 10
synchronization
 of events. see cudaEventSynchronize() of streams, 197–198, 204
 of threads, 219
 synchronization, and shared memory
dot product, 76–87
 dot product optimized incorrectly, 87–90
 overview of, 75
 shared memory bitmap, 90–93
 __syncthreads()
dot product computation, 78–80, 85
 shared memory bitmap using, 90–93
 unintended consequences of, 87–90
T
task parallelism, CPU versus GPU applications, 185
TechniScan Medical Systems, CUDA applications, 9
temperatures
 computing temperature updates, 119–121
 heat transfer simulation, 117–118
 heat transfer simulation animation, 121–125
Temple University research, CUDA applications, 10–11
tex1Dfetch() compiler intrinsic, texture memory, 127–128, 131–132
tex2D() compiler intrinsic, texture memory, 132–133
texture, early days of GPU computing, 5–6
texture memory
 animation of simulation, 121–125
 defined, 115
 overview of, 115–117
 simulating heat transfer, 117–121
 summary review, 137
two-dimensional, 131–137
 using, 125–131
INDEX

threadIdx variable
 2D texture memory, 132–133
dot product computation, 76–77, 85
dot product computation with atomic locks, 255–256
GPU hash table implementation, 272
GPU Julia Set, 52
GPU ripple using threads, 72–73
GPU sums of a longer vector, 63–64
GPU sums of arbitrarily long vectors, 66–67
GPU vector sums using threads, 61
histogram kernel using global memory atomics, 179–180
histogram kernel using shared/global memory atomics, 182–183
multiple CUDA streams, 200
ray tracing on GPU, 102
setting up graphics interoperability, 145
shared memory bitmap, 91
temperature update computation, 119–121
zero-copy memory dot product, 221
threads
coding with, 38–41
constant memory and, 106–107
GPU ripple using, 69–74
GPU sums of a longer vector, 63–65
GPU sums of arbitrarily long vectors, 65–69
GPU vector sums using, 61–63
hardware limit to number of, 63
histogram kernel using global memory atomics, 179–181
incorrect dot product optimization and divergence of, 89
multiple CPUs, 225–229
overview of, 59–60
ray tracing on GPU and, 102–104
read-modify-write operations, 168–170
shared memory and. see shared memory
summary review, 94
synchronizing, 219
threadsPerBlock
 allocating shared memory, 76–77
dot product computation, 79–87
three-dimensional blocks, GPU sums of a longer vector, 63
three-dimensional graphics, history of GPUs, 4–5
three-dimensional scenes, ray tracing producing 2-D image of, 97
tid variable
 blockIdx.x variable assigning value of, 44
checking that it is less than N, 45–46
dot product computation, 77–78
parallelizing code on multiple CPUs, 40
time, GPU ripple using threads, 72–74
timer, event. see cudaEventElapsedTime()
Toolkit, CUDA, 16–18
two-dimensional blocks
 arrangement of blocks and threads, 64
GPU Julia Set, 51
GPU ripple using threads, 70
gridDim variable as, 63
one-dimensional indexing versus, 44
two-dimensional display accelerators, development of GPUs, 4
two-dimensional texture memory
 defined, 116
 heat transfer simulation, 117–118
 overview of, 131–137
U
ultrasound imaging, CUDA applications for, 9
unified shader pipeline, CUDA Architecture, 7
university, CUDA, 245
V
values
 CPU hash table implementation, 261–267
 GPU hash table implementation, 269–275
 hash table concepts, 259–260
vector dot products. see dot product computation
vector sums
 CPU, 39–41
 GPU, 41–46
 GPU sums of arbitrarily long vectors, 65–69
 GPU sums of longer vector, 63–65
 GPU sums using threads, 61–63
 overview of, 38–39, 60–61
 verify_table(), GPU hash table, 270
Visual Profiler, NVIDIA, 243–244
Visual Studio C compiler, 18–19
W
warps, reading constant memory with, 106–107
while() loop
 CPU vector sums, 40
 GPU lock function, 253
work scheduling, GPU, 205–208
Z
zero-copy memory
 allocating/using, 214–222
 defined, 214
 performance, 222–223