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Chapter 1. Tutorial Sample 

 

The OptiX SDK provides a source code sample, tutorial, that demonstrates how to 
implement several basic ray tracing effects, from trivially simple to moderately 
complex.  The sample consists of eleven stages, each stage adding a new effect.  In 
this section, we discuss each of these stages and show programs for both shading 
and intersection. 

This tutorial focuses on the CUDA C programming mechanism and does not 
describe how the host API is used to set up the objects.  The complete source code 
for both the CUDA C and host API portions is included in the SDK.  This tutorial 
is intended only to get you started with OptiX; advanced features such as visit 
programs and acceleration structures can be found in other SDK samples.  More 
advanced rendering techniques and scientific computing with OptiX will also not be 
covered here.   
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1.1. Tutorial 0 - Normal shader 

 

The most common program type in OptiX is the closest hit program.  It is executed 
whenever OptiX finds the closest intersection between a ray and an object.  
Typically the purpose of the closest hit program is to determine the color of the 
intersection point.  The user can create multiple closest hit programs and bind each 
to objects in the scene, so that different objects may have different appearances. In 
this tutorial, we bind one simple closest hit program to each object in the scene.  
This program is a normal shader -- it transforms the object normal into world space 
and scales it so that each component lies between 0 and 1..  The resulting (x,y,z) 
vector is interpreted directly as a color and deposited into the payload associated 
with the ray. 

 

The program above refers to a variable named shading_normal.  The 
intersection programs for the box and for the floor (not shown here; refer to the 
SDK for their code) will both compute this variable when an intersection is found.    
Because this variable will be shared between multiple programs, it must be declared 
in the following special way: 

 

The resulting color is written to another variable called prd_radiance.  This is an 
instance of a user-defined structure that carries data associated with each ray.  In this 

rtDeclareVariable(float3, 

                  shading_normal, 

                  attribute shading_normal, ); 

 

RT_PROGRAM void closest_hit_radiance0() 

{ 

  prd_radiance.result = normalize(rtTransformNormal( 

                                  RT_OBJECT_TO_WORLD, 

                                  shading_normal))  

                                  *0.5f+0.5f; 

} 
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case, we will write a float3 color to a portion of that structure called result.  
More information on the two other elements of this structure will be shown later. 

 

There is nothing special about the variable names shading_normal and 
prd_radiance.  The third argument to the rtDeclareVariable macro, called 
the semantic name, is used to bind these variables to the right places in the system.  
Here, using rtPayload as the semantic name lets OptiX know that this data 
structure should be associated with each individual ray.  The result portion of the 
ray payload will be copied to the output of the raytracer in a separate program 
below. 

In addition to the closest hit program, we must specify a miss program.  Miss 
programs are run when a ray does not intersect any object.  In this case, we just set 
the resulting color to a user-specified value, bg_color. 

 

The value for bg_color is set by the host and can be modified between different 
invocations of the raytracer.  This is the most common mechanism for 
communication between the host and OptiX programs1.  OptiX also provides an 
inheritance model for these variables, but those details are not discussed in this 
tutorial. 

To create the rays themselves, we will use a pinhole camera model.  The ray generation 
program is responsible for creating a ray, shooting it into the scene, and copying the 
resulting color into an output buffer.  Output buffers are subsequently used by the 
host for further analysis or by OpenGL for rendering.  OptiX can write to an 
arbitrary number of output buffers, and those buffers can have arbitrary types.  In 
this tutorial, the single output buffer is a two-dimensional RGBA8 image that is 
designed for efficient transfer to an OpenGL texture.   The helper function 
make_color (not shown here) will convert a floating-point RGB color to the 
appropriate RGBA8 integer value, scaling and clamping as necessary. 

                                                      

1 OpenGL programmers may be familiar with the concept of a uniform variable, which is a similar concept.    

rtDeclareVariable(float3, bg_color, , ); 

 

RT_PROGRAM void miss() 

{ 

  prd_radiance.result = bg_color; 

} 

 

struct PerRayData_radiance 

{ 

  float3 result; 

  float  importance; 

  int depth; 

}; 

rtDeclareVariable(PerRayData_radiance,                      

                  prd_radiance, rtPayload, ); 
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The most important portion of this program is the call to rtTrace.  There are 
three arguments to this function: 

1) The root of an object hierarchy representing the scene.  This hierarchy was 
created by the host prior to launching the raytracer. 

2) A ray, computed above using vector math to simulate the viewing frustum of a 
pinhole camera. 

3) A reference to a local variable that holds the data structure attached to each ray.  
Because the prd_radiance variable (described above) was declared with the 
rtPayload semantic, this local variable will be bound to prd_radiance in 
all other OptiX programs.   

 If the ray hits an object, the closest hit program will set the result member to 
the normal color, and if it does not hit any object, the miss program will set 
result to the background color.  Once the ray is fully traced, control is returned 
to the camera program, where we deposit the color into the output buffer. 

One final note:  Since OptiX supports recursion both in traversal and in shading, a 
local stack is used to maintain state.  If that stack is not large enough then it can 
overflow.  If this occurs, all processing for the current ray generation program is 
aborted and an exception program is executed.  In this tutorial, we just set the output 
buffer to a special color (also set by the host) to alert the user that this occurred. 

RT_PROGRAM void pinhole_camera() 

{ 

  size_t2 screen = output_buffer.size(); 

 

  float2 d = make_float2(launch_index) /  

             make_float2(screen) * 2.f - 1.f; 

  float3 ray_origin = eye; 

  float3 ray_direction = normalize(d.x*U + d.y*V + W); 

 

  optix::Ray ray(ray_origin, ray_direction,       

                 radiance_ray_type, scene_epsilon ); 

 

  PerRayData_radiance prd; 

  prd.importance = 1.f; 

  prd.depth = 0; 

 

  rtTrace(top_object, ray, prd); 

 

  output_buffer[launch_index] = make_color( prd.result ); 

} 
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With all these programs in place, we can run the tutorial program and produce the 
image shown above.  Each of these programs will be executed by OptiX millions of 
times per second to produce an interactive image.  Now we will build on these 
basics to render a more realistic and complex image. 

rtDeclareVariable(float3, bad_color, , ); 

 

RT_PROGRAM void exception() 

{ 

  output_buffer[launch_index] = make_color( bad_color ); 

} 
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1.2. Tutorial 1 - Diffuse Shading 

 

The next step is to add simple shading to the objects in the scene.  To do this, we 
just rewrite the closest hit program to do a lighting calculation at each hit point. 

 

RT_PROGRAM void closest_hit_radiance1() 

{ 

  float3 world_geo_normal = normalize(rtTransformNormal(  

                                      RT_OBJECT_TO_WORLD,  

                                      geometric_normal)); 

  float3 world_shade_normal = normalize(rtTransformNormal(  

                                        RT_OBJECT_TO_WORLD, 

                                        shading_normal)); 

  float3 ffnormal = faceforward(world_shade_normal, 

                                -ray.direction,  

                                world_geo_normal); 

  float3 color = Ka * ambient_light_color; 

 

  float3 hit_point = ray.origin + t_hit * ray.direction; 

 

  for(int i = 0; i < lights.size(); ++i) { 

    BasicLight light = lights[i]; 

    float3 L = normalize(light.pos - hit_point); 

    float nDl = dot( ffnormal, L); 

 

    if( nDl > 0 ) 

      color += Kd * nDl * light.color; 

 

  } 

  prd_radiance.result = color; 

} 
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This program has three basic steps: 

First, it computes an accurate normal in world space. To do so, it needs to take both 
the shading normal and the geometric normal, transform them into world space, 
and then use the faceforward function to ensure that the normal is oriented to 
point back toward the origin of the ray.  Most rendering systems distinguish 
between a shading normal and a geometric normal, e.g. for vertex normal 
interpolation or bump-mapped surfaces.  Although this tutorial does not include 
such effects, the shader accounts for them anyway to allow this program to be 
reused immediately in a more complex scene. 

Second, this program computes an ambient color for the surface.  Ambient lighting is 
an approximation to the average total illumination falling on the object.  In this case, 
we use two variables to get these parameters from the host.  The first, Ka, is a 
property of the object and is bound to either a material object or a geometry object 
by the tutorial’s host code.  The other, ambient_light_color, is a global 
property bound to the OptiX context.  Note that the OptiX inheritance mechanism 
is a powerful mechanism for specifying these variables; by attaching them at 
different points in the scene hierarchy on the host, they can affect any subset of the 
objects being rendered.  Variable inheritance is not discussed in detail in this tutorial; 
see the OptiX Programming Guide for more details. 

Finally, we loop over each light source in the scene and compute the contribution 
from that light.  In this example, each light source is described in a user-declared 
structure called BasicLight, and the set of lights is stored in a one-dimensional 
input buffer called lights. The host code will allocate and populate the lights 
buffer before launching the raytracer. 

 

In the lighting loop, we use a simple Lambertian shading model based on the cosine 
of the angle between the surface normal and the direction to the light source.  The 
surface color is specified in another host-initialized variable, Kd.  Subsequent 
tutorials will procedurally compute this color to simulate more complex visual 
appearance. 

struct BasicLight 

{ 

  float3 pos; 

  float3 color; 

  int    casts_shadow; 

}; 

rtBuffer<BasicLight> lights; 
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1.3. Tutorial 2 - Phong Highlight 

 

One simple modification to the basic Lambertian shading model is to add a Phong 
highlight: a bright highlight that can be seen on many real-world plastic or metallic 
objects.  We use Jim Blinn’s approach that computes the halfway vector: the vector 
that lies halfway between L and the negated ray direction.  The cosine of the angle 
between the halfway vector H and the normal vector N is raised to a user-specified 
power phong_exp, which controls the sharpness of the highlight.  In this example, 
we use the built-in function pow(x,y), which computes xy.  This function 
leverages special purpose hardware in the GPU to perform this computation 
efficiently. 

The code below shows the small modification that must be made to the diffuse 
shader from the previous tutorial. 

 

... 

if( nDl > 0 ){ 

  float3 Lc = light.color; 

  color += Kd * nDl * Lc; 

 

  float3 H = normalize(L - ray.direction); 

  float nDh = dot( ffnormal, H ); 

  if(nDh > 0) 

    color += Ks * Lc * pow(nDh, phong_exp); 

 

} 

... 
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1.4. Tutorial 3 - Shadows 

 

So far, we have not made any image that could not be easily created using OpenGL.  
However, one of the powerful features of ray tracing is that we can add complex 
lighting effects (e.g., shadows and reflections) with very little effort.  To modify the 
previous tutorial to support shadows, we add a few lines of code to trace another 
ray.  In this case, the new ray (called a shadow ray) will start on the surface at the 
shading point, and point towards the light source. 

 

... 

if( nDl > 0.0f ){ 

  // cast shadow ray 

  PerRayData_shadow shadow_prd; 

  shadow_prd.attenuation = 1.0f; 

  float Ldist = length(light.pos - hit_point); 

  optix::Ray shadow_ray(hit_point, L, shadow_ray_type,   

                        scene_epsilon, Ldist ); 

  rtTrace(top_shadower, shadow_ray, shadow_prd); 

  float light_attenuation = shadow_prd.attenuation; 

 

  if( light_attenuation > 0.0f ){ 

    float3 Lc = light.color * light_attenuation; 

    color += Kd * nDl * Lc; 

 

    float3 H = normalize(L - ray.direction); 

    float nDh = dot( ffnormal, H ); 

    if(nDh > 0) 

      color += Ks * Lc * pow(nDh, phong_exp); 

  } 

} 

... 
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This code constructs a new ray just like the pinhole camera.  Notice that the third 
parameter to the ray constructor, shadow_ray_type, is different from the 
corresponding argument in the pinhole camera.  These ray types are just integer 
variables supplied by the host code that allows OptiX to handle different ray types 
separately.  Also note that shadow rays have a different kind of ray payload, 
PerRayData_shadow, than camera rays, because shadow rays do not need to 
carry any data other than occlusion information, represented here as an attenuation 
factor that ranges from 0 to 1. 

We initialize the ray to have an attenuation of 1.0, and invoke rtTrace as in the 
camera code.  Notice that OptiX programs are effectively recursive; this call to 
rtTrace will happen deep inside the camera function’s invocation of rtTrace.   
For now, we will limit ourselves to opaque objects, so shadow rays that hit objects 
will be blocked entirely.   

Shadow rays do not require the closest intersection, since we don’t care what object 
the ray hits.  Therefore, instead of using a closest hit program, we use an any hit 
program for these rays.  Any hit programs are invoked by OptiX at any ray-object 
intersection.  If there are multiple intersections along the ray, the order in which 
they will invoke the any hit program is unspecified. 

 

If a shadow ray intersection is found, we set attenuation in the ray payload to 
zero, indicating that none of the light reaches the object.  In addition, we do not 
need to search for further intersections, so we call rtTerminateRay, which 
returns control immediately to the function that most recently called rtTrace 
(here, the closest hit program shown above). 

The closest hit program will add the contribution of the light source only if the 
shadow feeler was not blocked on the way to the light source.  Furthermore, the 
light’s contribution is multiplied by the resulting attenuation, which will allow us to 
support colored shadows from transparent objects later in this tutorial.  Otherwise, 
this section uses the same Phong shading model from before. 

RT_PROGRAM void any_hit_shadow() 

{ 

  // this material is opaque, so it fully attenuates all  

  // shadow rays 

  prd_shadow.attenuation = 0.0f; 

 

  rtTerminateRay(); 

} 
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1.5. Tutorial 4 - Reflections 

 

Adding a perfect mirror reflection to a ray tracing system is very simple; these types 
of effects are what make ray tracing such a flexible image synthesis method.  In this 
case, we will focus only on the material that is bound to the floor.  Recall that each 
object’s material can be controlled separately by binding a new closest hit program 
to its geometry in the host code. 

To make the floor’s material reflective, we construct a new ray that originates on the 
surface that we are shading and goes in the direction of perfect mirror reflection.  A 
standard ray tracing text can show you how to derive this reflected direction, but 
here we use a built-in OptiX function called reflect to hide these details.  We 
create a new radiance ray (again, note the third parameter to the ray constructor) and 
trace it.  The resulting color is multiplied by a reflectivity parameter (also supplied by 
the host code) and added to the surface color that we computed previously. 

 

Just as with the shadow rays, this function is recursive – computing a color for a 
reflection ray might send other reflection rays, shadow rays, and so forth.  OptiX 

RT_PROGRAM void floor_closest_hit_radiance4() 

{ 

  // Calculate direct lighting using Phong shading, as 

  // shown above 

  ... 

  float3 R = reflect( ray.direction, ffnormal ); 

  optix::Ray refl_ray( hit_point, R, radiance_ray_type, 

                       scene_epsilon ); 

  rtTrace(top_object, refl_ray, refl_prd); 

  color += reflectivity * refl_prd.result; 

 

  prd_radiance.result = color; 

} 

 



 
 

12 Version 2.1 OptiX Quickstart Guide 
 

will use a small function call stack to compute all of those results before returning 
control to this point.  This highlights a potential termination issue that would cause 
OptiX to overflow the call stack (imagine a hall of mirrors where a ray bounces 
around indefinitely), resulting in the invocation of the exception program shown 
above. 

To address this concern, we need to modify the reflection code to stop sending rays 
after a certain number of bounces.  We will use the depth variable in the ray 
payload to track the recursion depth.  If that depth exceeds a user-specified 
threshold, we do not send a reflection ray.  The tutorial example will send up to 100 
bounces, which should be adequate for nearly any scene. 

One more simple modification can improve performance substantially in many 
scenes.  In addition to tracking the depth of the ray, we will track its “importance”.  
Importance tracks how much of the energy in the color will get added to the final 
color.  To track this, we use another variable in the ray payload, initialized to 1.0, 
and multiplying it by the reflectivity at every bounce.  We then add a final condition 
to the reflection code that avoids sending reflections when the estimated 
contribution is too dim.  Another function, luminance, is used to compute a 
brightness value for the color to compute this importance.  

 

RT_PROGRAM void floor_closest_hit_radiance4() 

{ 

  // Calculate direct lighting using Phong shading, as 

  // shown above 

  ... 

  if(prd_radiance.depth < max_depth) { 

    PerRayData_radiance refl_prd; 

    refl_prd.depth = prd_radiance.depth+1; 

    float3 R = reflect( ray.direction, ffnormal ); 

    optix::Ray refl_ray( hit_point, R, 0, scene_epsilon ); 

    rtTrace(top_object, refl_ray, refl_prd); 

    color += reflectivity * refl_prd.result; 

  } 

  prd_radiance.result = color; 

 

} 

 

  prd_radiance.result = color; 

} 
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1.6. Tutorial 5 - Environment Mapping 

 

Now that we have enabled reflections, we can make the scene a lot more interesting 
by adding an environment map to the scene.  In this case, we use a third type of 
declaration:  

 

On the host, this texture is bound to an image read from a file.  Then we modify the 
miss program to compute the latitude and longitude of the ray’s direction and 
lookup the color from an environment map that was created by the host.  

 

Note that we use a high-dynamic range picture for the background, which does not 
require any modification of the miss program but results in a much nicer reflection. 

rtTextureSampler<float4, 2> envmap; 

RT_PROGRAM void envmap_miss() 

{  

  float theta = atan2f( ray.direction.x, ray.direction.z ); 

  float phi   = M_PIf * 0.5f -  acosf( ray.direction.y ); 

  float u     = (theta + M_PIf) * (0.5f * M_1_PIf); 

  float v     = 0.5f * ( 1.0f + sin(phi) ); 

  prd_radiance.result = make_float3( tex2D(envmap, u, v) ); 

} 
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1.7. Tutorial 6 - Fresnel Reflectance 

 

Further richness can be added to the reflections by using an approximation to the 
Fresnel effect, where rays striking a surface at a grazing angle will be more reflective 
than rays that are closer to perpendicular to the surface.  This effect can be seen in 
many real-world materials such as a waxed floor, car paint, and glass. 

We use the built in schlick function to compute this approximation based on the 
angle between the surface normal and the incoming ray direction.   The result is 
then used for both attenuating the importance and for modulating the reflection 
computed with the recursive ray.  Running the tutorial and looking at the floor from 
a grazing angle is a good way to see this effect. 

 

RT_PROGRAM void floor_closest_hit_radiance5() 

{ 

  ... 

  float3 r = schlick(-dot(ffnormal, ray.direction),  

                     reflectivity_n); 

  float importance = prd_radiance.importance*luminance(r); 

 

  if(importance > importance_cutoff && 

     prd_radiance.depth < max_depth) { 

    PerRayData_radiance refl_prd; 

    refl_prd.importance = importance; 

    refl_prd.depth = prd_radiance.depth+1; 

    float3 R = reflect( ray.direction, ffnormal ); 

    optix::Ray refl_ray( hit_point, R, radiance_ray_type, 

                         scene_epsilon ); 

    rtTrace(top_object, refl_ray, refl_prd); 

    color += r * refl_prd.result; 

  } 

  prd_radiance.result = color; 

} 

 



 
   
OptiX Quickstart Guide Version 2.1 15 
 

1.8. Tutorial 7 - Simple Procedural Texture 

 

By this point, hopefully it is clear that OptiX programs can perform arbitrary 
computations. One simple mechanism to add visual detail to an object is to 
modulate the material properties based on some function.  In this section, we use 
modular arithmetic to simulate a simple tile pattern.  The results of this arithmetic 
are used to choose between a tile color and a crack color.  This color is used in place 
of the single user-specified material reflectivity from the previous examples.  

 

 

 

RT_PROGRAM void floor_closest_hit_radiance()  

{  

  ...  

  float3 hit_point = ray.origin + t_hit * ray.direction;  

  float v0 = dot(tile_v0, hit_point);  

  float v1 = dot(tile_v1, hit_point);  

  v0 = v0 - floor(v0);  

  v1 = v1 - floor(v1);  

  float3 local_Kd;  

  if( v0 > crack_width && v1 > crack_width ){  

    local_Kd = Kd;  

  } else {  

    local_Kd = crack_color;  

  }  

  // Shade with calculated Kd  

  ...  

} 
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1.9. Tutorial 8 - Complex Procedural Texture 

 

Procedural textures can simulate complex physical phenomena. In this case, we have 
ported a sophisticated RenderMan shader written by Larry Gritz to OptiX.  This 
shader is fairly complicated, and we will not describe the mathematics here.  The 
interested reader is referred to the RenderMan Repository for the complete source 
by Larry http://renderman.org/RMR/Shaders/LGShaders/LGRustyMetal.sl. 

http://renderman.org/RMR/Shaders/LGShaders/LGRustyMetal.sl
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RT_PROGRAM void box_closest_hit_radiance() 

{ 

  float3 world_geo_normal   = normalize(rtTransformNormal(                 

                                       RT_OBJECT_TO_WORLD,                   

                                       geometric_normal)); 

  float3 world_shade_normal = normalize(rtTransformNormal(  

                                       RT_OBJECT_TO_WORLD, 

                                       shading_normal)); 

  float3 ffnormal = faceforward(world_shade_normal, 

                                -ray.direction, 

                                world_geo_normal ); 

  float3 hit_point = ray.origin + t_hit * ray.direction; 

 

  // Sum several octaves of abs(snoise), i.e. turbulence.     

  // Limit the number of octaves by the estimated change in 

  // PP between adjacent shading samples. 

  float3 PP = txtscale * hit_point; 

  float a = 1.0f; 

  float sum = 0.0f; 

  for(int i = 0; i < MAXOCTAVES; i++ ){ 

    sum += a * fabs(snoise(PP)); 

    PP *= 2; 

    a *= 0.5; 

  } 

 

  // Scale the rust appropriately, modulate it by another 

  // noise computation, then sharpen it by squaring its 

  // value. 

  float rustiness = step (1-rusty, clamp (sum,0.0f,1.0f)); 

  rustiness *= clamp (abs(snoise(PP)), 0.0f, .08f) / 0.08f; 

  rustiness *= rustiness; 

 

  // If we have any rust, calculate the color of the rust,  

  // taking into account the perturbed normal and shading  

  // like matte. 

  float3 Nrust = ffnormal; 

  if(rustiness > 0) { 

    // If it's rusty, also add a high frequency bumpiness  

    //to the normal 

    Nrust = normalize(ffnormal + rustbump * snoise(PP)); 

    Nrust = faceforward (Nrust, -ray.direction,  

                         world_geo_normal); 

  } 

 

  float3 color = mix(metalcolor * metalKa, rustcolor *  

                     rustKa, rustiness) * ambient_light_color; 

 

// code continued on next page 
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  for(int i = 0; i < lights.size(); ++i) { 

    BasicLight light = lights[i]; 

    float3 L = normalize(light.pos - hit_point); 

    float nmDl = dot(ffnormal, L); 

    float nrDl = dot(Nrust, L); 

 

    if( nmDl > 0.0f || nrDl > 0.0f ){ 

      // cast shadow ray 

      PerRayData_shadow shadow_prd; 

      shadow_prd.attenuation = 1.0f; 

      float Ldist = length(light.pos - hit_point); 

      optix::Ray shadow_ray(hit_point, L, 1,  

                            scene_epsilon, Ldist); 

      rtTrace(top_shadower, shadow_ray, shadow_prd); 

      float light_attenuation = shadow_prd.attenuation; 

 

      if( light_attenuation > 0.0f ){ 

        float3 Lc = light.color * light_attenuation; 

        nrDl = max(nrDl * rustiness, 0.0f); 

        color += rustKd * rustcolor * nrDl * Lc; 

 

        float r = nmDl * (1.0f-rustiness); 

        if(nmDl > 0.0f){ 

          float3 H = normalize(L - ray.direction); 

          float nmDh = dot( ffnormal, H ); 

          if(nmDh > 0) 

            color += r * metalKs * Lc * 

                     pow(nmDh, 1.f/metalroughness); 

        } 

      } 

    } 

  } 

 

  float3 r = schlick(-dot(ffnormal, ray.direction),  

                     reflectivity_n * (1-rustiness)); 

  float importance = prd_radiance.importance*luminance(r); 

 

  // reflection ray 

  if(importance > importance_cutoff &&  

     rd_radiance.depth < max_depth) { 

    PerRayData_radiance refl_prd; 

    refl_prd.importance = importance; 

    refl_prd.depth = prd_radiance.depth+1; 

    float3 R = reflect( ray.direction, ffnormal ); 

    optix::Ray refl_ray( hit_point, R, 0, scene_epsilon ); 

    rtTrace(top_object, refl_ray, refl_prd); 

    color += r * refl_prd.result; 

  } 

 

  prd_radiance.result = color; 

} 
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1.10. Tutorial 9 - Procedural Geometry 

 

One powerful feature of OptiX is the ability to add new geometric primitives.  This 
capability can be used to accommodate triangle vertex formats of almost any kind, 
making it easier to directly render models stored in any data structure, but it can also 
be used to add lightweight custom 
primitives.  Here, will use this mechanism 
to add a “convex hull” primitive.  All we 
need to do is to write an intersection program 
that determines if a ray intersects the object 
and if so, where along the ray is the first 
intersection.  This program will be executed 
each time rtTrace is called and the 
acceleration structures determine that the 
ray is nearby the object. 

A convex hull can be defined by a set of 
oriented planes that bound the area of 
interest.  The ray enters the object when it has crossed the last of all of the planes 
that the ray “enters” and exits the object when the ray crosses the first of the planes 
that it “exits”.  To determine whether the ray is entering or exiting each plane, we 
use the sign of the dot product between the plane normal and the ray direction.  The 
loop simply tracks the last plane entered and the first plane exited.  It also retains 
the normal that was associated with each plane as it becomes the new enter or exit 
point. 
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If the entry point (t0) is larger than the exit point (t1), then the ray missed the object 
and this function returns. 

Otherwise, we will report the intersection to the OptiX runtime.  This happens in 
two steps.  First, rtPotentialIntersection determines that an intersection is 
within the valid t  interval for the ray.  If it returns true, the intersection program 
computes any attributes associated with the object, which in this case are the 
shading and geometric normals.  Finally, rtReportIntersection reports to the 
OptiX runtime that the attributes are complete.  The parameter to this function 
specifies the material number that is associated with this intersection.  This can be 
used to implement double-sided shading, materials indexed in a triangle mesh, and 

rtBuffer<float4> planes; 

RT_PROGRAM void chull_intersect(int primIdx) 

{ 

  int n = planes.size(); 

  float t0 = -FLT_MAX; 

  float t1 = FLT_MAX; 

  float3 t0_normal = make_float3(0); 

  float3 t1_normal = make_float3(0); 

  for(int i = 0; i < n && t0 < t1; ++i ) { 

    float4 plane = planes[i]; 

    float3 n = make_float3(plane); 

    float  d = plane.w; 

 

    float denom = dot(n, ray.direction); 

    float t = -(d + dot(n, ray.origin))/denom; 

    if( denom < 0){ 

      // enter 

      if(t > t0){ 

        t0 = t; 

        t0_normal = n; 

      } 

    } else { 

      //exit 

      if(t < t1){ 

        t1 = t; 

        t1_normal = n; 

      } 

    } 

  } 

 

  if(t0 > t1) 

    return; 

  // code continued below 

 



 
   
OptiX Quickstart Guide Version 2.1 21 
 

so forth.  At this point, OptiX will execute the any-hit program associated with this 
object and material, if any.  

 

In addition to the intersection program, we must provide a bounding program that 
computes an axis-aligned bounding box for this primitive.  Since this program only 
produces a single object (as opposed to a triangle mesh, for example), we ignore the 
primIdx parameter.  

 

Computing the bounds of the primitive is performed in the host code for this 
example, so the bounding program just returns the host-provided chull_bbmin 
and chull_bbmax variables.   

The hexagonal shape shown here is comprised of 8 planes (32 floats total), which 
are geometrically equivalent to 20 triangles (12 vertices times 3 floats plus 20 indices 
times 3 integers, or about 3 times as much data); this represents a substantial storage 
savings.  In addition, intersecting a ray with the convex hull will require significantly 
less computation than its triangle equivalent.  The way in which these savings 
translate to overall running time will depend on a number of factors, such as the 
quality of the acceleration structures, or the computational expense of any material 
shaders.  Under the right circumstances, programmable object intersection can be a 
very powerful mechanism for extending the OptiX ray tracing system. 

The glass shader for this step is not shown here but is included in the SDK. 

RT_PROGRAM void chull_bounds (int primIdx, float result[6]) 

{ 

  optix::Aabb* aabb = (optix::Aabb*)result; 

  aabb->m_min = chull_bbmin; 

  aabb->m_max = chull_bbmax; 

} 

 

  // intersection program continued from above 

  if(rtPotentialIntersection( t0 )){ 

    shading_normal = geometric_normal = t0_normal; 

    rtReportIntersection(0); 

  } else if(rtPotentialIntersection( t1 )){ 

    shading_normal = geometric_normal = t1_normal; 

    rtReportIntersection(0); 

  } 

} 
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1.11. Tutorial 10 - Shadowing Transparent 
Objects 

 

To demonstrate the flexibility of the OptiX any hit program, we will modify the 
shadow of the glass obelisk to cast a partial shadow.  Although this is not a 
physically-based simulation of glass, it can be computed very quickly and adds 
substantial perceived realism to the scene.  More complex effects, such as caustics, 
can also be simulated using OptiX, but this is beyond the scope of this tutorial and 
will usually require tracing large numbers of rays. 

 

This program is similar to the opaque any-hit program shown in tutorial 3 but has 
two main differences.  First, it computes the ray’s fractional attenuation based on 
the same Schlick Fresnel approximation that we used for providing a realistic 
reflection.  Second, instead of terminating the ray, we use 
rtIgnoreIntersection to allow the ray to continue.  In this example, the 
glass_any_hit_shadow program will get executed twice for every ray in the 
shadow of the glass block–once when it enters the object and once when it exits. 

RT_PROGRAM void glass_any_hit_shadow() 

{ 

  float3 world_normal = normalize(rtTransformNormal(  

                                  RT_OBJECT_TO_WORLD, 

                                  shading_normal)); 

  float nDi = fabs(dot(world_normal, ray.direction)); 

 

  prd_shadow.attenuation *= 1-fresnel_schlick(nDi, 5, 

                            1-shadow_attenuation, 1); 

 

  rtIgnoreIntersection(); 

} 
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1.12. Tutorial 11 - Environment Map Camera 

 

Our final tutorial demonstrates the flexibility of OptiX (and ray tracing in general) 
by modifying the pinhole camera ray generation program from the very first 
example.  This new camera shoots rays in a spherical distribution, resulting in an 
image that can then be used as an environment map in another program, or even as 
a background image in tutorial step 5. 

This program uses the same U, V, W basis and the eye point from the pinhole 
camera so that the scene can still be manipulated using the mouse controls.  
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RT_PROGRAM void env_camera() 

{ 

  size_t2 screen = output_buffer.size(); 

 

  float2 d = make_float2(launch_index) /  

             make_float2(screen) * 

             make_float2(2.0f * M_PIf , M_PIf) + 

             make_float2(M_PIf, 0); 

  float3 angle = make_float3( cos(d.x) * sin(d.y), 

                             -cos(d.y), 

                              sin(d.x) * sin(d.y)); 

  float3 ray_origin = eye; 

  float3 ray_direction = normalize(angle.x*normalize(U) + 

                                   angle.y*normalize(V) + 

                                   angle.z*normalize(W)); 

 

  optix::Ray ray(ray_origin, ray_direction,  

                 radiance_ray_type, scene_epsilon); 

 

  PerRayData_radiance prd; 

  prd.importance = 1.f; 

  prd.depth = 0; 

 

  rtTrace(top_object, ray, prd); 

 

  output_buffer[launch_index] = make_color( prd.result ); 

} 
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1.13. Next steps 

This tutorial shows only the beginning of what you can accomplish with OptiX.  
Further explorations with the tutorial program are suggested.  Add a sphere 
primitive, or use the one provided with the SDK.  Modify the shadow payloads to 
use a color-valued attenuation instead of a single float and use this to make the glass 
shadow be tinted green.  A sampling mechanism can compute ambient occlusion.  A 
modified set of shading and camera programs can perform brute-force path tracing.  
You can write a program for intersecting a ray with a triangle and import mesh 
objects. 

Examples showing these concepts, plus many more, are included with the OptiX 
SDK.  The SDK also shows how to use random number streams, selector 
programs, texture maps, meshed objects and acceleration structures.  OptiX 2.0 also 
adds interoperability between raytracing buffers and OpenGL or DirectX buffers, 
enabling hybrid rendering techniques or zero-copy use of raytraced images as 
texture maps.  These samples are a valuable source of techniques for building your 
own high performance ray-tracing based software. 
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