

NVIDIA
®
 OptiX

™
 Ray

Tracing Engine

Programming Guide

Version 3.0

11/27/2012

ii Version 3.0 OptiX Programming Guide

Table of Contents

CHAPTER 1. INTRODUCTION ... 1

1.1. OPTIX OVERVIEW ... 1
1.1.1. Motivation.. 2
1.1.2. Programming model .. 2

1.2. RAY TRACING BASICS.. 2
CHAPTER 2. PROGRAMMING MODEL OVERVIEW .. 5

2.1. OBJECT MODEL .. 5
2.2. PROGRAMS ... 6
2.3. VARIABLES .. 6
2.4. EXECUTION MODEL .. 7

CHAPTER 3. HOST API .. 8

3.1. CONTEXT ... 8
3.1.1. Entry Points .. 9
3.1.2. Ray Types ... 9
3.1.3. Global State ...11

3.2. BUFFERS ..14
3.3. TEXTURES ..15
3.4. VARIABLES ...17
3.5. GRAPH NODES ...17

3.5.1. Geometry ...18
3.5.2. Material...19
3.5.3. GeometryInstance ..20
3.5.4. GeometryGroup ..20
3.5.5. Group ..21
3.5.6. Transform...21
3.5.7. Selector ..22

3.6. ACCELERATION STRUCTURES FOR RAY TRACING ..22
3.6.1. Acceleration objects in the Node Graph ..23
3.6.2. Builders and Traversers ..24
3.6.3. Properties...27
3.6.4. Acceleration Structure Builds ..28
3.6.5. Caching Acceleration Data ..29
3.6.6. Shared Acceleration Structures ..30

CHAPTER 4. PROGRAMS ...32

4.1. OPTIX PROGRAM OBJECTS ...32
4.1.1. Managing Program Objects ..32
4.1.2. Communication Through Variables..33
4.1.3. Internally Provided Semantics ..34
4.1.4. Attribute Variables ..34
4.1.5. Program Variable Scoping ..35
4.1.6. Program Variable Transformation ..36

4.2. RAY GENERATION PROGRAMS ..37
4.2.1. Entry Point Indices..38
4.2.2. Launching a Ray Generation Program ..38
4.2.3. Ray Generation Program Function Signature ..39
4.2.4. Example Ray Generation Program ..39

4.3. EXCEPTION PROGRAMS...40
4.3.1. Exception Program Entry Point Association ...40
4.3.2. Exception Types ...40

OptiX Programming Guide Version 3.0 iii

4.3.3. Exception Program Function Signature ..41
4.3.4. Example Exception Program ..41

4.4. CLOSEST HIT PROGRAMS ...42
4.4.1. Closest Hit Program Material Association...42
4.4.2. Closest Hit Program Function Signature ...42
4.4.3. Recursion in a Closest Hit Program ...42
4.4.4. Example Closest Hit Program ...42

4.5. ANY HIT PROGRAMS ..43
4.5.1. Any Hit Program Material Association ...43
4.5.2. Termination in an Any Hit Program ..44
4.5.3. Any Hit Program Function Signature ...44
4.5.4. Example Any Hit Program ...44

4.6. MISS PROGRAMS ...44
4.6.1. Miss Program Function Signature ..44
4.6.2. Example Miss Program ..45

4.7. INTERSECTION AND BOUNDING BOX PROGRAMS ...45
4.7.1. Intersection and Bounding Box Program Function Signatures45
4.7.2. Reporting Intersections ..46
4.7.3. Specifying Bounding Boxes ..46
4.7.4. Example Intersection and Bounding Box Programs ..47

4.8. SELECTOR PROGRAMS ..48
4.8.1. Selector Visit Program Function Signature ...48
4.8.2. Example Visit Program ..48

CHAPTER 5. BUILDING WITH OPTIX ...52

5.1. LIBRARIES ..52
5.2. HEADER FILES ...52
5.3. PTX GENERATION ...53
5.4. SDK BUILD ..54

CHAPTER 6. INTEROPERABILITY WITH OPENGL AND DIRECT3D ..55

6.1. OPENGL INTEROP ...55
6.1.1. Buffer Objects ...55
6.1.2. Textures and Render Buffers ..55

6.2. DIRECT3D INTEROP ...56
6.2.1. Buffer Objects ...56
6.2.2. Textures and Surfaces ...57

CHAPTER 7. OPTIXPP: C++ WRAPPER FOR THE OPTIX C API ..64

7.1. OPTIXPP OBJECTS ..64
7.1.1. Handle Class ...64
7.1.2. Attribute Classes ...65
7.1.3. API Objects ..66
7.1.4. Exceptions ...68

CHAPTER 8. PERFORMANCE GUIDELINES ..69

CHAPTER 9. CAVEATS ...72

APPENDIX A. SUPPORTED INTEROP TEXTURE FORMATS ..73

OptiX Programming Guide Version 3.0 1

Chapter 1.
Introduction

1.1. OptiX Overview

GPUs are best at exploiting very high degrees of parallelism, and ray tracing fits that
requirement perfectly. However, typical ray tracing algorithms can be highly
irregular, which poses serious challenges for anyone trying to exploit the full raw
computational potential of a GPU. The NVIDIA OptiX ray tracing engine and
API address those challenges and provide a framework for harnessing the enormous
computational power of both current- and future-generation graphics hardware to
incorporate ray tracing into interactive applications. By using OptiX together with
NVIDIA’s CUDA™ architecture, interactive ray tracing is finally feasible for
developers without a Ph.D. in computer graphics and a team of ray tracing
engineers.

OptiX is not itself a raytracer. Instead, it is a scalable framework for building ray
tracing based applications. The OptiX engine is composed of two symbiotic parts:
1) a host-based API that defines ray-tracing based data structures, and 2) a CUDA
C-based programming system that can produce new rays, intersect rays with
surfaces, and respond to those intersections. Together, these two pieces provide
low-level support for “raw ray tracing”. This allows user-written applications that
use ray tracing for graphics, collision detection, sound propagation, visibility
determination, etc.

2 Version 3.0 OptiX Programming Guide

1.1.1. Motivation
By abstracting the execution model of a generic ray tracer, OptiX makes it easier to
assemble a ray tracing system, leveraging custom-built algorithms for object
traversal, shader dispatch and memory management. Furthermore, the resulting
system will be able to take advantage of future evolution in GPU hardware and
OptiX SDK releases – similar to the manner that OpenGL and Direct3D provide
an abstraction for the rasterization pipeline.

Wherever possible, the OptiX engine avoids specification of ray tracing behaviors
and instead provides mechanisms to execute user-provided CUDA C code to
implement shading (including recursive rays), camera models, and even color
representations. Consequently, the OptiX engine can be used for Whitted-style ray
tracing, path tracing, collision detection, photon mapping, or any other ray tracing-
based algorithm. It is designed to operate either standalone or in conjunction with
an OpenGL or DirectX application for hybrid ray tracing-rasterization applications.

1.1.2. Programming model
At the core of OptiX is a simple but powerful abstract model of a ray tracer. This
ray tracer employs user-provided programs to control the initiation of rays,
intersection of rays with surfaces, shading with materials, and spawning of new rays.
Rays carry user-specified payloads that describe per-ray variables such as color,
recursion depth, importance, or other attributes. Developers provide these
functions to OptiX in the form of CUDA C-based functions. Because ray tracing is
an inherently recursive algorithm, OptiX allows user programs to recursively spawn
new rays, and the internal execution mechanism manages all the details of a
recursion stack. OptiX also provides flexible dynamic function dispatch and a
sophisticated variable inheritance mechanism so that ray tracing systems can be
written very generically and compactly.

1.2. Ray tracing basics

“Ray tracing” is an overloaded term whose meaning can depend on context.
Sometimes it refers to the computation of the intersection points between a 3D line
and a set of 3D objects such as spheres. Sometimes it refers to a specific algorithm
such as Whitted's method of generating pictures or the oil exploration industry's
algorithm for simulating ground wave propagation. Other times it refers to a family
of algorithms that include Whitted's algorithm along with others such as
distribution ray tracing. OptiX is a ray tracing engine in the first sense of the word:
it allows the user to intersect rays and 3D objects. As such it can be used to build
programs that fit the other use of "ray tracing" such as Whitted's algorithm. In
addition OptiX provides the ability for users to write their own programs to
generate rays and to define behavior for when rays hit objects.

For graphics, ray tracing was originally proposed by Arthur Appel in 1968 for
rendering solid objects. In 1980, Turner Whitted pursued the idea further by
introducing recursion to enable reflective and refractive effects. Subsequent
advances in ray tracing increased accuracy by introducing effects for depth of field,
diffuse inter-reflection, soft shadows, motion blur, and other optical effects.

OptiX Programming Guide Version 3.0 3

Simultaneously, numerous researchers have improved the performance of ray
tracing using new algorithms for indexing the objects in the scene.

Realistic rendering algorithms based on ray tracing have been used to accurately
simulate light transport. Some of these algorithms simulate the propagation of

photons in a virtual environment. Others follow adjoint photons “backward” from
a virtual camera to determine where they originated. Still other algorithms use
bidirectional methods. OptiX operates at a level below such algorithmic decisions,
so can be used to build any of those algorithms.

Ray tracing has often been used for non-graphics applications. In the computer-
aided design community, ray tracing has been used to estimate the volume of
complex parts. This is accomplished by sending a set of parallel rays at the part; the
fraction of rays that hit the part gives the cross-sectional area, and the average
length that those rays are inside the part gives the average depth. Ray tracing has
also often been used to determine proximity (including collision) for complex
moving objects. This is usually done by sending “feeler” rays from the surfaces of
objects to “see” what is nearby. Rays are also commonly used for mouse-based
object selection to determine what object is seen in a pixel, and for projectile-object
collision in games. OptiX can be used for any of those applications.

The common feature in ray tracing algorithms is that they compute the intersection
points of 3D rays (an origin and a propagation direction) and a collection of 3D
surfaces (the “model” or “scene”). In rendering applications, the optical properties
of the point where the ray intersects the model determine what happens to the ray
(e.g., it might be reflected, absorbed or refracted). Other applications might not care
about information other than where the intersection happens, or even if an
intersection occurs at all. This variety of needs means it is desirable for OptiX to
support a variety of ray-scene queries and user-defined behavior when rays intersect
the scene.

One of ray tracing's nice features is that it is easy to support any geometric object
that can be intersected with a 3D line. For example, it is straightforward to support
spheres natively with no tessellation. Another nice feature is that ray tracing's
execution is normally "sub-linear" in the number of objects---doubling the number
of objects in the scene should less than double the running time. This is
accomplished by organizing the objects into an acceleration structure that can
quickly reject whole groups of primitives as not candidates for intersection with any
given ray. For static parts of the scene, this structure can be reused for the life of
the application. For dynamic parts of the scene, OptiX supports rebuilding the
acceleration structure when needed. The structure only queries the bounding box
of any geometric objects it contains, so new types of primitives can be added and
the acceleration structures will continue to work without modification, so long as
the new primitives can provide a bounding box.

For graphics applications, ray tracing has advantages over rasterization. One of
these is that general camera models are easy to support; the user can associate points
on the screen with any direction they want, and there is no requirement that rays
originate at the same point. Another advantage is that important optical effects
such as reflection and refraction can be supported with only a few lines of code
Hard shadows are easy to produce with none of the artifacts typically associated
with shadow maps, and soft shadows are not much harder. Furthermore, ray tracing
can be added to more traditional graphics programs as a pass that produces a
texture, letting the developer leverage the best of both worlds. For example, just the

4 Version 3.0 OptiX Programming Guide

specular reflections could be computed by using points in the depth buffer as ray
origins. There are a number of such “hybrid algorithms” that use both z-buffer and
ray tracing techniques.

For further information on ray tracing in graphics, see the following texts:

 The classic and still relevant book is “An Introduction to Ray Tracing”
(Edited by A. Glassner, Academic Press, 1989).

 A very detailed beginner book is "Ray Tracing from the Ground Up" (K.
Suffern, AK Peters, 2007).

 A concise description of ray tracing is in “Fundamentals of Computer
Graphics” (P. Shirley and S. Marschner, AK Peters, 2009).

 A general discussion of realistic batch rendering algorithms is in "Advanced
Global Illumination" (P. Dutré, P. Bekaert, K. Bala, AK Peters, 2006).

 A great deal of detailed information on ray tracing and algorithms that use
ray tracing is in "Physically Based Rendering" (M. Pharr and G. Humphreys,
Morgan Kaufmann, 2004).

 A detailed description of photon mapping is in “Realistic Image Synthesis
Using Photon Mapping” (H. Jensen, AK Peters, 2001).

 A discussion of using ray tracing interactively for picking and collision
detection, as well as a detailed discussion of shading and ray-primitive
intersection is in "Real-Time Rendering" (T. Akenine-Möller, E. Haines, N.
Hoffman, AK Peters, 2008).

OptiX Programming Guide Version 3.0 5

Chapter 2.
Programming

Model Overview

The OptiX programming model consists of two halves: the host code and the GPU
device programs. This chapter introduces the objects, programs, and variables that
are defined in host code and used on the device.

2.1. Object Model

OptiX is an object-based C API that implements a simple retained mode object
hierarchy. This object-oriented host interface is augmented with programs that
execute on the GPU. The main objects in the system are:

▪ Context – An instance of a running OptiX engine

▪ Program – A CUDA C function, compiled to NVIDIA’s PTX virtual assembly
language

▪ Variable – A name used to pass data from C to OptiX programs

▪ Buffer – A multidimensional array that can be bound to a variable

▪ TextureSampler – One or more buffers bound with an interpolation
mechanism

▪ Geometry – One or more primitives that a ray can be intersected with, such as
triangles or other user-defined types

▪ Material – A set of programs executed when a ray intersects with the closest
primitive or potentially closest primitive.

▪ GeometryInstance – A binding between Geometry and Material objects.

▪ Group – A set of objects arranged in a hierarchy

▪ GeometryGroup – A set of GeometryInstance objects

▪ Transform – A hierarchy node that geometrically transforms rays, so as to
transform the geometric objects

▪ Selector – A programmable hierarchy node that selects which children to
traverse

▪ Acceleration – An acceleration structure object that can be bound to a
hierarchy node

These objects are created, destroyed, modified and bound with the C API and are
further detailed in Chapter 3. The behavior of OptiX can be controlled by
assembling these objects into any number of different configurations.

6 Version 3.0 OptiX Programming Guide

2.2. Programs

The ray tracing pipeline provided by OptiX contains several programmable
components. These programs are invoked on the GPU at specific points during the
execution of a generic ray tracing algorithm. There are eight types of programs:

▪ Ray Generation – The entry point into the ray tracing pipeline, invoked by the
system in parallel for each pixel, sample, or other user-defined work assignment

▪ Exception – Exception handler, invoked for conditions such as stack overflow
and other errors

▪ Closest Hit –Called when a traced ray finds the closest intersection point, such
as for material shading

▪ Any Hit – Called when a traced ray finds a new potentially closest intersection
point, such as for shadow computation

▪ Intersection – Implements a ray-primitive intersection test, invoked during
traversal

▪ Bounding Box – Computes a primitive’s world space bounding box, called
when the system builds a new acceleration structure over the geometry

▪ Miss – Called when a traced ray misses all scene geometry

▪ Visit – Called during traversal of a Selector node to determine the children a
ray will traverse

The input language for these programs is PTX. The OptiX SDK also provides a set
of wrapper classes and headers for use with the NVIDIA C Compiler (nvcc) that
enable the use of CUDA C as a way of generating appropriate PTX.

These programs are further detailed in Chapter 4.

2.3. Variables

OptiX features a flexible and powerful variable system for communicating data to
programs. When an OptiX program references a variable, there is a well-defined set
of scopes that will be queried for a definition of that variable. This enables
dynamic overrides of variable definitions based on which scopes are queried for
definitions.

For example, a closest hit program may reference a variable called color. This
program may then be attached to multiple Material objects, which are, in turn,

attached to GeometryInstance objects. Variables in closest hit programs first

look for definitions directly attached to their Program object, followed by

GeometryInstance, Material and Context objects, in that order. This

enables a default color definition to exist on the Material object but specific
instances using that material to override the default color definition.

See Section 1.1 for more information.

OptiX Programming Guide Version 3.0 7

2.4. Execution Model

Once all of these objects, programs and variables are assembled into a valid context,
ray generation programs may be launched. Launches take dimensionality and size
parameters and invoke the ray generation program a number of times equal to the
specified size.

Once the ray generation program is invoked, a special semantic variable may be
queried to provide a runtime index identifying the ray generation program
invocation. For example, a common use case is to launch a two-dimensional
invocation with a width and height equal to the size, in pixels, of an image to be
rendered.

See Section 4.3.2 for more information on launching ray generation programs from
a context.

8 Version 3.0 OptiX Programming Guide

Chapter 3.Host API

3.1. Context

An OptiX context provides an interface for controlling the setup and subsequent
launch of the ray tracing engine. Contexts are created with the
rtContextCreate function. A context object encapsulates all OptiX resources
-- textures, geometry, user-defined programs, etc. The destruction of a context, via
the rtContextDestroy function, will clean up all of these resources and
invalidate any existing handles to them.

rtContextLaunch{1,2,3}D serves as an entry point to ray engine
computation. The launch function takes an entry point parameter, discussed in
Section 3.1.1, as well as one, two or three grid dimension parameters. The
dimensions establish a logical computation grid. Upon a call to
rtContextLaunch, any necessary preprocessing is performed and then the ray
generation program associated with the provided entry point index is invoked once
per computational grid cell. The launch precomputation includes state validation
and, if necessary, acceleration structure generation and kernel compilation. Output
from the launch is passed back via OptiX buffers, typically but not necessarily of
the same dimensionality as the computation grid.

RTcontext context;

rtContextCreate(&context);

unsigned int entry_point = ...;

unsigned int width = ...;

unsigned int height = ...;

// Set up context state and scene description

...

rtContextLaunch2D(entry_point, width, height);

rtContextDestroy(context);

While multiple contexts can be active at one time, this is usually unnecessary as a
single context object can leverage multiple hardware devices. The devices to be
used can be specified with rtContextSetDevices. By default, the highest
compute capable set of compatible OptiX-capable devices is used. The following
set of rules is currently used to determine device compatibility. These rules could
change in the future. If incompatible devices are selected an error is returned from
rtContextSetDevices.

 All SM 2.0+ devices can be run in multi-GPU configurations with other SM
2.0+ devices.

 All SM 1.2 and 1.3 devices can be run in multi-GPU configuration with other
SM 1.2 and 1.3 devices.

 All SM 1.1 and 1.0 devices can only be run in single-GPU configurations.

OptiX Programming Guide Version 3.0 9

3.1.1. Entry Points
Each context may have multiple computation entry points. A context entry point is
associated with a single ray generation program as well as an exception program.
The total number of entry points for a given context can be set with
rtContextSetEntryPointCount. Each entry point's associated programs

are set and queried by rtContext{Set|Get}RayGenerationProgram

and rtContext{Set|Get}ExceptionProgram. Each entry point must be
assigned a ray generation program before use; however, the exception program is an
optional program that allows users to specify behavior upon various error
conditions. The multiple entry point mechanism allows switching between multiple
rendering algorithms as well as efficient implementation of techniques such as
multi-pass rendering on a single OptiX context.

RTcontext context = ...;

rtContextSetEntryPointCount(context, 2);

RTprogram pinhole_camera = ...;

RTprogram thin_lens_camera = ...;

RTprogram exception = ...;

rtContextSetRayGenerationProgram(context, 0,

 pinhole_camera);

rtContextSetRayGenerationProgram(context, 1,

 thin_lens_camera);

rtContextSetExceptionProgram(context, 0, exception);

rtContextSetExceptionProgram(context, 1, exception);

3.1.2. Ray Types
OptiX supports the notion of ray types, which is useful to distinguish between rays
that are traced for different purposes. For example, a renderer might distinguish
between rays used to compute color values and rays used exclusively for determining
visibility of light sources (shadow rays). Proper separation of such conceptually
different ray types not only increases program modularity, but also enables OptiX to
operate more efficiently.

Both the number of different ray types as well as their behavior is entirely defined
by the client application. The number of ray types to be used is set with
rtContextSetRayTypeCount().

The following properties may differ among ray types:

▪ The ray payload

▪ The closest hit program of each individual material

▪ The any hit program of each individual material

▪ The miss program

The ray payload is an arbitrary user-defined data structure associated with each ray.
This is commonly used, for example, to store a result color, the ray’s recursion
depth, a shadow attenuation factor, and so on. It can be regarded as the result a ray
delivers after having been traced, but it can also be used to store and propagate data
between ray generations during recursive ray tracing.

10 Version 3.0 OptiX Programming Guide

The closest hit and any hit programs assigned to materials correspond roughly to
shaders in conventional rendering systems: they are invoked when an intersection
between a ray and a geometric primitive is found. Since those programs are
assigned to materials per ray type, not all ray types must define behavior for both
program types. See Sections 4.5 and 4.6 for a more detailed discussion of material
programs.

The miss program is executed when a traced ray is determined to not hit any
geometry. A miss program could, for example, return a constant sky color or
sample from an environment map.

As an example of how to make use of ray types, a Whitted-style recursive ray tracer
might define the ray types listed in Table 1:

Ray Type

Purpose

Payload Closest Hit Any Hit Miss

Radiance RadiancePL Compute color,
keep track of
recursion depth

n/a Environment
map lookup

Shadow ShadowPL n/a Compute
shadow
attenuation
and terminate
ray if opaque

n/a

Table 1 Example Ray Types

The ray payload data structures in the above example might look as follows:

// Payload for ray type 0: radiance rays

struct RadiancePL

{

 float3 color;

 int recursion_depth;

};

// Payload for ray type 1: shadow rays

struct ShadowPL

{

 float attenuation;

};

Upon a call to rtContextLaunch(), the ray generation program traces

radiance rays into the scene, and writes the delivered results (found in the color
field of the payload) into an output buffer for display:

RadiancePL payload;

payload.color = make_float3(0.f, 0.f, 0.f);

OptiX Programming Guide Version 3.0 11

payload.recursion_depth = 0; // initialize recursion

depth

Ray ray = ... // some camera code creates the ray

ray.ray_type = 0; // make this a radiance ray

rtTrace(top_object, ray, payload);

// Write result to output buffer

writeOutput(payload.color);

A primitive intersected by a radiance ray would execute a closest hit program which
computes the ray’s color and potentially traces shadow rays and reflection rays. The
shadow ray part is shown in the following code snippet:

ShadowPL shadow_payload;

shadow_payload.attenuation = 1.0f; // initialize to

visible

Ray shadow_ray = ... // create a ray to light

source

shadow_ray.ray_type = 1; // make this a shadow ray

rtTrace(top_object, shadow_ray, shadow_payload);

// Attenuate incoming light (‘light’ is some user-

defined

// variable describing the light source)

float3 rad = light.radiance *

shadow_payload.attenuation;

// Add the contribution to the current radiance ray’s

// payload (assumed to be declared as ‘payload’)

payload.color += rad;

To properly attenuate shadow rays, all materials use an any hit program which
adjusts the attenuation and terminates ray traversal. The following code sets the
attenuation to zero, assuming an opaque material:

shadow_payload.attenuation = 0; // assume opaque

material

rtTerminateRay(); // it won’t get any darker, so

terminate

3.1.3. Global State
Aside from ray type and entry point counts, there are several other global settings
encapsulated within OptiX contexts.

Each context holds a number of attributes that can be queried and set using
rtContext{Get|Set}Attribute. For example, the amount of memory an
OptiX context has allocated on the host can be queried by specifying

RT_CONTEXT_ATTRIBUTE_USED_HOST_MEMORY as attribute parameter.

12 Version 3.0 OptiX Programming Guide

RTcontext context = ...;

RTsize used_host_memory;

rtContextGetAttribute(context,

RT_CONTEXT_ATTRIBUTE_USED_HOST_MEMORY, sizeof(RTsize),

&used_host_memory);

Currently, rtContextGetAttribute supports the following attributes:

RT_CONTEXT_ATTRIBUTE_MAX_TEXTURE_COUNT,

RT_CONTEXT_CPU_NUM_THREADS,

RT_CONTEXT_USED_HOST_MEMORY,
RT_CONTEXT_AVAILABLE_DEVICE_MEMORY,

RT_CONTEXT_ATTRIBUTE_GPU_PAGING_FORCED_OFF,

RT_CONTEXT_ATTRIBUTE_GPU_PAGING_ACTIVE.

rtContextSetAttribute allows for setting the number of CPU threads used
for various tasks such as acceleration structure builds via
RT_CONTEXT_CPU_NUM_THREADS and allows disabling large memory paging

via RT_CONTEXT_ATTRIBUTE_GPU_PAGING_FORCED_OFF. All other
attributes are read-only.

To support recursion, OptiX uses a small stack of memory associated with each
thread of execution. rtContext{Get|Set}StackSize allows for setting
and querying the size of this stack. The stack size should be set with care as
unnecessarily large stacks will result in performance degradation while overly small
stacks will cause overflows within the ray engine. Stack overflow errors can be
handled with user defined exception programs.

The rtContextSetPrint* functions are used to enable C-style printf
printing from within OptiX programs, allowing these programs to be more easily
debugged. The CUDA C function rtContextSetPrintEnabled turns on

or off printing globally while rtContextSetPrintLaunchIndex toggles
printing for individual computation grid cells. Print statements have no adverse
effect on performance while printing is globally disabled, which is the default
behavior.

Print requests are buffered in an internal buffer, the size of which can be specified
with rtContextSetPrintBufferSize. Overflow of this buffer will cause
truncation of the output stream. The output stream is printed to the standard
output after all computation has completed but before rtContextLaunch has
returned.

RTcontext context = ...;

rtContextSetPrintEnabled(context, 1);

rtContextSetPrintBufferSize(context, 4096);

Within an OptiX program, the rtPrintf function works similarly to C's

printf. Each invocation of rtPrintf will be atomically deposited into the
print output buffer, but separate invocations by the same thread or by different
threads will be interleaved arbitrarily.

rtDeclareVariable(uint2, launch_index, rtLaunchIndex,

);

RT_PROGRAM void any_hit()

{

 rtPrintf("Hello from index %u, %u!\n",

OptiX Programming Guide Version 3.0 13

 launch_index.x, launch_index.y);

}

The context also serves as the outermost scope for OptiX variables. Variables
declared via rtContextDeclareVariable are available to all OptiX objects
associated with the given context. To avoid name conflicts, existing variables may
be queried with either rtContextQueryVariable (by name) or

rtContextGetVariable (by index), and removed with

rtContextRemoveVariable.

rtContextValidate can be used at any point in the setup process to check
the state validity of a context and all of its associated OptiX objects. This will
include checks for the presence of necessary programs (e.g., an intersection
program for a geometry node), invalid internal state such as unspecified children in
graph nodes and the presence of variables referred to by all specified programs.
Validation is always implicitly performed upon a context launch.

rtContextCompile can be used to explicitly request a compilation of the
computation kernel associated with a context object. Use of
rtContextCompile is not strictly necessary since any changes to a context's
scene specification or programs will cause a compilation upon the next invocation
of rtContextLaunch. rtContextCompile does allow the user to control
the timing of the compilation, but the context should normally be finalized before
compilation because any subsequent changes will cause a recompile within
rtContextLaunch.

rtContextSetTimeoutCallback specifies a callback function of type

RTtimeoutcallback that is called at a specified maximum frequency from
OptiX API calls that can run long, such as acceleration structure builds,
compilation, and kernel launches. This allows the application to update its interface
or perform other tasks. The callback function may also ask OptiX to cease its
current work and return control to the application. This request is complied with as
soon as possible. Output buffers expected to be written to by an
rtContextLaunch are left in an undefined state, but otherwise OptiX tracks
what tasks still need to be performed and resumes cleanly in subsequent API calls.

// Return 1 to ask for abort, 0 to continue.

// An RTtimeoutcallback.

int CBFunc()

{

 update_gui();

 return bored_yet();

}

…

// Call CBFunc at most once every 100 ms.

rtContextSetTimeoutCallback(context, CBFunc, 0.1);

rtContextGetErrorString can be used to get a description of any failures
occurring during context state setup, validation or launch execution.

14 Version 3.0 OptiX Programming Guide

3.2. Buffers

OptiX uses buffers to pass data between the host and the device. Buffers are
created by the host prior to invocation of rtContextLaunch using the

rtBufferCreate function. This function also sets the buffer type as well as
optional flags. The type and flags are specified as a bitwise OR combination.

The buffer type determines the direction of data flow between host and device. Its
options are enumerated by RTbuffertype:

 RT_BUFFER_INPUT - Only the host may write to the buffer. Data is
transferred from host to device and device access is restricted to be read-only.

 RT_BUFFER_OUTPUT - The converse of RT_BUFFER_INPUT. Only the
device may write to the buffer. Data is transferred from device to host.

 RT_BUFFER_INPUT_OUTPUT - Allows read-write access from both the host
and the device.

Buffer flags specify certain buffer characteristics and are enumerated by
RTbufferflags:

 RT_BUFFER_GPU_LOCAL - Can only be used in combination with

RT_BUFFER_INPUT_OUTPUT. This restricts the host to write operations
as the buffer is not copied back from the device to the host. The device is
allowed read-write access. However, writes from multiple devices are not
coherent, as a separate copy of the buffer resides on each device.

Before using a buffer, its size, dimensionality and element format must be specified.
The format can be set and queried with rtBuffer{Get|Set}Format and

format options are enumerated by the RTformat type. Formats exist for C and

CUDA C data types such as unsigned int and float3. Buffers of arbitrary

elements can be created by choosing the format RT_FORMAT_USER and

specifying an element size with the rtBufferSetElementSize function. The

size of the buffer is set with rtBufferSetSize{1,2,3}D which also
specifies the dimensionality implicitly.

RTcontext context = ...;

RTbuffer buffer;

typedef struct { float r; float g; float b; } rgb;

rtBufferCreate(context, RT_BUFFER_INPUT_OUTPUT,

&buffer);

rtBufferSetFormat(RT_FORMAT_USER);

rtBufferSetElementSize(sizeof(rgb));

rtBufferSetSize2D(buffer, 512, 512);

Host access to the data stored within a buffer is performed with the
rtBufferMap function. This function returns a pointer to a one dimensional
array representation of the buffer data. All buffers must be unmapped via
rtBufferUnmap before context validation will succeed.

// Using the buffer created above

unsigned int width, height;

rtBufferGetSize2D(buffer, &width, &height);

void* data;

rtBufferMap(buffer, &data);

OptiX Programming Guide Version 3.0 15

rgb* rgb_data = (rgb*)data;

for(unsigned int i = 0; i < width*height; ++I) {

 rgb_data[i].r = rgb_data[i].g = rgb_data[i].b =

0.0f;

}

rtBufferUnmap(buffer);

Access to buffers within OptiX programs uses a simple array syntax. The two
“template” arguments in the declaration below are the element type and the
dimensionality, respectively.

rtBuffer<rgb, 2> buffer;

...

uint2 index = ...;

float r = buffer[index].r;

3.3. Textures

OptiX textures provide support for common texture mapping functionality
including texture filtering, various wrap modes, and texture sampling.
rtTextureSamplerCreate is used to create texture objects. Each texture
object is associated with one or more buffers containing the texture data. The
buffers may be 1D, 2D or 3D and can be set with
rtTextureSamplerSetBuffer.

rtTextureSamplerSetFilteringModes can be used to set the filtering
methods for minification, magnification and mipmapping. Wrapping for texture
coordinates outside of [0, 1] can be specified per-dimension with
rtTextureSamplerSetWrapMode. The maximum anisotropy for a given

texture can be set with rtTextureSamplerSetMaxAnisotropy. A value
greater than 0 will enable anisotropic filtering at the specified value.
rtTextureSamplerSetReadMode can be used to request all texture read
results be automatically converted to normalized float values.

The OptiX API has been designed to allow support for texture arrays and mip-
mapping via the rtTextureSamplerSetArraySize,

rtTextureSamplerSetMipLevelCount and

rtTextureSamplerSetIndexingMode. However, OptiX 2.0 supports
only a single mip level and a single element texture array. Future releases will fully
support these features.

RTcontext context = ...;

RTbuffer tex_buffer = ...; // 2D buffer

RTtexturesampler tex_sampler;

rtTextureSamplerCreate(context, &tex_sampler);

rtTextureSamplerSetWrapMode(tex_sampler, 0,

 RT_WRAP_CLAMP_TO_EDGE);

rtTextureSamplerSetWrapMode(tex_sampler, 1,

 RT_WRAP_CLAMP_TO_EDGE);

rtTextureSamplerSetFilteringModes(tex_sampler,

 RT_FILTER_LINEAR,

 RT_FILTER_LINEAR,

16 Version 3.0 OptiX Programming Guide

 RT_FILTER_NONE);

rtTextureSamplerSetIndexingMode(tex_sampler,

RT_TEXTURE_INDEX_NORMALIZED_COORDINATES);

rtTextureSamplerSetReadMode(tex_sampler,

RT_TEXTURE_READ_NORMALIZED_FLOAT);

rtTextureSamplerSetMaxAnisotropy(tex_sampler, 1.0f);

rtTextureSamplerSetMipLevelCount(tex_sampler, 1);

rtTextureSamplerSetArraySize(tex_sampler, 1);

rtTextureSamplerSetBuffer(tex_sampler, 0, 0,

tex_buffer);

OptiX programs can access texture data with CUDA C's built-in tex1D, tex2D

and tex3D functions.

rtTextureSampler<uchar4, 2,

cudaReadModeNormalizedFloat> t;

...

float2 tex_coord = ...;

float4 value = tex2D(t, tex_coord.x, tex_coord.y);

As of version 3.0, OptiX supports bindless textures. Bindless textures allow OptiX
programs to reference textures without having to bind them to specific variables.
This is accomplished through the use of texture IDs.

Using bindless textures, it is possible to dynamically switch between multiple
textures without the need to explicitly declare all possible textures in a program and
without having to manually implement switching code. The set of textures being
switched on can have varying attributes, such as wrap mode, and varying sizes,
providing increased flexibility over texture arrays.

To obtain a device handle from an existing texture sampler,
rtTextureSamplerGetId can be used:

RTtexturesampler tex_sampler = ...;

int tex_id;

rtTextureSamplerGetId(tex_sampler, &tex_id);

A texture ID value is immutable and is valid until the destruction of its associated
texture sampler. In order to make texture IDs available to OptiX programs, input
buffers or OptiX variables can be used:

RTbuffer tex_id_buffer = ...; // 1D buffer

unsigned int index = ...;

void* tex_id_data;

rtBufferMap(tex_id_buffer, &tex_id_data);

((int*)tex_id_data)[index] = tex_id;

rtBufferUnmap(tex_id_buffer);

OptiX Programming Guide Version 3.0 17

Similar to CUDA C’s texture functions, OptiX programs can access textures in a
bindless way with rtTex1D<>, rtTex2D<>, and rtTex3D<> functions:

rtBuffer<int, 1> tex_id_buffer;

unsigned int index = ...;

int tex_id = tex_id_buffer[index];

float2 tex_coord = ...;

float4 value = rtTex2D<float4>(tex_id, tex_coord.x,

tex_coord.y);

For further discussion of using textures within OptiX programs see Section 4.1.

3.4. Graph Nodes

When a ray is traced from a program using the rtTrace function, a node is given
that specifies the root of the graph. The host application creates this graph by
assembling various types of nodes provided by the OptiX API. The basic structure
of the graph is a hierarchy, with nodes describing geometric objects at the bottom,
and collections of objects at the top.

The graph structure is not meant to be a scene graph in the classical sense. Instead,
it serves as a way of binding different programs or actions to portions of the scene.
Since each invocation of rtTrace specifies a root node, different trees or subtrees
may be used. For example, shadowing objects or reflective objects may use a
different representation – for performance or for artistic effect.

Graph nodes are created via rt*Create calls, which take the Context as a
parameter. Since these graph node objects are owned by the context, rather than by
their parent node in the graph, a call to rt*Destroy will delete that object’s
variables, but not do any reference counting or automatic freeing of its child nodes.

Figure 1 shows an example of what a graph might look like. The following sections
will describe the individual node types.

18 Version 3.0 OptiX Programming Guide

Figure 1 A sample node graph.

3.4.1. Geometry
A geometry node is the fundamental node to describe a geometric object: a
collection of user-defined primitives against which rays can be intersected. The
number of primitives contained in a geometry node is specified using
rtGeometrySetPrimitiveCount.

To define the primitives, an intersection program is assigned to the geometry node

using rtGeometrySetIntersectionProgram. The input parameters to
an intersection program are a primitive index and a ray, and it is the program’s job to
return the intersection between the two. In combination with program variables,
this provides the necessary mechanisms to define any primitive type that can be
intersected against a ray. A common example is a triangle mesh, where the
intersection program reads a triangle’s vertex data out of a buffer (passed to the
program via a variable) and performs a ray-triangle intersection.

In order to build an acceleration structure over arbitrary geometry, it is necessary for
OptiX to query the bounds of individual primitives. For this reason, a separate
bounds program must be provided using
rtGeometrySetBoundingBoxProgram. This program simply computes
bounding boxes of the requested primitives, which are then used by OptiX as the
basis for acceleration structure construction.

Geometry nodes can be fully dynamic, i.e. the number of primitives as well as the
variables on which the intersection and bounding box programs depend can vary
between calls to rtContextLaunch. Whenever this is the case, acceleration
structures containing references to the modified geometry node must be notified,
which is achieved by calling rtGeometryMarkDirty. For more information
on acceleration structure rebuilds, see Section 3.5.

The following example shows how to construct a geometry object describing a
sphere, using a single primitive. The intersection and bounding box program are
assumed to depend on a single parameter variable specifying the sphere radius:

RTgeometry geometry;

OptiX Programming Guide Version 3.0 19

RTvariable variable;

// Set up geometry object.

rtGeometryCreate(context, &geometry);

rtGeometrySetPrimitiveCount(geometry, 1);

rtGeometrySetIntersectionProgram(geometry,

 sphere_intersection

);

rtGeometrySetBoundingBoxProgram(geometry,

 sphere_bounds);

// Declare and set the radius variable.

rtGeometryDeclareVariable(geometry, "radius",

&variable);

rtVariableSet1f(variable, 10.0f);

3.4.2. Material
A material encapsulates the actions that are taken when a ray intersects a primitive
associated with a given material. Examples for such actions include: computing a
reflectance color, tracing additional rays, ignoring an intersection, and terminating a
ray. Arbitrary parameters can be provided to materials by declaring program
variables.

Two types of programs may be assigned to a material, closest hit programs and any
hit programs. The two types differ in when and how often they are executed. The
closest hit program, which is similar to a shader in a classical rendering system, is
executed at most once per ray, for the closest intersection of a ray with the scene. It
typically performs actions that involve texture lookups, reflectance color
computations, light source sampling, recursive ray tracing, and so on, and stores the
results in a ray payload data structure.

The any hit program is executed for each potential closest intersection found during
ray traversal. The intersections for which the program is executed may not be
ordered along the ray, but eventually all intersections of a ray with the scene can be
enumerated if required (by calling rtIgnoreIntersection on each of them).
Typical uses of the any hit program include early termination of shadow rays (using
rtTerminateRay) and binary transparency, e.g., by ignoring intersections based
on a texture lookup.

It is important to note that both types of programs are assigned to materials per ray
type, which means that each material can actually hold more than one closest hit or
any hit program. This is useful if an application can identify that a certain kind of
ray only performs specific actions. For example, a separate ray type may be used for
shadow rays, which are only used to determine binary visibility between two points
in the scene. In this case, a simple any hit program attached to all materials under
that ray type index can immediately terminate such rays, and the closest hit program
can be omitted entirely. This concept allows for highly efficient specialization of
individual ray types.

The closest hit program is assigned to the material by calling
rtMaterialSetClosestHitProgram, and the any hit program is assigned

with rtMaterialSetAnyHitProgram. If a program is omitted, an empty
program is the default.

20 Version 3.0 OptiX Programming Guide

3.4.3. GeometryInstance
A geometry instance represents a coupling of a single geometry node with a set of
materials. The geometry object the instance refers to is specified using
rtGeometryInstanceSetGeometry. The number of materials associated

with the instance is set by rtGeometryInstanceSetMaterialCount, and
the individual materials are assigned with
rtGeometryInstanceSetMaterial. The number of materials that must
be assigned to a geometry instance is determined by the highest material index that
may be reported by an intersection program of the referenced geometry.

Note that multiple geometry instances are allowed to refer to a single geometry
object, enabling instancing of a geometric object with different materials. Likewise,
materials can be reused between different geometry instances.

This example configures a geometry instance so that its first material index is
mat_phong and the second one is mat_diffuse, both of which are assumed

to be rtMaterial objects with appropriate programs assigned. The instance is

made to refer to the rtGeometry object triangle_mesh.

RTgeometryinstance ginst;

rtGeometryInstanceCreate(context, &ginst);

rtGeometryInstanceSetGeometry(ginst, triangle_mesh);

rtGeometryInstanceSetMaterialCount(ginst, 2);

rtGeometryInstanceSetMaterial(ginst, 0, mat_phong);

rtGeometryInstanceSetMaterial(ginst, 1, mat_diffuse

);

3.4.4. GeometryGroup
A geometry group is a container for an arbitrary number of geometry instances.
The number of contained geometry instances is set using
rtGeometryGroupSetChildCount, and the instances are assigned with

rtGeometryGroupSetChild. Each geometry group must also be assigned an

acceleration structure using rtGeometryGroupSetAcceleration (see
Section 3.5).

The minimal sample use case for a geometry group is to assign it a single geometry
instance:

RTgeometrygroup geomgroup;

rtGeometryGroupCreate(context, &geomgroup);

rtGeometryGroupSetChildCount(geomgroup, 1);

rtGeometryGroupSetChild(geomgroup, 0,

geometry_instance);

Multiple geometry groups are allowed to share children, that is, a geometry instance
can be a child of more than one geometry group.

OptiX Programming Guide Version 3.0 21

3.4.5. Group
A group represents a collection of higher level nodes in the graph. They are used to
compile the graph structure which is eventually passed to rtTrace for
intersection with a ray.

A group can contain an arbitrary number of child nodes, which must themselves be

of type rtGroup, rtGeometryGroup, rtTransform, or rtSelector.

The number of children in a group is set by rtGroupSetChildCount, and the

individual children are assigned using rtGroupSetChild. Every group must

also be assigned an acceleration structure via rtGroupSetAcceleration.

A common use case for groups is to collect several geometry groups which
dynamically move relative to each other. The individual position, rotation, and
scaling parameters can be represented by transform nodes, so the only acceleration
structure that needs to be rebuilt between calls to rtContextLaunch is the one
for the top level group. This will usually be much cheaper than updating
acceleration structures for the entire scene.

Note that the children of a group can be shared with other groups, that is, each
child node can also be the child of another group (or of any other graph node for
which it is a valid child). This allows for very flexible and lightweight instancing
scenarios, especially in combination with shared acceleration structures (see Section
3.5).

3.4.6. Transform
A transform node is used to represent a projective transformation of its underlying
scene geometry. The transform must be assigned exactly one child of type
rtGroup, rtGeometryGroup, rtTransform, or rtSelector, using

rtTransformSetChild. That is, the nodes below a transform may simply be
geometry in the form of a geometry group, or a whole new subgraph of the scene.

The transformation itself is specified by passing a 4×4 floating point matrix
(specified as a 16-element one-dimensional array) to rtTransformSetMatrix.
Conceptually, it can be seen as if the matrix were applied to all the underlying
geometry. However, the effect is instead achieved by transforming the rays
themselves during traversal. This means that OptiX does not rebuild any
acceleration structures when the transform changes.

This example shows how a transform object with a simple translation matrix is
created:

RTtransform transform;

const float x=10.0f, y=20.0f, z=30.0f;

// Matrices are row-major.

const float m[16] = { 1, 0, 0, x,

 0, 1, 0, y,

 0, 0, 1, z,

 0, 0, 0, 1 };

rtTransformCreate(context, &transform);

rtTransformSetMatrix(transform, 0, m, 0);

22 Version 3.0 OptiX Programming Guide

Note that the transform child node may be shared with other graph nodes. That is, a
child node of a transform may be a child of another node at the same time. This is
often useful for instancing geometry.

3.4.7. Selector
A selector is similar to a group in that it is a collection of higher level graph nodes.
The number of nodes in the collection is set by rtSelectorSetChildCount,

and the individual children are assigned with rtSelectorSetChild. Valid

child types are rtGroup, rtGeometryGroup, rtTransform, and

rtSelector.

The main difference between selectors and groups is that selectors do not have an
acceleration structure associated with them. Instead, a visit program is specified
with rtSelectorSetVisitProgram. This program is executed every time a
ray encounters the selector node during graph traversal. The program specifies
which children the ray should continue traversal through by calling

rtIntersectChild.

A typical use case for a selector is dynamic (i.e. per-ray) level of detail: an object in
the scene may be represented by a number of geometry nodes, each containing a
different level of detail version of the object. The geometry groups containing
these different representations can be assigned as children of a selector. The visit
program can select which child to intersect using any criterion (e.g. based on the
footprint or length of the current ray), and ignore the others.

As for groups and other graph nodes, child nodes of a selector can be shared with
other graph nodes to allow flexible instancing.

3.5. Acceleration Structures for Ray Tracing

Acceleration structures are an important tool for speeding up the traversal and
intersection queries for ray tracing, especially for large scene databases. Most
successful acceleration structures represent a hierarchical decomposition of the
scene geometry. This hierarchy is then used to quickly cull regions of space not
intersected by the ray.

There are many different types of acceleration structures, each with their own
advantages and drawbacks. Furthermore, different scenes require different kinds of
acceleration structures for optimal performance (e.g., static vs. dynamic scenes,
generic primitives vs. triangles, and so on). The most common tradeoff is
construction speed vs. ray tracing performance, and extreme solutions exist on both
ends of the spectrum. For example, a high quality kd-tree or SBVH builder can
take minutes to construct its acceleration structure. Once finished, though, rays can
be traced more efficiently than with other types of acceleration structures, which in
turn might be much faster to construct.

No single type of acceleration structure is optimal for all scenes. To allow an
application to balance the tradeoffs, OptiX lets you choose between several kinds of
supported structures. You can even mix and match different types of acceleration
structures within the same node graph.

OptiX Programming Guide Version 3.0 23

3.5.1. Acceleration objects in the Node Graph
Acceleration structures are individual API objects in OptiX, called
rtAcceleration. Once an acceleration object is created with

rtAccelerationCreate, it is assigned to either a group (using

rtGroupSetAcceleration) or a geometry group (using

rtGeometryGroupSetAcceleration). Every group and geometry group
in the node graph needs to have an acceleration object assigned for ray traversal to
intersect those nodes.

This example creates a geometry group and an acceleration structure and connects
the two:

RTgeometrygroup geomgroup;

RTacceleration accel;

rtGeometryGroupCreate(context, &geomgroup);

rtAccelerationCreate(context, &accel);

rtGeometryGroupSetAcceleration(geomgroup, accel);

By making use of groups and geometry groups when assembling the node graph,
the application has a high level of control over how acceleration structures are
constructed over the scene geometry. If one considers the case of several geometry
instances in a scene, there are a number of ways they can be placed in groups or
geometry groups to fit the application’s use case.

For example, Figure 2 places all the geometry instances in a single geometry group.
An acceleration structure on a geometry group will be constructed over the
individual primitives defined by the collection of child geometry instances. This will
allow OptiX to build an acceleration structure which is as efficient as if the
geometries of the individual instances had been merged into a single object.

A different approach to managing multiple geometry instances is shown in Figure 3.
Each instance is placed in its own geometry group, i.e. there is a separate
acceleration structure for each instance. The resulting collection of geometry
groups is aggregated in a top level group, which itself has an acceleration structure.
Acceleration structures on groups are constructed over the bounding volumes of
the child nodes. Because the number of child nodes is usually relatively low, high
level structures are typically quick to update. The advantage of this approach is that
when one of the geometry instances is modified, the acceleration structures of the
other instances need not be rebuilt. However, because higher level acceleration
structures introduce an additional level of complexity and are built only on the
coarse bounds of their group’s children, the graph in Figure 3 will likely not be as
efficient to traverse as the one in Figure 2. Again, this is a tradeoff the application
needs to balance, e.g. in this case by considering how frequently individual geometry
instances will be modified.

24 Version 3.0 OptiX Programming Guide

Figure 2 Multiple geometry instances in a geometry group

Figure 3 Multiple geometry instances, each in a separate geometry group

3.5.2. Builders and Traversers
An rtAcceleration consists of a builder and a traverser. The builder is
responsible for collecting input geometry (in most cases, this geometry is the
bounding boxes created by geometry nodes’ bounding box programs) and
computing a data structure that allows a traverser to accelerate a ray-scene
intersection query. Builders and traversers are not application-defined programs.
Instead, the application chooses an appropriate builder and its corresponding
traverser from Table 2:

OptiX Programming Guide Version 3.0 25

Builder / Traverser Description

Sbvh / Bvh or

BvhCompact

The Split-BVH (SBVH) is a high quality bounding volume hierarchy.
While build times and memory footprint are highest, it is usually the
method of choice for static geometry due to its high ray tracing
performance.

Improvements over regular BVHs are especially visible if the geometry
is non-uniform (e.g. triangles of different sizes). This builder can be
used for any type of geometry, but for optimal performance with
triangle geometry, specialized properties should be set (see Table 3)1.

Bvh / Bvh or

BvhCompact2

The Bvh builder constructs a classic bounding volume hierarchy. It
focuses on quality over construction performance and delivers a good
middle ground between the Sbvh and MedianBvh. It also supports

refitting for fast incremental updates (see Table 3).

Bvh is often the best choice for acceleration structures built over
groups.

MedianBvh /

Bvh or

BvhCompact

The MedianBvh builder uses a fast construction scheme to produce a
medium-quality bounding volume hierarchy. It is typically useful for
dynamic and semi-dynamic content, as well as for acceleration
structures on groups.

Lbvh / Bvh or

BvhCompact

The Lbvh builder uses the new HLBVH2 algorithm3 to perform a very
fast GPU-based bounding volume hierarchy build. It is ideal for many
applications including very large or animated scenes where acceleration
construction time dominates run time.

TriangleKdTree

/ KdTree

This builder constructs a high quality kd-tree, which in most cases is
comparable to the SBVH in ray tracing performance. Build times and
memory footprint are usually higher for the kd-tree. This builder is
specialized for triangle geometry and thus needs to be configured using
certain properties (see Table 3).

NoAccel /

NoAccel

This is a dummy builder which does not construct an actual
acceleration structure. Traversal loops over all elements and intersects
each one with the ray. This is very inefficient for anything but very
simple cases, but can sometimes outperform real acceleration
structures, e.g. on a group with very few child nodes.

1 More details on the SBVH can be found in Martin Stich, Heiko Friedrich, Andreas
Dietrich. Spatial Splits in Bounding Volume Hierarchies.
http://www.nvidia.com/object/nvidia_research_pub_012.html

2 The BvhCompact traverser compresses the BVH data by a factor of four before uploading
to the device and uses the compressed data structure in real-time during traversal of a
bounding volume hierarchy. It is typically useful for large datasets to minimize the number
of page misses when virtual memory is turned on.

3More information on the HLBVH2 can be found in Kirill Garanzha, Jacopo Pantaleoni,
David McAllister. Simpler and Faster HLBVH with Work Queues.
http://research.nvidia.com/publication/simpler-and-faster-hlbvh-work-queues

http://www.nvidia.com/object/nvidia_research_pub_012.html
http://research.nvidia.com/publication/simpler-and-faster-hlbvh-work-queues

26 Version 3.0 OptiX Programming Guide

Table 2 Supported builders and traversers

Table 2 shows the builders and traversers currently available in OptiX. A builder is
set using rtAccelerationSetBuilder, and the corresponding traverser,
which must be compatible with the builder, is set with
rtAccelerationSetTraverser. The builder and traverser can be changed
at any time; switching builders will cause an acceleration structure to be flagged for
rebuild.

This example shows a typical initialization of an acceleration object:

RTacceleration accel;

rtAccelerationCreate(context, &accel);

rtAccelerationSetBuilder(accel, "Bvh");

rtAccelerationSetTraverser(accel, "Bvh");

OptiX Programming Guide Version 3.0 27

3.5.3. Properties
Fine-tuning acceleration structure construction can be useful depending on the
situation. For this purpose, builders expose various named properties, which are
listed in Table 3:

Property Available

in Builder

Description

refine Bvh

Lbvh

MedianBvh

The number of BVH refinement
passes to perform in order to
improve BVH quality. Refinement
can be effective when the initial
BVH build was heavily optimized
for build speed (e.g. when using the
Lbvh builder).

The default is “0”.

refit Bvh If set to “1”, the builder will only
readjust the node bounds of the
bounding volume hierarchy instead
of constructing it from scratch.
Refit is only effective if there is an
initial BVH already in place, and
the underlying geometry has
undergone relatively modest
deformation. In this case, the
builder delivers a very fast BVH
update without sacrificing too
much ray tracing performance.

The default is “0”.

vertex_buffer_name Sbvh

TriangleKdTree

The name of the buffer variable
holding triangle vertex data. Each
vertex consists of 3 floats.
Mandatory for

TriangleKdTree, optional for

Sbvh (but recommended if the
geometry consists of triangles).

The default is “vertex_buffer”.

vertex_buffer_stride Sbvh

TriangleKdTree

The offset between two vertices in
the vertex buffer, given in bytes.

The default value is “0”, which
assumes the vertices are tightly
packed.

28 Version 3.0 OptiX Programming Guide

Property Available

in Builder

Description

index_buffer_name Sbvh

TriangleKdTree

The name of the buffer variable
holding vertex index data. The

entries in this buffer are indices of
type int, where each index refers

to one entry in the vertex buffer. A
sequence of three indices
represents one triangle. If no index
buffer is given, the vertices in the
vertex buffer are assumed to be a
list of triangles, i.e. every 3 vertices
in a row form a triangle.

The default is “index_buffer”.

index_buffer_stride Sbvh

TriangleKdTree

The offset between two indices in
the index buffer, given in bytes.

The default value is “0”, which
assumes the indices are tightly
packed.

Table 3 Acceleration structure properties

Properties are specified using rtAccelerationSetProperty. Their values
are given as strings, which are parsed by OptiX. Properties take effect only when an
acceleration structure is actually rebuilt. Setting or changing the property does not
itself mark the acceleration structure for rebuild; see the next section for details on
how to do that. Properties not recognized by a builder will be silently ignored.

// Enable fast refitting on a BVH acceleration.

rtAccelerationSetProperty(accel, "refit", "1");

3.5.4. Acceleration Structure Builds
In OptiX, acceleration structures are flagged (marked “dirty”) when they need to be
rebuilt. During rtContextLaunch, all flagged acceleration structures are built

before ray tracing begins. Every newly created rtAcceleration object is
initially flagged for construction.

An application can decide at any time to explicitly mark an acceleration structure for
rebuild. For example, if the underlying geometry of a geometry group changes, the
acceleration structure attached to the geometry group must be recreated. This is
achieved by calling rtAccelerationMarkDirty. This is also required if, for
example, new child geometry instances are added to the geometry group, or if
children are removed from it.

The same is true for acceleration structures on groups: adding or removing children,
changing transforms below the group, etc., are operations which require the group’s
acceleration to be marked as dirty. As a rule of thumb, every operation that causes a
modification to the underlying geometry over which the structure is built (in the
case of a group, that geometry is the children’s axis-aligned bounding boxes)
requires a rebuild. However, no rebuild is required if, for example, some parts of

OptiX Programming Guide Version 3.0 29

the graph change further down the tree, without affecting the bounding boxes of
the immediate children of the group.

Note that the application decides independently for each single acceleration
structure in the graph whether a rebuild is necessary. OptiX will not attempt to
automatically detect changes, and marking one acceleration structure as dirty will not
propagate the dirty flag to any other acceleration structures. Failure to mark
acceleration structures as dirty when necessary may result in unexpected behavior –
usually missing intersections or performance degradation.

3.5.5. Caching Acceleration Data
Depending on the choice of builder and the complexity of the underlying data,
acceleration structure construction can be slow. OptiX provides a way to extract
data from already-built acceleration structures, which allows the application to store
that data for later reuse.

Acceleration data can be queried from an acceleration object using

rtAccelerationGetData and can be restored using

rtAccelerationSetData. The following sample shows how to request data
from an acceleration structure:

RTsize size;

void* data;

rtAccelerationGetDataSize(accel, &size);

data = malloc(size);

rtAccelerationGetData(accel, data);

Note that data can only be extracted from an acceleration structure that is currently
not flagged dirty (i.e. construction must have occurred), which guarantees that the
data is valid. Therefore, it can be useful to force an acceleration structure build
without actually performing any ray tracing. This can be done by calling
rtContextLaunch with all dimension arguments set to zero:

rtContextLaunch1D(context, 0, 0);

The data returned by rtAccelerationGetData will include information such
as the used builder, traverser, and properties. Upon a successful call to
rtAccelerationSetData, all these data points will be restored and the
acceleration structure will be flagged as non-dirty, as if a regular construction had
been performed. This means, for example, that the current builder set in an
acceleration object may change due to a call to rtAccelerationSetData.

Note, however, that it is only the information required to reconstruct the
acceleration structure that is included in the returned data. In particular, actual
geometry data and graph information of a group or geometry group are not
included. The application should ensure that the restored acceleration structure
matches the underlying geometry or the ensuing behavior is undefined.

It is also important to note that a well-written application should always be prepared
for rtAccelerationSetData to fail. Among the reasons for failure of this
call can be internal format changes from one version of OptiX to another, or
incompatibilities between different platforms. It is usually straightforward to
implement a correct handling of this case by simply marking the acceleration

30 Version 3.0 OptiX Programming Guide

structure dirty if the call fails, which will cause the acceleration structure to be built
on the fly instead of being reconstructed from cached data:

if(rtAccelerationSetData(accel,data,size) !=

RT_SUCCESS)

{

 rtAccelerationMarkDirty(accel);

}

3.5.6. Shared Acceleration Structures
Mechanisms such as a graph node being attached as a child to multiple other graph
nodes make composing the node graph flexible, and enable interesting instancing
applications. Instancing can be seen as inexpensive reuse of scene objects or parts
of the graph by referencing nodes multiple times instead of duplicating them.

OptiX decouples acceleration structures as separate objects from other graph nodes.
Hence, acceleration structures can naturally be shared between several groups or
geometry groups, as long as the underlying geometry on which the structure is built
is the same:

// Attach one acceleration to multiple groups.

rtGroupSetAcceleration(group1, accel);

rtGroupSetAcceleration(group2, accel);

rtGroupSetAcceleration(group3, accel);

Note that the application must ensure that each node sharing the acceleration
structure has matching underlying geometry. Failure to do so will result in
undefined behavior. Also, acceleration structures cannot be shared between groups
and geometry groups.

The capability of sharing acceleration structures is a powerful concept to maximize
efficiency, as shown in Figure 4. The acceleration node in the center of the figure is
attached to both geometry groups, and both geometry groups reference the same
geometry objects. This reuse of geometry and acceleration structure data minimizes
both memory footprint and acceleration construction time. Additional geometry
groups could be added in the same manner at very little overhead.

OptiX Programming Guide Version 3.0 31

Figure 4 Two geometry groups sharing an acceleration structure and the underlying
geometry objects.

32 Version 3.0 OptiX Programming Guide

Chapter 4.
Programs

This chapter describes the different kinds of OptiX programs, which provide
programmatic control over ray intersection, shading, and other general computation
in OptiX ray tracing kernels. OptiX programs are associated with binding points
serving different semantic roles during a ray tracing computation. Like other
concepts, OptiX abstracts programs through its object model as program objects.

4.1. OptiX Program Objects

The central theme of the OptiX API is programmability. OptiX programs are
written in CUDA C, and specified to the API through a string or file containing
PTX, the parallel thread execution virtual assembly language associated with CUDA.

The nvcc compiler that is distributed with the CUDA SDK is used to create PTX
in conjunction with the OptiX header files.

These PTX files are then bound to Program objects via the host API. Program
objects can be used for any of the OptiX program types discussed later in this
section.

4.1.1. Managing Program Objects
OptiX provides two API entry points for creating Program objects:
rtProgramCreateFromPTXString, and

rtProgramCreateFromPTXFile. The former creates a new Program object
from a string of PTX source code. The latter creates a new Program object from a
file of PTX source on disk:

RTcontext context = ...;

const char *ptx_filename = ...;

const char *program_name = ...;

RTprogram program = ...;

rtProgramCreateFromPTXFile(context, ptx_filename,

 function_name, &program);

In this example, ptx_filename names a file of PTX source on disk, and

function_name names a particular function of interest within that source. If
the program is ill-formed and cannot compile, these entry points return an error
code.

Program objects may be checked for completeness using the

rtProgramValidate function, as the following example demonstrates:

OptiX Programming Guide Version 3.0 33

if(rtProgramValidate(context, program) != RT_SUCCESS

)

{

 printf("Program is not complete.");

}

An error code returned from rtProgramValidate indicates an error condition
due to the program object or any other objects bound to it.

Finally, the rtProgramGetContext function reports the context object

owning the program object, while rtProgramDestroy invalidates the object
and frees all resources related to it.

4.1.2. Communication Through Variables
OptiX program objects communicate with the host program through variables.
Variables are declared in an OptiX program using the rtDeclareVariable
macro:

rtDeclareVariable(float, x, ,);

This declaration creates a variable named x of type float which is available to
both the host program through the OptiX variable object API, and to the device
program code through usual C language semantics. Notice that the last two
arguments are left blank in this example. The commas must still be specified.

Variables declared in this way may be read and written by the host program through
the rtVariableGet* and rtVariableSet* family of functions. When

variables are declared this way, they are implicitly const-qualified from the device
program’s perspective. If communication from the program to the host is
necessary, an rtBuffer should be used instead.

As of OptiX 2.0, variables may be declared inside arbitrarily nested namespaces to
avoid name conflicts. References from the host program to namespace-enclosed
OptiX variables will need to include the full namespace.

Program variables may also be declared with semantics. Declaring a variable with a
semantic binds the variable to a special value which OptiX manages internally over
the lifetime of the ray tracing kernel. For example, declaring a variable with the
rtCurrentRay semantic creates a special read-only program variable that

mirrors the value of the Ray currently being traced through the program flow:

rtDeclareVariable(optix::Ray, ray, rtCurrentRay,);

Variables declared with a built-in semantic exist only during ray tracing kernel
runtime and may not be modified or queried by the host program. Unlike regular
variables, some semantic variables may be modified by the device program.

Declaring a variable with an annotation associates with it a read-only string which, for
example, may be interpreted by the host program as a human-readable description
of the variable. For example:

rtDeclareVariable(float, shininess, , “The shininess

of the sphere”);

34 Version 3.0 OptiX Programming Guide

A variable’s annotation is the fourth argument of rtDeclareVariable,
following the variable’s optional semantic argument. The host program may query a
variable’s annotation with the rtVariableGetAnnotation function.

4.1.3. Internally Provided Semantics
OptiX currently manages four internal semantics for program variable binding.
Table 4 summarizes in which types of program these semantics are available, along
with their access rules from device programs and a brief description of their
meaning.

Table 4 Semantic Variables

4.1.4. Attribute Variables
In addition to the semantics provided by OptiX, variables may also be declared with
user-defined semantics called attributes. Unlike built-in semantics, the value of
variables declared in this way must be managed by the programmer. Attribute
variables provide a mechanism for communicating data between the intersection
program and the shading programs (e.g., surface normal, texture coordinates).

Name rtLaunchIndex rtCurrentRay rtPayload rtIntersectionDistance

Access read only read only read/write read only

Description The unique index
identifying each thread

launched by

rtContextLaunch

{1|2|3}D.

The state of the
current ray.

The state of the
current ray’s
payload of

user-defined
data.

The parametric distance from the
current ray’s origin to the closest
intersection point yet discovered.

Ray
Generation

Yes No No No

Exception Yes No No No

Closest Hit Yes Yes Yes Yes

Any Hit Yes Yes Yes Yes

Miss Yes Yes Yes No

Intersection Yes Yes No Yes

Bounding
Box

No No No No

Visit Yes Yes Yes Yes

OptiX Programming Guide Version 3.0 35

Attribute variables may only be written in an intersection program between calls to
rtPotentialIntersection and rtReportIntersection. Although
OptiX may not find all object intersections in order along the ray, the value of the
attribute variable is guaranteed to reflect the value at the closest intersection at the
time that the closest hit program is invoked. For this reason, programs should use
attribute variables (as opposed to the ray payload) to communicate information
about the local hit point between intersection and shading programs.

The following example declares an attribute variable of type float3 named
normal. The semantic association of the attribute is specified with the user-defined
name normal_vec. This name is arbitrary, and is the link between the variable
declared here and another variable declared in the closest hit program. The two
attribute variables need not have the same name as long as their attribute names
match.

rtDeclareVariable(float3, normal, attribute

normal_vec,);

4.1.5. Program Variable Scoping
OptiX program variables can have their values defined in two ways: static
initializations, and (more typically) by variable declarations attached to API objects.
A variable declared with a static initializer will only use that value if it does not find
a definition attached to an API object. A declaration with static initialization is
written:

rtDeclareVariable(float, x, ,) = 5.0f;

The OptiX variable scoping rules provide a valuable inheritance mechanism that is
designed to create compact representations of material and object parameters. To
enable this, each program type also has an ordered list of scopes through which it
will search for variable definitions in order. For example, a closest hit program that
refers to a variable named color will search the Program, GeometryInstance, Material
and Context API objects for definitions created with the
rt*DeclareVariable() functions, in that order. Similar to scoping rules in a
programming language, variables in one scope will shadow those in another scope.
Table 5 summarizes the scopes that are searched for variable declarations for each
type of program.

Ray Generation Program Context

Exception Program Context

Closest Hit Program GeometryInstance Material Context

Any Hit Program GeometryInstance Material Context

Miss Program Context

Intersection Program GeometryInstance Geometry Context

Bounding Box Program GeometryInstance Geometry Context

Visit Program Node

36 Version 3.0 OptiX Programming Guide

Table 5 Scope search order for each type of program (from left to right)

It is possible for a program to find multiple definitions for a variable in its scopes
depending upon where the program is called. For example, a closest hit program
may be attached to several Material objects and reference a variable named shininess.
We can attach a variable definition to the Material object as well as attach a variable
definition to specific GeometryInstance objects that we create that reference that
Material.

During execution of a specific GeometryInstance’s closest hit program, the value of
shininess depends on whether the particular instance has a definition attached: if the
GeometryInstance defines shininess, then that value will be used. Otherwise, the
value will be taken from the Material object. As you can see from Table 5 above, the
program searches the GeometryInstance scope before the Material scope. Variables
with definitions in multiple scopes are said to be dynamic and may incur a
performance penalty. Dynamic variables are therefore best used sparingly.

4.1.6. Program Variable Transformation
Recall that rays have a projective transformation applied to them upon encountering
Transform nodes during traversal. The transformed ray is said to be in object space,
while the original ray is said to be in world space.

Programs with access to the rtCurrentRay semantic operate in the spaces
summarized in Table 6:

Ray Generation World

Closest Hit World

Any Hit Object

Miss World

Intersection Object

Visit Object

Table 6 Space of rtCurrentRay for Each Program Type

To facilitate transforming variables from one space to another, OptiX’s CUDA C
API provides a set of functions:

__device__ float3 rtTransformPoint(RTtransformkind kind,

 const float3& p)

__device__ float3 rtTransformVector(RTtransformkind kind,

 const float3& v)

__device__ float3 rtTransformNormal(RTtransformkind kind,

 const float3& n)

__device__ void rtGetTransform(RTtransformkind kind,

 float matrix[16])

OptiX Programming Guide Version 3.0 37

The first three functions transform a float3, interpreted as a point, vector, or
normal vector, from object to world space or vice versa depending on the value of a
RTtransformkind flag passed as an argument. rtGetTransform returns
the four-by-four matrix representing the current transformation from object to
world space (or vice versa depending on the RTtransformkind argument). For

best performance, use the rtTransform*() functions rather than performing

your own explicit matrix multiplication with the result of rtGetTransform().

A common use case of variable transformation occurs when interpreting attributes
passed from the intersection program to the closest hit program. Intersection
programs often produce attributes, such as normal vectors, in object space. Should
a closest hit program wish to consume that attribute, it often must transform the
attribute from object space to world space:

float3 n = rtTransformNormal(RT_OBJECT_TO_WORLD, normal);

4.2. Which OptiX calls are supported where?

Not all OptiX function calls are supported in all types of user provided programs.
For example, it doesn’t make sense to spawn a new ray inside an intersection
program, so this behavior is disallowed. A complete table of what device-side
functions are allowed is given below:

 R
a
y
 G

e
n

e
ra

tio
n

E
x
c
e
p

tio
n

C
lo

se
st H

it

A
n

y
 H

it

M
iss

In
te

rse
ctio

n

B
o

u
n

d
in

g
 B

o
x

V
isit

rtTransform* • • • • • •
rtTrace • • •
rtThrow • • • • • • •
rtPrint • • • • • • • •
rtTerminateRay • •
rtIgnoreIntersection •
rtIntersectChild •
rtPotentialIntersection •
rtReportIntersection •

38 Version 3.0 OptiX Programming Guide

4.3. Ray Generation Programs

A ray generation program serves as the first point of entry upon a call to
rtContextLaunch{1|2|3}D. As such, it serves a role analogous to the

main function of a C program. Like C’s main function, any subsequent
computation performed by the kernel, from casting rays to reading and writing from
buffers, is spawned by the ray generation program. However, unlike a serial C
program, an OptiX ray generation program is executed many times in parallel –

once for each thread implied by rtContextLaunch{1|2|3}D’s parameters.

Each thread is assigned a unique rtLaunchIndex. The value of this variable
may be used to distinguish it from its neighbors for the purpose of, e.g., writing to a
unique location in an rtBuffer:

rtBuffer<float, 1> output_buffer;

rtDeclareVariable(unsigned int, index, rtLaunchIndex,

);

...;

float result = ...;

output_buffer[index] = result;

In this case, the result is written to a unique location in the output buffer. In
general, a ray generation program may write to any location in output buffers, as
long as care is taken to avoid race conditions between buffer writes.

4.3.1. Entry Point Indices
To configure a ray tracing kernel launch, the programmer must specify the desired
ray generation program using an entry point index. The total number of entry points
for a context is specified with rtContextSetEntryPointCount:

RTcontext context = ...;

unsigned int num_entry_points = ...;

rtContextSetEntryPointCount(context, num_entry_points

);

OptiX requires that each entry point index created in this manner have a ray
generation program associated with it. A ray generation program may be associated
with multiple indices. Use the rtContextSetRayGenerationProgram
function to associate a ray generation program with an entry point index in the
range [0, num_entry_points):

RTprogram prog = ...;

// index is >= 0 and < num_entry_points

unsigned int index = ...;

rtContextSetRayGenerationProgram(context, index, prog

);

4.3.2. Launching a Ray Generation Program
rtContextLaunch{1|2|3}D takes as a parameter the entry point index of
the ray generation program to launch:

OptiX Programming Guide Version 3.0 39

RTsize width = ...;

rtContextLaunch1D(context, index, width);

If no ray generation program has been associated with the entry point index
specified by rtContextLaunch{1|2|3}D’s parameter, the launch will fail.

4.3.3. Ray Generation Program Function Signature
In CUDA C, ray generation programs return void and take no parameters. Like all
OptiX programs, ray generation programs written in CUDA C must be tagged with
the RT_PROGRAM qualifier. The following snippet shows an example ray
generation program function prototype:

RT_PROGRAM void ray_generation_program(void);

4.3.4. Example Ray Generation Program
The following example ray generation program implements a pinhole camera model
in a rendering application. This example demonstrates that ray generation programs
act as the gateway to all ray tracing computation by initiating traversal through the
rtTrace function, and often store the result of a ray tracing computation to an
output buffer.

Note the variables eye, U, V, and W. Together, these four variables allow the host
API to specify the position and orientation of the camera.

rtBuffer<uchar4, 2> output_buffer;

rtDeclareVariable(uint2, index, rtLaunchIndex,);

rtDeclareVariable(rtObject, top_object, ,);

rtDeclareVariable(float3, eye, ,);

rtDeclareVariable(float3, U, ,);

rtDeclareVariable(float3, V, ,);

rtDeclareVariable(float3, W, ,);

struct Payload

{

 uchar4 result;

};

RT_PROGRAM void pinhole_camera(void)

{

 uint2 screen = output_buffer.size();

 float2 d = make_float2(index) /

 make_float2(screen) * 2.f - 1.f;

 float3 origin = eye;

 float3 direction = normalize(d.x*U + d.y*V + W);

 optix::Ray ray =

 optix::make_Ray(origin, direction, 0,

 0.05f, RT_DEFAULT_MAX);

 Payload payload;

40 Version 3.0 OptiX Programming Guide

 rtTrace(top_object, ray, payload);

 output_buffer[index] = payload.result;

}

4.4. Exception Programs

OptiX ray tracing kernels invoke an exception program when certain types of serious
errors are encountered. Exception programs provide a means of communicating to
the host program that something has gone wrong during a launch. The information
an exception program provides may be useful in avoiding an error state in a future
launch or for debugging during application development.

4.4.1. Exception Program Entry Point Association
An exception program is associated with an entry point using the
rtContextSetExceptionProgram function:

RTcontext context = ...;

RTprogram program = ...;

// index is >= 0 and < num_entry_points

unsigned int index = ...;

rtContextSetExceptionProgram(context, index, program

);

Unlike with ray generation programs, the programmer need not associate an
exception program with an entry point. By default, entry points are associated with
an internally provided exception program that silently ignores errors.

As with ray generation programs, a single exception program may be associated with
many different entry points.

4.4.2. Exception Types
OptiX detects a number of different error conditions that result in exception
programs being invoked. An exception is identified by its code, which is an integer
defined by the OptiX API. For example, the exception code for the stack overflow
exception is RT_EXCEPTION_STACK_OVERFLOW.

The type or code of a caught exception can be queried by calling
rtGetExceptionCode from the exception program. More detailed
information on the exception can be printed to the standard output using
rtPrintExceptionDetails.

In addition to the built in exception types, OptiX provides means to introduce user-
defined exceptions. Exception codes between RT_EXCEPTION_USER (0x400)

and 0xFFFF are reserved for user exceptions. To trigger such an exception,

rtThrow is used:

// Define user-specified exception codes.

#define MY_EXCEPTION_0 RT_EXCEPTION_USER + 0

#define MY_EXCEPTION_1 RT_EXCEPTION_USER + 1

OptiX Programming Guide Version 3.0 41

RT_PROGRAM void some_program()

{

 ...

 // Throw user exceptions from within a program.

 if(condition0)

 rtThrow(MY_EXCEPTION_0);

 if(condition1)

 rtThrow(MY_EXCEPTION_1);

 ...

}

In order to control the runtime overhead involved in checking for error conditions,
individual types of exceptions may be switched on or off using

rtContextSetExceptionEnabled. Disabling exceptions usually results in
faster performance, but is less safe. By default, only
RT_EXCEPTION_STACK_OVERFLOW is enabled. During debugging, it is often
useful to turn on all available exceptions. This can be achieved with a single call:

...

rtContextSetExceptionEnabled(context,

RT_EXCEPTION_ALL, 1);

...

4.4.3. Exception Program Function Signature
In CUDA C, exception programs return void, take no parameters, and use the

RT_PROGRAM qualifier:

RT_PROGRAM void exception_program(void);

4.4.4. Example Exception Program
The following example code demonstrates a simple exception program which
indicates a stack overflow error by outputting a special value to an output buffer
which is otherwise used as a buffer of pixels. In this way, the exception program
indicates the rtLaunchIndex of the failed thread by marking its location in a
buffer of pixels with a known color. Exceptions which are not caused by a stack
overflow are reported by printing their details to the console.

rtDeclareVariable(int, launch_index, rtLaunchIndex,

);

rtDeclareVariable(float3, error, ,) =

make_float3(1,0,0);

rtBuffer<float3, 2> output_buffer;

RT_PROGRAM void exception_program(void)

{

 const unsigned int code = rtGetExceptionCode();

 if(code == RT_EXCEPTION_STACK_OVERFLOW)

 output_buffer[launch_index] = error;

 else

42 Version 3.0 OptiX Programming Guide

 rtPrintExceptionDetails();

}

4.5. Closest Hit Programs

After a call to the rtTrace function, OptiX invokes a closest hit program once it
identifies the nearest primitive intersected along the ray from its origin. Closest hit
programs are useful for performing primitive-dependent processing that should
occur once a ray’s visibility has been established. A closest hit program may
communicate the results of its computation by modifying per-ray data or writing to
an output buffer. It may also recursively call the rtTrace function. For example,
a computer graphics application might implement a surface shading algorithm with
a closest hit program.

4.5.1. Closest Hit Program Material Association
A closest hit program is associated with each (material, ray_type) pair. Each pair’s
default program is a no-op. This is convenient when an OptiX application requires
many types of rays but only a small number of those types require special closest hit
processing.

The programmer may change an association with the
rtMaterialSetClosestHitProgram function:

RTmaterial material = ...;

RTprogram program = ...;

unsigned int type = ...;

rtMaterialSetClosestHitProgram(material, type,

program);

4.5.2. Closest Hit Program Function Signature
In CUDA C, closest hit programs return void, take no parameters, and use the

RT_PROGRAM qualifier:

RT_PROGRAM void closest_hit_program(void);

4.5.3. Recursion in a Closest Hit Program
Though the rtTrace function is available to all programs with access to the

rtLaunchIndex semantic, a common use case of closest hit programs is to
perform recursion by tracing more rays upon identification of the closest surface
intersected by a ray. For example, a computer graphics application might implement
Whitted-style ray tracing by recursive invocation of rtTrace and closest hit
programs. Care must be used to limit the recursion depth to avoid stack overflow.

4.5.4. Example Closest Hit Program
The following code example demonstrates a closest hit program that transforms the
normal vector computed by an intersection program (not shown) from the
intersected primitive’s local coordinate system to a global coordinate system. The

OptiX Programming Guide Version 3.0 43

transformed normal vector is returned to the calling function through a variable
declared with the rtPayload semantic. Note that this program is quite trivial;
normally the transformed normal vector would be used by the closest hit program
to perform some calculation (e.g., lighting). See the OptiX Quickstart Guide for
examples.

rtDeclareVariable(float3, normal, attribute

normal_vec,);

struct Payload

{

 float3 result;

};

rtDeclareVariable(Payload, ray_data, rtPayload,);

RT_PROGRAM void closest_hit_program(void)

{

 float3 norm;

 norm = rtTransformNormal(RT_OBJECT_TO_WORLD, normal

);

 norm = normalize(norm);

 ray_data.result = norm;

}

4.6. Any Hit Programs

Instead of the closest intersected primitive, an application may wish to perform
some computation for any primitive intersection that occurs along a ray cast during

the rtTrace function; this usage model can be implemented using any hit
programs. For example, a rendering application may require some value to be
accumulated along a ray at each surface intersection.

4.6.1. Any Hit Program Material Association
Like closest hit programs, an any hit program is associated with each (material,
ray_type) pair. Each pair’s default association is with an internally-provided any hit
program which implements a no-op.

The rtMaterialSetAnyHitProgram function changes a (material,

ray_type) pair’s association:

RTmaterial material = ...;

RTprogram program = ...;

unsigned int type = ...;

rtMaterialSetAnyHitProgram(material, type, program);

44 Version 3.0 OptiX Programming Guide

4.6.2. Termination in an Any Hit Program
A common OptiX usage pattern is for an any hit program to halt ray traversal upon
discovery of an intersection. The any hit program can do this by calling
rtTerminateRay. This technique can increase performance by eliminating
redundant traversal computations when an application only needs to determine
whether any intersection occurs and identification of the nearest intersection is
irrelevant. For example, a rendering application might use this technique to
implement shadow ray casting, which is often a binary true or false computation.

4.6.3. Any Hit Program Function Signature
In CUDA C, any hit programs return void, take no parameters, and use the

RT_PROGRAM qualifier:

RT_PROGRAM void any_hit_program(void);

4.6.4. Example Any Hit Program
The following code example demonstrates an any hit program that implements early
termination of shadow ray traversal upon intersection. The program also sets the
value of a per-ray payload member, attenuation, to zero to indicate the
material associated with the program is totally opaque.

struct Payload

{

 float attenuation;

};

rtDeclareVariable(Payload, payload, rtPayload,);

RT_PROGRAM void any_hit_program(void)

{

 payload.attenuation = 0.f;

 rtTerminateRay();

}

4.7. Miss Programs

When a ray traced by the rtTrace function intersects no primitive, a miss program

is invoked. Miss programs may access variables declared with the rtPayload
semantic in the same way as closest hit and any hit programs.

4.7.1. Miss Program Function Signature
In CUDA C, miss programs return void, take no parameters, and use the

RT_PROGRAM qualifier:

RT_PROGRAM void miss_program(void);

OptiX Programming Guide Version 3.0 45

4.7.2. Example Miss Program
In a computer graphics application, the miss program may implement an
environment mapping algorithm using a simple gradient, as this example
demonstrates:

rtDeclareVariable(float3, environment_light, ,);

rtDeclareVariable(float3, environment_dark, ,);

rtDeclareVariable(float3, up, ,);

struct Payload

{

 float3 result;

};

rtDeclareVariable(Payload, payload, rtPayload,);

rtDeclareVariable(optix::Ray, ray, rtCurrentRay,);

RT_PROGRAM void miss(void)

{

 float t = max(dot(ray.direction, up), 0.0f);

 payload.result = lerp(environment_light,

 environment_dark, t);

}

4.8. Intersection and Bounding Box Programs

Intersection and bounding box programs represents geometry by implementing ray-
primitive intersection and bounding algorithms. These program types are associated
with and queried from Geometry objects using

rtGeometrySetIntersectionProgram,

rtGeometryGetIntersectionProgram,

rtGeometrySetBoundingBoxProgram, and

rtGeometryGetBoundingBoxProgram.

4.8.1. Intersection and Bounding Box Program Function
Signatures

Like the previously discussed OptiX programs, in CUDA C, intersection and
bounding box programs return void and use the RT_PROGRAM qualifier.
Because Geometry objects are collections of primitives, these functions require a
parameter to specify the index of the primitive of interest to the computation. This
parameter is always in the range [0, N), where N is given by the argument to the

rtGeometrySetPrimitiveCount function.

Additionally, the bounding box program requires an array of floats to store the
result of the bounding box computation, yielding these function signatures:

RT_PROGRAM void intersection_program(int prim_index

);

RT_PROGRAM void bounding_box_program(int prim_index,

46 Version 3.0 OptiX Programming Guide

 float result[6]

);

4.8.2. Reporting Intersections
Ray traversal invokes an intersection program when the current ray encounters one
of a Geometry object’s primitives. It is the responsibility of an intersection
program to compute whether the ray intersects with the primitive, and to report the
parametric t-value of the intersection. Additionally, the intersection program is
responsible for computing and reporting any details of the intersection, such as
surface normal vectors, through attribute variables.

Once the intersection program has determined the t-value of a ray-primitive
intersection, it must report the result by calling a pair of OptiX functions,
rtPotentialIntersection and rtReportIntersection:

__device__ bool rtPotentialIntersection(float tmin)

__device__ bool rtReportIntersection(unsigned int

material)

rtPotentialIntersection takes the intersection’s t-value as an argument.
If the t-value could potentially be the closest intersection of the current traversal
the function narrows the t-interval of the current ray accordingly and returns true.

If the t-value lies outside the t-interval the function returns false, whereupon the
intersection program may trivially return.

If rtPotentialIntersection returns true, the intersection program may

then set any attribute variable values and call rtReportIntersection. This

function takes an unsigned int specifying the index of a material that must be
associated with an any hit and closest hit program. This material index can be used
to support primitives of several different materials flattened into a single Geometry
object. Traversal then immediately invokes the corresponding any hit program.
Should that any hit program invalidate the intersection via the
rtIgnoreIntersection function, then rtReportIntersection will

return false. Otherwise, it will return true.

The values of attribute variables must be modified only between the call to
rtPotentialIntersection and the call to rtReportIntersection.
The result of writing to an attribute variable outside the bounds of these two calls is
undefined. The values of attribute variables written in this way are accessible by any
hit and closest hit programs.

If the any hit program invokes rtIgnoreIntersection, any attributes
computed will be reset to their previous values and the previous t-interval will be
restored.

If no intersection exists between the current ray and the primitive, an intersection
program need only return.

4.8.3. Specifying Bounding Boxes
Acceleration structures use bounding boxes to bound the spatial extent of scene
primitives to accelerate the performance of ray traversal. A bounding box
program’s responsibility is to describe the minimal three dimensional axis-aligned

OptiX Programming Guide Version 3.0 47

bounding box that contains the primitive specified by its first argument and store
the result in its second argument. Bounding boxes are always specified in object
space, so the user should not apply any transformations to them.

For correct results bounding boxes must merely contain the primitive. For best
performance bounding boxes should be as tight as possible.

4.8.4. Example Intersection and Bounding Box Programs
The following code demonstrates how an intersection and bounding box program
combine to describe a simple geometric primitive. The sphere is a simple analytic
shape with a well-known ray intersection algorithm. In the following code example,
the sphere variable encodes the center and radius of a three-dimensional sphere in a
float4:

rtDeclareVariable(float4, sphere, ,);

rtDeclareVariable(optix::Ray, ray, rtCurrentRay,);

rtDeclareVariable(float3, normal, attribute normal);

RT_PROGRAM void intersect_sphere(int prim_index)

{

 float3 center = make_float3(sphere.x, sphere.y,

 sphere.z);

 float radius = sphere.w;

 float3 O = ray.origin - center;

 float b = dot(O, ray.direction);

 float c = dot(O, O) - radius*radius;

 float disc = b*b - c;

 if(disc > 0.0f) {

 float sdisc = sqrtf(disc);

 float root1 = (-b - sdisc);

 bool check_second = true;

 if(rtPotentialIntersection(root1)) {

 shading_normal = geometric_normal =

 (O + root1*D) / radius;

 if(rtReportIntersection(0))

 check_second = false;

 }

 if(check_second) {

 float root2 = (-b + sdisc);

 if(rtPotentialIntersection(root2)) {

 shading_normal = geometric_normal =

 (O + root2*D) / radius;

 rtReportIntersection(0);

 }

 }

 }

}

Note that this intersection program ignores its prim_index argument and passes

a material index of 0 to rtReportIntersection; it represents only the single
primitive of its corresponding Geometry object.

48 Version 3.0 OptiX Programming Guide

The bounding box program for the sphere is very simple:

RT_PROGRAM void bound_sphere(int, float result[6])

{

 float3 cen = make_float3(sphere.x, sphere.y,

sphere.z);

 float3 rad = make_float3(sphere.w, sphere.w,

sphere.w);

 // compute the minimal and maximal corners of

 // the axis-aligned bounding box

 float3 min = cen - rad;

 float3 max = cen + rad;

 // store results in order

 result[0] = min.x;

 result[1] = min.y;

 result[2] = min.z;

 result[3] = max.x;

 result[4] = max.y;

 result[5] = max.z;

}

4.9. Selector Programs

Ray traversal invokes selector visit programs upon encountering a Selector node to
programmatically select which of the node’s children the ray shall visit. A visit
program dispatches the current ray to a particular child by calling the
rtIntersectChild function. The argument to rtIntersectChild

selects the child by specifying its index in the range [0, N), where N is given by

the argument to rtSelectorSetChildCount.

4.9.1. Selector Visit Program Function Signature
In CUDA C, visit programs return void, take no parameters, and use the

RT_PROGRAM qualifier:

RT_PROGRAM void visit_program(void);

4.9.2. Example Visit Program
Visit programs may implement, for example, sophisticated level-of-detail systems or
simple selections based on ray direction. The following code sample demonstrates
an example visit program that selects between two children based on the direction
of the current ray:

rtDeclareVariable(optix::Ray, ray, rtCurrentRay,);

RT_PROGRAM void visit(void)

{

 unsigned int index = (unsigned int)(ray.direction.y

< 0);

 rtIntersectChild(index);

OptiX Programming Guide Version 3.0 49

}

4.10. Callable Programs

It is possible to load an RT_CALLABLE_PROGRAM at runtime and provide OptiX
with a callable handle to it, called a Callable Program Variable. This feature allows
you to easily change the target of a function call at runtime to achieve, for example,
different shading effects in response to user input. Also, if you have a function that
is invoked from many different places in your OptiX node graph, making it an
RT_CALLABLE_PROGRAM can reduce code replication and compile time, and
improve runtime through increased warp utilization.

4.10.1. Defining a Callable Program in CUDA
Defining an RT_CALLABLE_PROGRAM is similar to defining an RT_PROGRAM:

RT_CALLABLE_PROGRAM float3 get_color(

 float3 input_color, float scale)

{

 uint2 tile_size = make_uint2(launch_dim.x / N,

 launch_dim.y / N);

 if (launch_index.x/tile_size.x ^

 launch_index.y/tile_size.y)

 return input_color;

 else

 return input_color * scale;

}

RT_CALLABLE_PROGRAMs can take arguments and return values just like other

functions in CUDA, whereas RT_PROGRAMs must return void.

4.10.2. Declaring a Callable Program Variable in CUDA
To invoke an RT_CALLABLE_PROGRAM from inside another RT_PROGRAM, you

must first declare its handle using the rtCallableProgram macro:

rtCallableProgram(return_type, function_name,

 (argument_list));

 (Note that the third argument must be contained in parentheses).

This macro operates similarly to other rtDeclareVariable macros; once the

program variable is declared, your OptiX program may invoke function_name
as if it were a standard CUDA function. For example:

rtCallableProgram(float3, get_color, (float3, float));

RT_PROGRAM camera()

{

 float3 initial_color, final_color;

 // … trace a ray, get the initial color …

 final_color = get_color(initial_color, 0.5f);

50 Version 3.0 OptiX Programming Guide

 // … write new final color to output buffer …

}

Because the target of the get_color program variable is specified at runtime by

the host, camera does not need to know how its colors are being modified by the

get_color function. In fact, the function could be swapped out between frames
to modify the appearance of the final image.

Callable programs enable much more modular rendering designs for features such as
shade trees, gamma correction, noise functions, sample filtering, etc.

4.10.3. Passing Pointers on SM 1.x Devices
A special procedure is required on GPUs that support the SM1.x computation
model if your callable program needs to accept arguments by reference (i.e., takes
pointer arguments). If you only intend to target SM2.x or newer GPUs, then
nothing special is required. Everything described in this section will work on SM2.x
or newer, so for maximum portability it is advised to use this method.

Only pointers to local memory are supported as parameters to callable
programs; pointers to other memory spaces will not work.

Pointer arguments must be explicitly “pickled” before being passed to a callable
program, and then “unpickled” once inside the callable program. This can be done
using the rtPickleLocalPointer and rtUnpickleLocalPointer
functions, as shown in the example below. Instead of declaring your callable
program to take a pointer argument, it should instead take an argument ot type
rtPickledLocalPointer.

For example, here is a simple callable program that adds one to its argument, as well
as its invocation:

rtCallableProgram(void, pbr, (rtPickledLocalPointer));

RT_CALLABLE_PROGRAM

void plus_one(rtPickledLocalPointer pointer)

{

 int *p = rtUnpickleLocalPointer(pointer);

 *p += 1;

}

RT_PROGRAM

void some_program()

{

 int x = 42;

 rtPickledLocalPointer p = rtPickleLocalPointer(&x);

 pbr(p);

 // local variable ‘x’ should now have value 43

 }

OptiX Programming Guide Version 3.0 51

4.10.4. Loading a Callable Program on the Host
To set up an RT_CALLABLE_PROGRAM in your host code, simply load the PTX

function using rtProgramCreateFromPTXFile, just like you would any

other OptiX program. The resulting RTprogram object can be passed to

rtVariableSetObject in order to bind the program variable to a specific
PTX function. For example:

RTprogram color_program;

RTvariable color_program_variable;

rtProgramCreateFromPTXFile(context, ptx_path,

 “my_color_program”,

 &color_program);

rtProgramDeclareVariable(camera_program, “get_color”,

 &color_program_variable);

rtVariableSetObject(color_program_variable,

 color_program);

This code will load the RT_CALLABLE_PROGRAM my_color_program and

bind it to the program variable get_color (e.g., from the example above).

4.10.5. OptiX Variable Scopes for Program Variables
RT_CALLABLE_PROGRAMs have many of the same privileges that normal

RT_PROGRAMs do. They can have OptiX variables of their own, and they can

invoke OptiX functions such as rtTrace or read or write attribute variables.

In order to determine the lookup scope for any OptiX variable referred to by a
callable program, OptiX considers where the program variable is called from. Specifically,
OptiX will assign a scope lookup chain to your callable program that is compatible
with OptiX programs that invoke it.

For example, if the program variable is invoked from one or more closest hit
programs, that callable program will have the same lookup scope chain as a closest
hit program (i.e., the program itself, the current geometry instance, the current
material, and the context).

Where the callable program is attached to the OptiX node graph determines which
callable program is invoked when called from another optix program. This follows
the same variable lookup method that other rtVariables employ. The only difference
is that you cannot specify a default initializer.

52 Version 3.0 OptiX Programming Guide

Chapter 5.Building with
OptiX

5.1. Libraries

OptiX comes with several header files and two supporting libraries, optix and optixu
in 32- and 64-bit versions. On Windows these libraries are statically linked against
the C runtime libraries and are suitable for use in any version of MS Visual Studio,
though only VS 2008 and 2010 have been tested. In addition, if you wish to
distribute the OptiX libraries with your application, the VS redistributables are not
required by our DLL.

The OptiX libraries are numbered not by release version, but by binary
compatibility. Incrementing this number means that a library will not work in place
of an earlier version (e.g. optix.2.dll will not work when an optix.1.dll is requested).
On Linux, you will find liboptix.so which is a soft link to liboptix.so.1 which is a soft
link to liboptix.so.2.1.0, the actual library. liboptix.so.1 is the binary compatibility
number similar to optix.1.dll. On MacOS X, liboptix.2.1.0.dylib is the actual library,
and you will also find a soft link named liboptix.1.dylib (again, with the 1 indicating
the level of binary compatibility), as well as liboptix.dylib.

5.2. Header Files

There are two principal methods to gain access to the OptiX API. Including
<optix.h> in host and device code will give access strictly to the C API. Using

<optix_world.h> in host and device code will provide access to the C and
C++ API as well as importing additional helper classes, functions, and types into the
optix namespace (including wrappers for CUDA’s vector types such as float3).

Sample5 from the SDK provides two identical implementations using both the C
(<optix.h>) and C++ (<optixpp_namespace.h>) API, respectively.
Understanding this sample should give you a good sense of how the C++ wrappers
work.

The optixu include directory contains several headers that augment the C API.

The namespace versions of the header files (see the list of files below) place all

the classes, functions, and types into the optix namespace. This allows better
integration into systems which would have had conflicts within the global
namespace. Backward compatibility is maintained if you include the old headers. It
is not recommended to mix the old global namespace versions of the headers with
the new optix namespace versions of the headers in the same project. Doing so
can result in linker errors and type confusion.

OptiX Programming Guide Version 3.0 53

 <optix_world.h> – General include file for the C/C++ APIs for host
and device code, plus various helper classes, functions, and types all
wrapped in the optix namespace.

 <optix.h> – General include file for the C API for host and device
code.

 <optixu/optixu_math_namespace.h> – Provides additional
operators for CUDA’s vector types as well as a host of functions such as

fminf, refract, and an ortho normal basis class.

 <optixu/optixupp_namespace.h> – C++ API for OptiX
(backward compatibility with optixu:: namespace is provided in
<optixpp.h>)

 <optixu/optixu_matrix_namespace.h> – Templated multi-
dimensional matrix class with certain operations specialized for specific
dimensions.

 <optixu/optixu_aabb_namespace.h> – Axis-Aligned Bounding
Box class.

 <optixu/optixu_math_stream_namespace.h> – Standard
template library stream operators for CUDA’s vector types.

 <optixu/optixu_vector_types.h> – Wrapper around CUDA’s

<vector_types.h> header that defines the CUDA vector types in the

optix namespace.

 <optixu/optixu_vector_functions.h> – Wrapper around

CUDA’s <vector_functions.h> header that defines CUDA’s vector
functions (e.g. make_float3) into the optix namespace.

5.3. PTX Generation

Programs supplied to the OptiX API must be written in PTX. This PTX could be
generated from any mechanism, but the most common method is to use the CUDA
Toolkit’s nvcc compiler to generate PTX from CUDA C code.

When nvcc is used, make sure the desired device code bitness is targeted by using

the -m32 or -m64 flag. The bitness of all PTX given to the OptiX API must
match, and will determine the bitness of the generated device code. 64-bit PTX may
only be used with 64-bit application binaries. Note that on devices that do not
support 64 bit device pointers, the memory space available to the application will be
limited to 32 bits despite the use of 64 bit PTX.

When using nvcc to generate PTX output specify the -ptx flag. Note that any
host code in the CUDA file will not be present in the generated PTX file. Your
CUDA files should include <optix_world.h> or <optix.h> to gain access
to functions and definitions required by OptiX. In addition, there is
<optixu/optixu_math_namespace.h> that defines many useful
operations for vector types and ray tracing.

<optixu/optixu_math_namespace.h> can be included in both host and

device code. Note that <optix_world.h> includes this file automatically.

54 Version 3.0 OptiX Programming Guide

In order to run nvcc from within Visual Studio while building 64-bit host code, add
“-ccbin $(VCInstallDir)bin” to tell nvcc where to find the 32-bit Visual

Studio compiler. Visual Studio will replace $(VCInstallDir) with the path on
any command executed through its build system.

In order to provide better support for compilation of PTX to different SM targets,
OptiX uses the .target information found in the PTX code to determine
compatibility with the currently utilized hardware. If you wish your code to run a
sm_12 device, compiling the PTX with -arch sm_13 will generate an error even
if no sm_13 features are present in the code. Compiling to sm_12 will run on
sm_12 and higher targets (e.g. sm_13 and sm_20).

5.4. SDK Build

Our SDK samples' build environment is generated by CMake. CMake is a cross
platform tool that generates several types of build systems, such as Visual Studio
projects and makefiles. The SDK comes with three text files describing the
installation procedures on Windows, Macintosh, and Linux, currently named
INSTALL-WIN.txt, INSTALL-MAC.txt and INSTALL-LINUX.txt respectively.
See the appropriate file for your operating system for details on how to compile the
SDK.

OptiX Programming Guide Version 3.0 55

Chapter 6.Interoperability
with OpenGL and

Direct3D

OptiX supports the sharing of data between OpenGL/D3D applications and both

rtBuffers and rtTextureSamplers. This way, OptiX applications can
read data directly from objects such as vertex and pixel buffers, and can also write
arbitrary data for direct consumption by graphics shaders. This sharing is referred
to as interop.

6.1. OpenGL Interop

OptiX supports interop for OpenGL buffer objects, textures, and render buffers.
OpenGL buffer objects can be read and written by OptiX program objects, whereas
textures and render buffers can only be read.

6.1.1. Buffer Objects
OpenGL buffer objects like PBOs and VBOs can be encapsulated for use in OptiX
with rtBufferCreateFromGLBO. The resulting buffer is a reference only to
the OpenGL data; the size of the OptiX buffer as well as the format have to be set

via rtBufferSetSize and rtBufferSetFormat. When the OptiX buffer
is destroyed, the state of the OpenGL buffer object is unaltered. Once an OptiX
buffer is created, the original GL buffer object is immutable, meaning the properties
of the GL object like its size cannot be changed while registered with OptiX.
However, it is still possible to read and write to the GL buffer object using the
appropriate GL functions. If it is necessary to change properties of an object, first
call rtBufferGLUnregister before making changes. After the changes are

made the object has to be registered again with rtBufferGLRegister. This is
necessary to allow OptiX to access the objects data again. Registration and
unregistration calls are expensive and should be avoided if possible.

6.1.2. Textures and Render Buffers
OpenGL texture and render buffer objects must be encapsulated for use in OptiX
with rtTextureSamplerCreateFromGLImage. This call may return with

RT_ERROR_MEMORY_ALLOCATION_FAILED for textures that have a size of
0. Once an OptiX texture sampler is created, the original GL texture is immutable,
meaning the properties of the GL texture like its size cannot be changed while
registered with OptiX. However, it is still possible to read and write to the GL
texture using the appropriate GL functions. If it is necessary to change properties
of a GL texture, first call rtTextureSamplerGLUnregister before making

56 Version 3.0 OptiX Programming Guide

changes. After the changes are made the texture has to be registered again with
rtTextureSamplerGLRegister. This is necessary to allow OptiX to
access the textures data again. Registration and unregistration calls are expensive and
should be avoided if possible.

Currently, only textures with the following GL targets are supported:

 GL_TEXTURE_2D

 GL_TEXTURE_2D_RECT

 GL_TEXTURE_3D

Supported attachment points for render buffers are:

 GL_COLOR_ATTACHMENT<NUM>

Not all OpenGL texture formats are currently supported by OptiX. A table that lists
the supported texture formats can be found in Appendix A.

OptiX detects automatically the size, texture format, and number of mipmap levels
of a texture. rtTextureSamplerSetMipLevelCount,
rtTextureSamplerSetArraySize, and

rtTextureSampler(Set/Get)Buffer cannot be called for OptiX interop

texture samplers and will return RT_ERROR_INVALID_VALUE.

6.2. Direct3D Interop

OptiX also provides interop functionality for D3D9, D3D10, and D3D11 buffer
objects, as well as textures/surfaces on appropriate Windows platforms. D3D buffer
objects can be read and written by OptiX program objects, whereas textures and
surfaces can only be read.

Before any subsequent call can be made to create OptiX interop buffers or texture
samplers, rtContextSetD3D<9/10/11>InteropDevice has to be called
in order to register the device with the OptiX context that performs the D3D
commands. A context can only be bound to a single D3D device. The binding is
immutable throughout the lifetime of a context.

6.2.1. Buffer Objects
Currently OptiX supports the following D3D buffer types:

 IDirect3DIndexBuffer9

 IDirect3DVertexBuffer9

 ID3D10Buffer

 ID3D11Buffer

OptiX buffer objects must be created from existing D3D resources with
rtBufferCreateFromD3D<9/10/11>Resource. These calls may return

with RT_ERROR_MEMORY_ALLOCATION_FAILED for buffers that have a size
of 0. The resulting buffer is a reference only to the D3D data; the size of the OptiX
buffer as well as the format have to be set via rtBufferSetSize and

rtBufferSetFormat. Once an OptiX buffer is created, the original D3D

OptiX Programming Guide Version 3.0 57

buffer object is immutable, meaning properties of the D3D object like its size
cannot be changed while the buffer is registered with OptiX. However, it is still
possible to read and write to the D3D buffer object using the appropriate D3D
functions. If it is necessary to change properties of an object, unregister the buffer

with rtBufferD3D<9/10/11>Unregister. After the changes are made the

object has to be registered again with rtBufferD3D<9/10/11>Register.
This is necessary to allow OptiX to access the objects data again. Registration and
unregistration calls are expensive and should be avoided if possible.

rtBufferGetD3D<9/10/11>Resource can be used to query the bound
D3D resource pointer. The appropriate size and format of the OptiX buffer must
be set with rtBufferSetSize<1/2/3>D and rtBufferSetFormat.

6.2.1.1. D3D Buffer-Creation Flags

In certain situations OptiX requires host-side (CPU) access to interop objects.
Because of this, D3D buffers should be created with the proper flags to allow
OptiX access to the underlying data.

D3D9 buffers require no special flags.

For the current version of OptiX (2.1), CPU access flags are required to be set in
the appropriate D3D buffer description for D3D10 and D3D11, e.g.
D3D11_CPU_ACCESS_READ. A future version of OptiX will remove this
requirement.

6.2.2. Textures and Surfaces
Currently OptiX supports the following D3D texture and surface types:

 IDirect3DSurface9

 IDirect3DTexture9

 IDirect3DVolumeTexture9

 ID3D10Texture<1/2/3>D

 ID3D11Texture<1/2/3>D

Cube maps, texture arrays as well as mipmap levels are not supported. OptiX texture
sampler objects must be created from existing D3D resources with

rtTextureSamplerCreateFromD3D<9/10/11>Resource. These calls

may return with RT_ERROR_MEMORY_ALLOCATION_FAILED for textures that
have a size of 0. Once an OptiX texture sampler is created, the original D3D texture
is immutable, meaning the properties of the D3D texture like its size cannot be
changed while registered with OptiX. However, it is still possible to read and write
to the D3D texture using the appropriate D3D functions. If it is necessary to
change properties of a D3D texture, unregister the texture with
rtTextureSamplerD3D<9/10/11>Unregister. After the changes are
made the texture has to be registered again with
rtTextureSampler<9/10/11>Register. This is necessary to allow
OptiX to access the textures data again. Registration and unregistration calls are
expensive and should be avoided if possible.

58 Version 3.0 OptiX Programming Guide

rtTextureSamplerGetD3D<9/10/11>Resource can be used to query
the bound D3D resource pointer. A list with the currently supported texture
formats can be found in the Appendix A.

OptiX automatically detects the size, texture format, and number of mipmap levels
of a texture. rtTextureSamplerSetMipLevelCount,
rtTextureSamplerSetArraySize, and

rtTextureSampler(Set/Get)Buffer cannot be called for OptiX interop

texture samplers and will return RT_ERROR_INVALID_VALUE.

6.2.2.1. D3D Texture-Creation Flags

In certain situations OptiX requires host-side (CPU) access to interop objects.
Because of this, D3D textures should be created with the proper flags to allow
OptiX access to the underlying data.

OptiX requires D3D9 textures to be created with the memory pool argument using
either D3DPOOL_MANAGED or D3DPOOL_DEFAULT in combination with
D3DUSAGE_DYNAMIC.

For the current version of OptiX (2.1), CPU access flags are required to be set in
the appropriate D3D texture description for D3D10 and D3D11, e.g.
D3D11_CPU_ACCESS_READ. A future version of OptiX will remove this
requirement.

OptiX Programming Guide Version 3.0 59

60 Version 3.0 OptiX Programming Guide

Chapter 7.Interoperability
with CUDA

It is often desirable to combine general purpose CUDA programs with an OptiX-
based raytracing kernel. For example, you might use a CUDA program before
launching OptiX to determine what rays to trace, or to tabulate reflection properties
for a material, or to compute geometry. In addition, you may wish to write a CUDA
program that postprocesses OptiX’s output, especially if OptiX is generating data
structures full of intermediate calculations rather than just a rendered image, such as
computing object or character movement based on visibility and collision rays.

Both of these usage scenarios are possible using the OptiX-CUDA interoperability
functions described in this chapter.

7.1. CUDA Context Sharing

In order for CUDA and OptiX to interoperate, it is necessary that there be only a
single CUDA context per device. Furthermore, CUDA must be initialized using the
CUDA runtime API; OptiX does not currently support interop with the CUDA
driver API. There are two possible CUDA interop scenarios:

1) The application has created a CUDA context (by performing some CUDA

operations) prior to OptiX initialization

2) OptiX creates its own CUDA context (either upon a call to

rtContextLaunch or rtBufferGetDevicePointer) prior to

the application creating any CUDA contexts.

In scenario 1, OptiX will latch on to the existing CUDA context instead of creating
its own. In scenario 2, OptiX’s context(s) will have been created using the CUDA
runtime API, so any subsequent CUDA calls made by the application will use
OptiX’s already created contexts.

Note: If the application creates a CUDA context before OptiX, the applicaton
should make sure to use:

cudaSetDeviceFlags(cudaDeviceMapHost | cudaDeviceLmemResizeToMax);

 to ensure subsequent maximum performance from OptiX.

Because OptiX and the application’s CUDA programs will share a single context per
device, any device pointers passed to or from OptiX can be used for reading or
writing OptiX data.

OptiX Programming Guide Version 3.0 61

7.2. Getting CUDA Device Pointers from OptiX

One way to achieve CUDA-OptiX interop is to ask OptiX to manage and allocate
device memory and simply get a pointer to it. This is done using the
rtBufferGetDevicePointer call:

rtBufferGetDevicePointer(buffer, optix_device_number,

&device_ptr);

This call will return the device pointer for the given buffer on the specified OptiX
device. If the application requests the buffer device pointer before OptiX has
launched, this pointer can be used to provide data to OptiX. If the application
requests the buffer device pointer after OptiX has launched, the application can then
postprocess OptiX’s output.

Some special issues to consider when OptiX is running in a multi-GPU
environment will be covered at the end of this chapter.

7.3. Providing CUDA Device Pointers to OptiX

If the application already has a device pointer and wants to use its contents as an
OptiX buffer, the special rtBufferCreateForCUDA creation mechanism must
be used:

rtBufferCreateForCuda(context, type, &buffer);

The arguments to rtBufferCreateForCUDA are identical to the standard

rtBufferCreate function, and the resulting buffers function identically to
standard OptiX buffers, except that the application is responsible for providing a
device pointer for them. OptiX will neither allocate memory nor upload data for
these buffers (again with special considerations for multi-GPU environments; see
the end of this chapter).

Before providing a device pointer for the buffer, the application must first specify
the size and format of the buffer. The buffer pointer can then be specified:

rtBufferSetDevicePointer(buffer, optix_device_number,

device_ptr);

7.4. Multi-GPU considerations

If the application provides or requests device pointers for all devices on which
OptiX is running, no additional data copies need to be made. However, whenever
there is a mismatch between the devices on which the application has provided or
requested pointers and the devices on which OptiX is running, OptiX will need to
make sure that all of its devices have the necessary data.

Note that these issues can arise in some circumstances even when OptiX is only
using one GPU. If the application is running CUDA code on one GPU, but has
instructed OptiX to only run on another GPU, it is legal to use
rtBufferSetDevicePointer to provide a device pointer on the non-OptiX
GPU; OptiX will handle any required data transfer internally.

62 Version 3.0 OptiX Programming Guide

7.4.1. When the application provides pointers to OptiX
If a device pointer is provided for one device but not for all OptiX devices, OptiX
will allocate memory on the missing devices and copy the buffer data from the
provided pointer to the missing devices during rtContextLaunch. It is a
caught runtime error for the application to specify pointers for more than one but
less than all devices.

This implementation allows applications to be ignorant, if desired, of whether one
or multiple devices are being used for OptiX and whether CUDA is being run on
the same or a different device than OptiX. Conversely, the application may be fully
in control of which devices run OptiX and which devices run CUDA and fill each
device’s copy of a buffer either by CUDA or by OptiX.

Note: The current beta supports buffer device memory only for those devices on
which OptiX is being run. Thus, setting buffer device pointers for devices on
which OptiX isn't being run is disallowed.

If you need to copy data to/from a CUDA device on which OptiX is not running,
our suggested workaround for this beta is to get the OptiX buffer pointer on the
device that OptiX is running on, and then manually allocate CUDA memory on
the devices that OptiX is not running on, and then manually copy data across to
the devices used by OptiX (using cudaMemcpyPeer/cudaMemcpyPeerAsync for
improved performance).

7.4.2. When the application receives pointers from OptiX
When the application requests a pointer from OptiX (to an RT_BUFFER_INPUT

or RT_BUFFER_INPUT_OUTPUT buffer), we assume that the application is
modifying the data contained in that buffer. Therefore we keep track of which
OptiX devices the application has requested pointers for, and if the application has
requested only one pointer but there are additional OptiX devices, we will copy the
data from that device to all others on the next launch. If the application requests
pointers on all devices, we assume they have set up the data how they want it, and
no copying will happen. It is a caught runtime error to request pointers for more
than one but fewer than all devices.

7.4.3. Avoiding unnecessary copies
If the application provides or requests a pointer on one device in a multi-GPU
environment (so that data copies are required), those copies will happen on every
subsequent rtContextLaunch. If the application knows that the data are not

changing every frame, the RT_BUFFER_COPY_ON_DIRTY flag can be OR’ed

into the type parameter of rtBufferCreate or

rtBufferCreateForCUDA. This will cause the data copies to happen only
when OptiX has explicit reason to believe that the data are dirty.

A buffer being used for CUDA interop and marked for dirty copies is considered
dirty in two circumstances:

1) No OptiX launch has occurred since the buffer had its device pointer provided
or requested

OptiX Programming Guide Version 3.0 63

2) The application explicitly calls the rtBufferMarkDirty function:

rtBufferMarkDirty(buffer);

This will let OptiX know that the underlying CUDA data have changed, and a fresh
copy must be broadcast from the device on which the application has manipulated
the data to all other OptiX devices.

64 Version 3.0 OptiX Programming Guide

Chapter 8.OptiXpp: C++
Wrapper for the

OptiX C API

OptiXpp wraps each OptiX C API opaque type in a C++ class and provides
relevant operations on that type. Most of the OptiXpp class member functions map
directly to C API function calls. For example, VariableObj::getContext

wraps rtVariableGetContext and ContextObj::createBuffer

wraps rtBufferCreate.

Some functions perform slightly more complex sequences of C API calls. For
example

ContextObj::createBuffer(unsigned int type, RTformat

format, RTsize width)

provides in one call the functionality of

rtBufferCreate

rtBufferSetFormat

rtBufferSetSize1D

See OptiX_Utility_Library_Reference.pdf or optixpp_namespace.h for a full
list of the available OptiXpp functions. The usage of the API is described below.

8.1. OptiXpp Objects

The OptiXpp classes consist of a Handle class, a class for each API opaque type,
and three classes that provide attributes to these objects.

8.1.1. Handle Class
All classes are manipulated via the reference counted Handle class. Rather than

working with a ContextObj directly you would use a Context instead, which is

simply a typedef for Handle<ContextObj>.

In addition to providing reference counting and automatic destruction when the
reference count reaches zero, the Handle class provides a mechanism to create a
handle from a C API opaque type, as follows:

 RTtransform t;

 rtTransformCreate(my_context, &t);

 Transform Tr = Transform::take(t);

OptiX Programming Guide Version 3.0 65

The converse of take is get, which returns the underlying C API opaque type,
but does not decrement the reference count within the handle.

Transform Tr;

...

rtTransformDestroy(Tr->get());

These functions are typically used when calling C API functions, though such is
rarely necessary since OptiXpp provides nearly all OptiX functionality.

8.1.2. Attribute Classes
The attributes are API, Destroyable, and Scoped.

API: All object types have the API attribute. This attribute provides the following
functions to objects:

 getContext() – Return the context to which this object belongs

 checkError() – Check the given result code and throw an error with

appropriate message if the code is not RTsuccess. checkError is
often used as a wrapper around a call to a function that makes OptiX API
calls:

my_context->checkError(sutilDisplayFilePPM(...));

Destroyable: This attribute provides the following functions to objects:

 destroy() – Equivalent to rt*Destroy()

 validate() – Equivalent to rt*Validate()

Scoped: This attribute applies only to API objects that are containers for
RTvariables. It provides functions for accessing the contained variables. The

most basic access is via operator[], as follows:

my_context["new_variable"]->setFloat(1.0f);

This access returns the variable, but first creates it within the containing object if it
does not already exist.

This array operator syntax with the string variable name argument is probably the
most powerful feature of OptiXpp, as it greatly reduces the amount of code
necessary to access a variable.

The following functions are also available to Scoped objects:

 declareVariable() – Declare a variable associated with this object

 queryVariable() – Query a variable associated with this object by
name

 removeVariable() – Remove a variable associated with this object

 getVariableCount() – Query the number of variables associated
with this object, typically so as to iterate over them

66 Version 3.0 OptiX Programming Guide

 getVariable() – Query variable by index, typically while iterating over
them

The following table lists all of the OptiXpp objects and their attributes.

Object API Destroyable Scoped

Context yes yes yes

Program yes yes yes

Buffer yes

Variable yes

TextureSampler yes yes

Group yes yes

GeometryGroup yes yes

GeometryInstance yes yes yes

Geometry yes yes yes

Material yes yes yes

Transform yes yes

Selector yes yes

Table 7 OptiXpp Opaque Types and Their Attributes

8.1.3. API Objects
In addition to the methods provided by the attribute classes that give commonality
to the different API objects each object type also has a unique set of methods.
These functions cover the complete set of functionality from the C API, although
not all methods will be described here. See optixpp_namespace.h for the
complete set.

8.1.3.1. Context

The Context object provides create* functions for creating all other opaque
types. These are owned by the context and handles to the created object are
returned:

Context my_context;

Buffer Buf = my_context->createBuffer(RT_BUFFER_INPUT,

RT_FORMAT_FLOAT4, 1024, 1024);

Context also provides launch() functions, with overloads for 1D, 2D, and 3D

kernel launches. It provides many other functions that wrap rtContext* C API
calls.

OptiX Programming Guide Version 3.0 67

8.1.3.2. Buffer

The Buffer class provides a map call that returns a pointer to the buffer data, and

provides an unmap call. It also provides set and get functions for the buffer
format, element size, and 1D, 2D, and 3D buffer size. Finally, it provides
registerGLBuffer and unregisterGLBuffer.

8.1.3.3. Variable

The Variable class provides getName, getAnnotation, getType, and

getSize functions for returning properties of the variable. It also contains a

multitude of set* functions that set the value of the variable and its type, if the
type is not already set:

my_context["my_dim3"]->setInt(512, 512, 1024);

The Variable object also offers set functions for setting its value to an API object,

and provides setUserData and getUserData.

8.1.3.4. TextureSampler

The TextureSampler class provides functions to set and get the attributes of an

RTtexturesampler, such as setWrapMode, setMipLevelCount, etc.

It also provides setBuffer, getBuffer, registerGLTexture, and

unregisterGLTexture.

8.1.3.5. Group and GeometryGroup

The remaining API object classes are for OptiX node types. They offer member
functions for setting and querying the nodes to which they attach.

The Group class provides setAcceleration, getAcceleration,

setChildCount, getChildCount, setChild, and getChild.

8.1.3.6. GeometryInstance

RTgeometryinstance is a binding of Geometry and Material. Thus,

GeometryInstance provides functions to set and get both the Geometry and

the Materials. This includes addMaterial, which increments the material
count and appends the given Material to the list.

8.1.3.7. Geometry

The unique functions provided by the Geometry class set and get the

BoundingBoxProgram, the IntersectionProgram and the

PrimitiveCount. It also offers markDirty and isDirty.

8.1.3.8. Material

A Material consists of a ClosestHitProgram and an AnyHitProgram, and

is a container for the variables appertaining to these programs. It contains set and

get functions for these programs.

68 Version 3.0 OptiX Programming Guide

8.1.3.9. Transform

An RTtransform node applies a transformation matrix to its child, so the

Transform class offers setChild, getChild, setMatrix, and getMatrix
methods.

8.1.3.10. Selector

A Selector node applies a Visit program to operate on its multiple children. Thus,

the Selector class includes functions to set and get the VisitProgram,

ChildCount, and Child.

8.1.4. Exceptions
The Exception class of OptiXpp encapsulates an error message. These errors are
often the direct result of a failed OptiX C API function call and subsequent
rtContextGetErrorString call. Nearly all methods of all object types can

throw an exception using the Exception class. Likewise, the checkError()
function can throw an Exception.

Additionally, the Exception class can be used explicitly by user code as a convenient
way to throw exceptions of the same type as OptiXpp.

Call Exception::makeException to create an Exception.

Call getErrorString() to return an std::string for the error message as

returned by rtContextGetErrorString().

OptiX Programming Guide Version 3.0 69

Chapter 9.Performance
Guidelines

Subtle changes in your code can dramatically alter performance. This list of
performance tips should help when using OptiX.

 Where possible use floats instead of doubles. This also extends to the use
of literals and math functions. For example, use 0.5f instead of 0.5 and

sinf instead of sin to prevent automatic type promotion. To check for
automatic type promotion, search the PTX files for the “.f64” instruction
modifier.

 OptiX will try to partition thread launches into tiles that are the same
dimensionality as the launch. To have maximal coherency between the
threads of a tile you should choose a launch dimensionality that is the same
as the coherence dimensionality of your problem. For example, the
common problem of rendering an image has 2D coherency (adjacent pixels
both horizontally and vertically look at the same part of the scene), so a 2D
launch is appropriate. Conversely, a collision detection problem with many
agents each looking in many directions may appear to be 2D (the agents in
one dimension and the ray directions in another), but there is rarely
coherence between different agents, so the coherence dimensionality is one,
and performance will be better by using a 1D launch.

 Do not build an articulate scene graph with Groups, Transforms and

GeometryInstances. Try to make the topology as shallow and
minimal as possible. For example, for static scenes the fastest performance
is achieved by having a single GeometryGroup, where transforms are

flattened to the geometry. For scenes where Transforms are changing all

the static geometry should go in one GeometryGroup and each

Transform should have a single GeometryGroup. Also, if possible,
combine multiple meshes into a single mesh.

 Each new Program object can introduce execution divergence. Try to reuse
the same program with different variable values. However, don’t take this
idea too far and attempt to create an “über shader”. This will create
execution divergence within the program. Experiment with your scene to
find the right balance.

 Try to minimize live state across calls to rtTrace in programs. For
example, in a closest hit program temporary values used after a recursive call
to rtTrace should be computed after the call to rtTrace, rather than
before, since these values must be saved and restored when calling
rtTrace, impacting performance. RTvariables declared outside of
the program body are exempt from this rule.

70 Version 3.0 OptiX Programming Guide

 No acceleration structure is best in all situations. For static geometry
groups, use Sbvh or TriangleKdTree. For dynamic geometry groups

or large number of elements, experiment with Lbvh (recommended) and

MedianBvh. For Group nodes (e.g. higher level graph nodes), Bvh is the

best choice in many cases, but if there are few enough children NoAccel
can be useful.

 In multi-GPU environments INPUT_OUTPUT and OUTPUT buffers are
stored on the host. In order to optimize writes to these buffers, types of
either 4 bytes or 16 bytes (e.g. float, uint, or float4) should be used
when possible. One might be tempted to make an output buffer used for
the screen out of float3’s (RGB), however using a float4 buffer will
result in improved performance (e.g.
output_buffer[launch_index] = make_float4(

result_color)). This also affects defined types (see the
progressivePhotonMap sample for an example of accessing user defined
structs with float4s).

 In multi-GPU environments INPUT_OUTPUT buffers may be stored on
the device, with a separate copy per device by using the
RT_BUFFER_GPU_LOCAL buffer attribute. This is useful for avoiding
the slower reads and writes by the device to host memory.
RT_BUFFER_GPU_LOCAL is useful for scratch buffers, such as random
number seed buffers and variance buffers.

 Use iteration instead of recursion where possible (e.g. path tracing with no
ray branching). See the path_tracer sample for an example of how to use
iteration instead of recursion when tracing secondary rays.

 For best performance, use the rtTransform* functions rather than

explicitly transforming by the matrix returned by rtGetTransform.

 Disable exceptions that are not needed. While it is recommended to turn on
all available exception types during development and for debugging, the
error checking involved e.g. to validate buffer index bounds is usually not
necessary in the final product.

 Avoid recompiling the OptiX kernel. These recompiles can be triggered
when certain changes to the input programs or variables occur. For
example, swapping the ClosestHit program of a Material between two
programs will cause a recompile on each swap because the kernel consists
of different code, whereas creating two Materials, one with each program,
and swapping between the two Materials will not cause a recompile because
only the node graph is changing, not the code. Creating dummy nodes with
the alternate programs is one way to provide all of the code at once. Also
avoid changing the layout of variables attached to scope objects.

 It is possible for a program to find multiple definitions for a variable in its
scopes depending upon where the program is called. Variables with
definitions in multiple scopes are said to be dynamic and may incur a
performance penalty.
For example, a closest hit program may be attached to several Material
objects and reference a variable named shininess. We can attach a variable
definition to the Material object as well as attach a variable definition to

OptiX Programming Guide Version 3.0 71

specific GeometryInstance objects that we create that reference that
Material. During execution of a specific GeometryInstance’s closest hit
program, the value of shininess depends on whether the particular instance
has a definition attached: if the GeometryInstance defines shininess, then
that value will be used. Otherwise, the value will be taken from the Material
object.

 When creating PTX code using nvcc, adding --use-fast-math as a
compile option can reduce code size and increase the performance for most
OptiX programs. This can come at the price of slightly decreased numerical
floating point accuracy. See the nvcc documentation for more details.

 While OptiX supports bindless texture access on all architectures, hardware
supported bindless textures are only available on Kepler (sm_30) devices
and above with 304 driver . On pre-Kepler devices, bindless texture
references are handled in software and may be slower compared to regularly
bound textures.

72 Version 3.0 OptiX Programming Guide

Chapter 10.Caveats

Keep in mind the following caveats when using OptiX.

 Setting a large stack size will consume GPU device memory. Try to
minimize the stack as much as possible. Start with a small stack and with
the use of an exception program that will make it obvious you have
exceeded your memory, increase the stack size until the stack is sufficiently
large.

 The use of __shared__ memory within a program is not recommended.
This is currently untested.

 Don’t use PTX bar() or CUDA syncthreads(). It will lock up your
machine.

 threadIdx in CUDA can map to multiple launch indices (e.g. pixels).

Use the rtLaunchIndex semantic instead.

 Use of the CUDA malloc(), free(), and printf() functions
within a program is not supported. Attempts to use these functions will
result in an illegal symbol error.

 Currently, OptiX is not guaranteed to be thread-safe. While it may be
successful in some applications to use OptiX contexts in different host
threads, it may fail in others. OptiX should therefore only be used from
within a single host thread.

OptiX Programming Guide Version 3.0 73

Appendix A. Supported Interop Texture
Formats

OpenGL
Texture
Format

D3D Format DXGI Format

GL_RGBA8 D3DFMT_R32F

DXGI_FORMAT_R8_SINT

GL_RGBA16 D3DFMT_L16

DXGI_FORMAT_R8_SNORM

GL_R32F D3DFMT_L8

DXGI_FORMAT_R8_UINT

GL_RG32F D3DFMT_A8

DXGI_FORMAT_R8_UNORM

GL_RGBA32F D3DFMT_G32R32F

DXGI_FORMAT_R16_SINT

GL_R8I D3DFMT_G16R16

DXGI_FORMAT_R16_SNORM

GL_R8UI D3DFMT_V16U16

DXGI_FORMAT_R16_UINT

GL_R16I D3DFMT_A8L8

DXGI_FORMAT_R16_UNORM

GL_R16UI D3DFMT_V8U8

DXGI_FORMAT_R32_SINT

GL_R32I D3DFMT_A32B32G32R32F

DXGI_FORMAT_R32_UINT

GL_R32UI D3DFMT_A16B16G16R16

DXGI_FORMAT_R32_FLOAT

GL_RG8I D3DFMT_A8R8G8B8

DXGI_FORMAT_R8G8_SINT

GL_RG8UI D3DFMT_X8R8G8B8

DXGI_FORMAT_R8G8_SNORM

GL_RG16I D3DFMT_A8B8G8R8

DXGI_FORMAT_R8G8_UINT_

GL_RG16UI D3DFMT_X8B8G8R8

DXGI_FORMAT_R8G8_UNORM

GL_RG32I D3DFMT_Q16W16V16U16 DXGI_FORMAT_R16G16_SINT

GL_RG32UI D3DFMT_Q8W8V8U8

DXGI_FORMAT_R16G16_SNORM

GL_RGBA8I DXGI_FORMAT_R16G16_UINT

GL_RGBA8UI DXGI_FORMAT_R16G16_UNORM

GL_RGBA16I DXGI_FORMAT_R32G32_SINT

GL_RGBA16UI DXGI_FORMAT_R32G32_UINT

GL_RGBA32I

 DXGI_FORMAT_R32G32_FLOAT

GL_RGBA32UI DXGI_FORMAT_R8G8B8A8_SINT

 DXGI_FORMAT_R8G8B8A8_SNORM

 DXGI_FORMAT_R8G8B8A8_UINT

 DXGI_FORMAT_R8G8B8A8_UNORM

 DXGI_FORMAT_R16G16B16A16_SINT

 DXGI_FORMAT_R16G16B16A16_SNORM

 DXGI_FORMAT_R16G16B16A16_UINT

 DXGI_FORMAT_R16G16B16A16_UNORM

 DXGI_FORMAT_R32G32B32A32_SINT

 DXGI_FORMAT_R32G32B32A32_UINT

 DXGI_FORMAT_R32G32B32A32_FLOAT

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, OptiX, and CUDA are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

© 2009-2012 NVIDIA Corporation. All rights reserved.

	Chapter 1. Introduction
	1.1. OptiX Overview
	1.1.1. Motivation
	1.1.2. Programming model

	1.2. Ray tracing basics

	Chapter 2. Programming Model Overview
	2.1. Object Model
	2.2. Programs
	2.3. Variables
	2.4. Execution Model

	Chapter 3. Host API
	3.1. Context
	3.1.1. Entry Points
	3.1.2. Ray Types
	3.1.3. Global State

	3.2. Buffers
	3.3. Textures
	1.1. Variables
	1.1. OptiX variables provide a mechanism to pass named input parameters into user-defined programs. All variables are bound to an existing OptiX object upon creation. Contexts, programs, selectors, geometry instances, geometries and materials are al...
	1.1. rt{Context|Program|…}DeclareVariable can be used to declare a variable and set its name. A variable's value is specified by one of the rtVariableSet* functions, also determining the variable's type. The value and type of a variable may be queri...
	1.1. RTcontext context = ...;
	1.1. RTvariable variable;
	1.1. rtContextDeclareVariable(context, "var1", &variable);
	1.1. rtVariableSet2f(0.1f, 0.2f);
	1.1. float value[2];
	1.1. rtVariableGet2fv(variable, value);
	1.1. RTobjecttype type;
	1.1. rtVariableGetType(variable, &type);
	1.1. OptiX programs can access variables and, optionally, provide them with default parameters in the following manner:
	1.1. rtDeclareVariable(float2, var1, ,);
	1.1. rtDeclareVariable(float2, var2, ,) = {0.0f, 0.0f};
	1.1. RT_PROGRAM void myProgram()
	1.1. {
	1.1. float2 temp = var1;
	1.1. }
	1.1. All variables declared in user programs without default parameters must be declared and have their values set within the host code. Context validation will fail if this condition is not met. See Section 4.1.2 for further discussion of variable ...
	3.4. Graph Nodes
	3.4.1. Geometry
	3.4.2. Material
	3.4.3. GeometryInstance
	3.4.4. GeometryGroup
	3.4.5. Group
	3.4.6. Transform
	3.4.7. Selector

	3.5. Acceleration Structures for Ray Tracing
	3.5.1. Acceleration objects in the Node Graph
	3.5.2. Builders and Traversers
	3.5.3. Properties
	3.5.4. Acceleration Structure Builds
	3.5.5. Caching Acceleration Data
	3.5.6. Shared Acceleration Structures

	Chapter 4. Programs
	4.1. OptiX Program Objects
	4.1.1. Managing Program Objects
	4.1.2. Communication Through Variables
	4.1.3. Internally Provided Semantics
	4.1.4. Attribute Variables
	4.1.5. Program Variable Scoping
	4.1.6. Program Variable Transformation

	4.2. Which OptiX calls are supported where?
	4.3. Ray Generation Programs
	4.3.1. Entry Point Indices
	4.3.2. Launching a Ray Generation Program
	4.3.3. Ray Generation Program Function Signature
	4.3.4. Example Ray Generation Program

	4.4. Exception Programs
	4.4.1. Exception Program Entry Point Association
	4.4.2. Exception Types
	4.4.3. Exception Program Function Signature
	4.4.4. Example Exception Program

	4.5. Closest Hit Programs
	4.5.1. Closest Hit Program Material Association
	4.5.2. Closest Hit Program Function Signature
	4.5.3. Recursion in a Closest Hit Program
	4.5.4. Example Closest Hit Program

	4.6. Any Hit Programs
	4.6.1. Any Hit Program Material Association
	4.6.2. Termination in an Any Hit Program
	4.6.3. Any Hit Program Function Signature
	4.6.4. Example Any Hit Program

	4.7. Miss Programs
	4.7.1. Miss Program Function Signature
	4.7.2. Example Miss Program

	4.8. Intersection and Bounding Box Programs
	4.8.1. Intersection and Bounding Box Program Function Signatures
	4.8.2. Reporting Intersections
	4.8.3. Specifying Bounding Boxes
	4.8.4. Example Intersection and Bounding Box Programs

	4.9. Selector Programs
	4.9.1. Selector Visit Program Function Signature
	4.9.2. Example Visit Program

	4.10. Variables containingCallable Programs
	1.1.1. User-provided programs can take arguments and return values just like any other function in CUDA.
	4.10.1. Defining a Callable Program in CUDA
	4.10.2. Declaring a Callable Program Variable in CUDA
	4.10.3. Passing Pointers on SM 1.x Devices
	4.10.4. Loading a User ProgramCallable Program on the Host
	4.10.5. OptiX Variable Scopes for Program Variables

	Chapter 5. Building with OptiX
	5.1. Libraries
	5.2. Header Files
	5.3. PTX Generation
	5.4. SDK Build

	Chapter 6. Interoperability with OpenGL and Direct3D
	6.1. OpenGL Interop
	6.1.1. Buffer Objects
	6.1.2. Textures and Render Buffers

	6.2. Direct3D Interop
	6.2.1. Buffer Objects
	6.2.1.1. D3D Buffer-Creation Flags

	6.2.2. Textures and Surfaces
	6.2.2.1. D3D Texture-Creation Flags

	Chapter 7. Interoperability with CUDA
	7.1. CUDA Context Sharing
	1.1. It is often desirable to combine general purpose CUDA programs with an OptiX-based raytracing kernel. For example, you might use a CUDA program before launching OptiX to determine what rays to trace, or to tabulate reflection properties for a ma...
	1.1. Both of these usage scenarios are possible using the OptiX-CUDA interoperability functions described in this chapter.
	1.1. CUDA Context Sharing
	1.1. In order for CUDA and OptiX to interoperate, it is necessary that there be only a single CUDA context per device. Furthermore, CUDA must be initialized using the CUDA runtime API; OptiX does not currently support interop with the CUDA driver API...
	1.1. The user has created a CUDA context (by performing some CUDA operations) prior to OptiX initialization
	1.1. OptiX creates its own CUDA context (either via a launch or a call to rtBufferGetDevicePointer) prior to the user creating any CUDA contexts.
	1.1. In scenario 1), OptiX will latch on to the existing CUDA context instead of creating its own. In scenario 2), OptiX’s context(s) will have been created using the CUDA runtime API, so any subsequent CUDA calls made by the user will use OptiX’s al...
	1.1. Because OptiX and the user’s CUDA programs will share a single context per device, any device pointers passed to or from OptiX can be used for reading or writing OptiX data.
	7.2. Getting CUDA Device Pointers from OptiX
	7.3. Providing CUDA Device Pointers to OptiX
	7.4. Multi-GPU considerations
	7.4.1. When the application provides pointers to OptiX
	7.4.2. When the application receives pointers from OptiX
	7.4.3. Avoiding unnecessary copies

	Chapter 8. OptiXpp: C++ Wrapper for the OptiX C API
	8.1. OptiXpp Objects
	8.1.1. Handle Class
	8.1.2. Attribute Classes
	8.1.3. API Objects
	8.1.3.1. Context
	8.1.3.2. Buffer
	8.1.3.3. Variable
	8.1.3.4. TextureSampler
	8.1.3.5. Group and GeometryGroup
	8.1.3.6. GeometryInstance
	8.1.3.7. Geometry
	8.1.3.8. Material
	8.1.3.9. Transform
	8.1.3.10. Selector

	8.1.4. Exceptions

	Chapter 9. Performance Guidelines
	Chapter 10. Caveats
	Appendix A. Supported Interop Texture Formats

