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Chapter 1. 
Introduction 

1.1. OptiX Overview  

GPUs are best at exploiting very high degrees of  parallelism, and ray tracing fits that 
requirement perfectly.  However, typical ray tracing algorithms can be highly 
irregular, which poses serious challenges for anyone trying to exploit the full raw 
computational potential of  a GPU.  The NVIDIA OptiX ray tracing engine and 
API address those challenges and provide a framework for harnessing the enormous 
computational power of  both current- and future-generation graphics hardware to 
incorporate ray tracing into interactive applications. By using OptiX together with 
NVIDIA’s CUDA™ architecture, interactive ray tracing is finally feasible for 
developers without a Ph.D. in computer graphics and a team of  ray tracing 
engineers. 

OptiX is not itself  a raytracer.  Instead, it is a scalable framework for building ray 
tracing based applications.  The OptiX engine is composed of  two symbiotic parts: 
1) a host-based API that defines ray-tracing based data structures, and 2) a CUDA 
C-based programming system that can produce new rays, intersect rays with 
surfaces, and respond to those intersections.  Together, these two pieces provide 
low-level support for “raw ray tracing”.  This allows user-written applications that 
use ray tracing for graphics, collision detection, sound propagation, visibility 
determination, etc. 
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1.1.1. Motivation  
By abstracting the execution model of  a generic ray tracer, OptiX makes it easier to 
assemble a ray tracing system, leveraging custom-built algorithms for object 
traversal, shader dispatch and memory management.  Furthermore, the resulting 
system will be able to take advantage of  future evolution in GPU hardware and 
OptiX SDK releases – similar to the manner that OpenGL and Direct3D provide 
an abstraction for the rasterization pipeline. 

Wherever possible, the OptiX engine avoids specification of  ray tracing behaviors 
and instead provides mechanisms to execute user-provided CUDA C code to 
implement shading (including recursive rays), camera models, and even color 
representations.  Consequently, the OptiX engine can be used for Whitted-style ray 
tracing, path tracing, collision detection, photon mapping, or any other ray tracing-
based algorithm.  It is designed to operate either standalone or in conjunction with 
an OpenGL or DirectX application for hybrid ray tracing-rasterization applications. 

1.1.2. Programming model 
At the core of  OptiX is a simple but powerful abstract model of  a ray tracer.  This 
ray tracer employs user-provided programs to control the initiation of  rays, 
intersection of  rays with surfaces, shading with materials, and spawning of  new rays.  
Rays carry user-specified payloads that describe per-ray variables such as color, 
recursion depth, importance, or other attributes.  Developers provide these 
functions to OptiX in the form of  CUDA C-based functions.  Because ray tracing is 
an inherently recursive algorithm, OptiX allows user programs to recursively spawn 
new rays, and the internal execution mechanism manages all the details of  a 
recursion stack.  OptiX also provides flexible dynamic function dispatch and a 
sophisticated variable inheritance mechanism so that ray tracing systems can be 
written very generically and compactly. 

1.2. Ray tracing basics 

“Ray tracing” is an overloaded term whose meaning can depend on context.  
Sometimes it refers to the computation of  the intersection points between a 3D line 
and a set of  3D objects such as spheres.  Sometimes it refers to a specific algorithm 
such as Whitted's method of  generating pictures or the oil exploration industry's 
algorithm for simulating ground wave propagation.  Other times it refers to a family 
of  algorithms that include Whitted's algorithm along with others such as 
distribution ray tracing.  OptiX is a ray tracing engine in the first sense of  the word: 
it allows the user to intersect rays and 3D objects.  As such it can be used to build 
programs that fit the other use of  "ray tracing" such as Whitted's algorithm.  In 
addition OptiX provides the ability for users to write their own programs to 
generate rays and to define behavior for when rays hit objects. 

For graphics, ray tracing was originally proposed by Arthur Appel in 1968 for 
rendering solid objects.  In 1980, Turner Whitted pursued the idea further by 
introducing recursion to enable reflective and refractive effects.  Subsequent 
advances in ray tracing increased accuracy by introducing effects for depth of  field, 
diffuse inter-reflection, soft shadows, motion blur, and other optical effects.  
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Simultaneously, numerous researchers have improved the performance of  ray 
tracing using new algorithms for indexing the objects in the scene. 

Realistic rendering algorithms based on ray tracing have been used to accurately 
simulate light transport.  Some of  these algorithms simulate the propagation of  

photons in a virtual environment.  Others follow adjoint photons “backward” from 
a virtual camera to determine where they originated.  Still other algorithms use 
bidirectional methods.  OptiX operates at a level below such algorithmic decisions, 
so can be used to build any of  those algorithms. 

Ray tracing has often been used for non-graphics applications.  In the computer-
aided design community, ray tracing has been used to estimate the volume of  
complex parts.  This is accomplished by sending a set of  parallel rays at the part; the 
fraction of  rays that hit the part gives the cross-sectional area, and the average 
length that those rays are inside the part gives the average depth.  Ray tracing has 
also often been used to determine proximity (including collision) for complex 
moving objects.  This is usually done by sending “feeler” rays from the surfaces of  
objects to “see” what is nearby.  Rays are also commonly used for mouse-based 
object selection to determine what object is seen in a pixel, and for projectile-object 
collision in games.  OptiX can be used for any of  those applications. 

The common feature in ray tracing algorithms is that they compute the intersection 
points of  3D rays (an origin and a propagation direction) and a collection of  3D 
surfaces (the “model” or “scene”).  In rendering applications, the optical properties 
of  the point where the ray intersects the model determine what happens to the ray 
(e.g., it might be reflected, absorbed or refracted).  Other applications might not care 
about information other than where the intersection happens, or even if  an 
intersection occurs at all.  This variety of  needs means it is desirable for OptiX to 
support a variety of  ray-scene queries and user-defined behavior when rays intersect 
the scene. 

One of  ray tracing's nice features is that it is easy to support any geometric object 
that can be intersected with a 3D line.  For example, it is straightforward to support 
spheres natively with no tessellation.  Another nice feature is that ray tracing's 
execution is normally "sub-linear" in the number of  objects---doubling the number 
of  objects in the scene should less than double the running time.  This is 
accomplished by organizing the objects into an acceleration structure that can 
quickly reject whole groups of  primitives as not candidates for intersection with any 
given ray.  For static parts of  the scene, this structure can be reused for the life of  
the application.  For dynamic parts of  the scene, OptiX supports rebuilding the 
acceleration structure when needed.  The structure only queries the bounding box 
of  any geometric objects it contains, so new types of  primitives can be added and 
the acceleration structures will continue to work without modification, so long as 
the new primitives can provide a bounding box. 

For graphics applications, ray tracing has advantages over rasterization.  One of  
these is that general camera models are easy to support; the user can associate points 
on the screen with any direction they want, and there is no requirement that rays 
originate at the same point.  Another advantage is that important optical effects 
such as reflection and refraction can be supported with only a few lines of  code 
Hard shadows are easy to produce with none of  the artifacts typically associated 
with shadow maps, and soft shadows are not much harder.  Furthermore, ray tracing 
can be added to more traditional graphics programs as a pass that produces a 
texture, letting the developer leverage the best of  both worlds.  For example, just the 
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specular reflections could be computed by using points in the depth buffer as ray 
origins.  There are a number of  such “hybrid algorithms” that use both z-buffer and 
ray tracing techniques. 

For further information on ray tracing in graphics, see the following texts: 

 

 The classic and still relevant book is “An Introduction to Ray Tracing” 
(Edited by A. Glassner, Academic Press, 1989). 

 A very detailed beginner book is "Ray Tracing from the Ground Up" (K. 
Suffern, AK Peters, 2007). 

 A concise description of  ray tracing is in “Fundamentals of  Computer 
Graphics” (P. Shirley and S. Marschner, AK Peters, 2009). 

 A general discussion of  realistic batch rendering algorithms is in "Advanced 
Global Illumination" (P. Dutré, P. Bekaert, K. Bala, AK Peters, 2006). 

 A great deal of  detailed information on ray tracing and algorithms that use 
ray tracing is in "Physically Based Rendering" (M. Pharr and G. Humphreys, 
Morgan Kaufmann, 2004). 

 A detailed description of  photon mapping is in “Realistic Image Synthesis 
Using Photon Mapping” (H. Jensen, AK Peters, 2001). 

 A discussion of  using ray tracing interactively for picking and collision 
detection, as well as a detailed discussion of  shading and ray-primitive 
intersection is in "Real-Time Rendering" (T. Akenine-Möller, E. Haines, N. 
Hoffman, AK Peters, 2008). 
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Chapter 2. 
Programming 

Model Overview 

The OptiX programming model consists of  two halves: the host code and the GPU 
device programs.  This chapter introduces the objects, programs, and variables that 
are defined in host code and used on the device. 

2.1. Object Model 

OptiX is an object-based C API that implements a simple retained mode object 
hierarchy.  This object-oriented host interface is augmented with programs that 
execute on the GPU.   The main objects in the system are: 

▪ Context – An instance of  a running OptiX engine 

▪ Program – A CUDA C function, compiled to NVIDIA’s PTX virtual assembly 
language 

▪ Variable – A name used to pass data from C to OptiX programs 

▪ Buffer – A multidimensional array that can be bound to a variable 

▪ TextureSampler – One or more buffers bound with an interpolation 
mechanism 

▪ Geometry – One or more primitives that a ray can be intersected with, such as 
triangles or other user-defined types 

▪ Material – A set of  programs executed when a ray intersects with the closest 
primitive or potentially closest primitive. 

▪ GeometryInstance – A binding between Geometry and Material objects. 

▪ Group – A set of  objects arranged in a hierarchy 

▪ GeometryGroup – A set of  GeometryInstance objects 

▪ Transform – A hierarchy node that geometrically transforms rays, so as to 
transform the geometric objects 

▪ Selector – A programmable hierarchy node that selects which children to 
traverse 

▪ Acceleration – An acceleration structure object that can be bound to a 
hierarchy node 

These objects are created, destroyed, modified and bound with the C API and are 
further detailed in Chapter 3.  The behavior of  OptiX can be controlled by 
assembling these objects into any number of  different configurations. 
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2.2. Programs 

The ray tracing pipeline provided by OptiX contains several programmable 
components.  These programs are invoked on the GPU at specific points during the 
execution of  a generic ray tracing algorithm.  There are eight types of  programs: 

▪ Ray Generation – The entry point into the ray tracing pipeline, invoked by the 
system in parallel for each pixel, sample, or other user-defined work assignment 

▪ Exception – Exception handler, invoked for conditions such as stack overflow 
and other errors 

▪ Closest Hit –Called when a traced ray finds the closest intersection point, such 
as for material shading 

▪ Any Hit – Called when a traced ray finds a new potentially closest intersection 
point, such as for shadow computation 

▪ Intersection – Implements a ray-primitive intersection test, invoked during 
traversal 

▪ Bounding Box – Computes a primitive’s world space bounding box, called 
when the system builds a new acceleration structure over the geometry 

▪ Miss – Called when a traced ray misses all scene geometry 

▪ Visit – Called during traversal of  a Selector node to determine the children a 
ray will traverse 

The input language for these programs is PTX.  The OptiX SDK also provides a set 
of  wrapper classes and headers for use with the NVIDIA C Compiler (nvcc) that 
enable the use of  CUDA C as a way of  generating appropriate PTX.   

These programs are further detailed in Chapter 4. 

2.3. Variables 

OptiX features a flexible and powerful variable system for communicating data to 
programs.  When an OptiX program references a variable, there is a well-defined set 
of  scopes that will be queried for a definition of  that variable.  This enables 
dynamic overrides of  variable definitions based on which scopes are queried for 
definitions. 

For example, a closest hit program may reference a variable called color.  This 
program may then be attached to multiple Material objects, which are, in turn, 

attached to GeometryInstance objects.  Variables in closest hit programs first 

look for definitions directly attached to their Program object, followed by 

GeometryInstance, Material and Context objects, in that order.  This 

enables a default color definition to exist on the Material object but specific 
instances using that material to override the default color definition. 

See Section 1.1 for more information. 
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2.4. Execution Model 

Once all of  these objects, programs and variables are assembled into a valid context, 
ray generation programs may be launched.  Launches take dimensionality and size 
parameters and invoke the ray generation program a number of  times equal to the 
specified size.   

Once the ray generation program is invoked, a special semantic variable may be 
queried to provide a runtime index identifying the ray generation program 
invocation.  For example, a common use case is to launch a two-dimensional 
invocation with a width and height equal to the size, in pixels, of  an image to be 
rendered.   

See Section 4.3.2 for more information on launching ray generation programs from 
a context. 
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Chapter 3.Host API 

3.1. Context 

An OptiX context provides an interface for controlling the setup and subsequent 
launch of  the ray tracing engine.  Contexts are created with the 
rtContextCreate function.  A context object encapsulates all OptiX resources 
-- textures, geometry, user-defined programs, etc.  The destruction of  a context, via 
the rtContextDestroy function, will clean up all of  these resources and 
invalidate any existing handles to them. 

rtContextLaunch{1,2,3}D serves as an entry point to ray engine 
computation.  The launch function takes an entry point parameter, discussed in 
Section 3.1.1, as well as one, two or three grid dimension parameters.  The 
dimensions establish a logical computation grid.  Upon a call to 
rtContextLaunch, any necessary preprocessing is performed and then the ray 
generation program associated with the provided entry point index is invoked once 
per computational grid cell.  The launch precomputation includes state validation 
and, if  necessary, acceleration structure generation and kernel compilation.  Output 
from the launch is passed back via OptiX buffers, typically but not necessarily of  
the same dimensionality as the computation grid. 

RTcontext context; 

rtContextCreate( &context ); 

unsigned int entry_point = ...; 

unsigned int width = ...; 

unsigned int height = ...; 

// Set up context state and scene description 

... 

rtContextLaunch2D( entry_point, width, height ); 

rtContextDestroy( context ); 

While multiple contexts can be active at one time, this is usually unnecessary as a 
single context object can leverage multiple hardware devices.  The devices to be 
used can be specified with rtContextSetDevices.  By default, the highest 
compute capable set of  compatible OptiX-capable devices is used.  The following 
set of  rules is currently used to determine device compatibility.  These rules could 
change in the future.  If  incompatible devices are selected an error is returned from 
rtContextSetDevices. 

 All SM 2.0+ devices can be run in multi-GPU configurations with other SM 
2.0+ devices. 

 All SM 1.2 and 1.3 devices can be run in multi-GPU configuration with other 
SM 1.2 and 1.3 devices. 

 All SM 1.1 and 1.0 devices can only be run in single-GPU configurations. 
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3.1.1. Entry Points 
Each context may have multiple computation entry points.  A context entry point is 
associated with a single ray generation program as well as an exception program.  
The total number of  entry points for a given context can be set with 
rtContextSetEntryPointCount.  Each entry point's associated programs 

are set and queried by rtContext{Set|Get}RayGenerationProgram 

and rtContext{Set|Get}ExceptionProgram.  Each entry point must be 
assigned a ray generation program before use; however, the exception program is an 
optional program that allows users to specify behavior upon various error 
conditions.  The multiple entry point mechanism allows switching between multiple 
rendering algorithms as well as efficient implementation of  techniques such as 
multi-pass rendering on a single OptiX context. 

RTcontext context = ...; 

rtContextSetEntryPointCount( context, 2 ); 

 

RTprogram pinhole_camera = ...; 

RTprogram thin_lens_camera = ...; 

RTprogram exception = ...; 

 

rtContextSetRayGenerationProgram( context, 0, 

                                  pinhole_camera ); 

rtContextSetRayGenerationProgram( context, 1, 

                                  thin_lens_camera ); 

rtContextSetExceptionProgram( context, 0, exception ); 

rtContextSetExceptionProgram( context, 1, exception ); 

3.1.2. Ray Types 
OptiX supports the notion of  ray types, which is useful to distinguish between rays 
that are traced for different purposes.  For example, a renderer might distinguish 
between rays used to compute color values and rays used exclusively for determining 
visibility of  light sources (shadow rays).  Proper separation of  such conceptually 
different ray types not only increases program modularity, but also enables OptiX to 
operate more efficiently. 

Both the number of  different ray types as well as their behavior is entirely defined 
by the client application.  The number of  ray types to be used is set with 
rtContextSetRayTypeCount(). 

The following properties may differ among ray types: 

▪ The ray payload 

▪ The closest hit program of  each individual material 

▪ The any hit program of  each individual material 

▪ The miss program 

The ray payload is an arbitrary user-defined data structure associated with each ray.  
This is commonly used, for example, to store a result color, the ray’s recursion 
depth, a shadow attenuation factor, and so on.  It can be regarded as the result a ray 
delivers after having been traced, but it can also be used to store and propagate data 
between ray generations during recursive ray tracing. 
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The closest hit and any hit programs assigned to materials correspond roughly to 
shaders in conventional rendering systems: they are invoked when an intersection 
between a ray and a geometric primitive is found.  Since those programs are 
assigned to materials per ray type, not all ray types must define behavior for both 
program types.  See Sections 4.5 and 4.6 for a more detailed discussion of  material 
programs. 

The miss program is executed when a traced ray is determined to not hit any 
geometry.  A miss program could, for example, return a constant sky color or 
sample from an environment map. 

As an example of  how to make use of  ray types, a Whitted-style recursive ray tracer 
might define the ray types listed in Table 1: 

 

Ray Type 

Purpose 

Payload Closest Hit Any Hit Miss 

Radiance RadiancePL Compute color, 
keep track of  
recursion depth 

n/a Environment 
map lookup 

Shadow ShadowPL n/a Compute 
shadow 
attenuation 
and terminate 
ray if  opaque 

n/a 

Table 1 Example Ray Types 

 

The ray payload data structures in the above example might look as follows: 

// Payload for ray type 0: radiance rays 

struct RadiancePL 

{ 

  float3 color; 

  int    recursion_depth; 

}; 

 

// Payload for ray type 1: shadow rays 

struct ShadowPL 

{ 

  float attenuation; 

}; 

Upon a call to rtContextLaunch(), the ray generation program traces 

radiance rays into the scene, and writes the delivered results (found in the color 
field of  the payload) into an output buffer for display: 

RadiancePL payload; 

payload.color = make_float3( 0.f, 0.f, 0.f ); 
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payload.recursion_depth = 0; // initialize recursion 

depth 

 

Ray ray = ...     // some camera code creates the ray 

ray.ray_type = 0; // make this a radiance ray 

 

rtTrace( top_object, ray, payload ); 

 

// Write result to output buffer 

writeOutput( payload.color ); 

A primitive intersected by a radiance ray would execute a closest hit program which 
computes the ray’s color and potentially traces shadow rays and reflection rays.  The 
shadow ray part is shown in the following code snippet: 

ShadowPL shadow_payload; 

shadow_payload.attenuation = 1.0f; // initialize to 

visible 

 

Ray shadow_ray = ...     // create a ray to light 

source 

shadow_ray.ray_type = 1; // make this a shadow ray 

 

rtTrace( top_object, shadow_ray, shadow_payload ); 

 

// Attenuate incoming light (‘light’ is some user-

defined 

// variable describing the light source) 

float3 rad = light.radiance * 

shadow_payload.attenuation; 

 

// Add the contribution to the current radiance ray’s 

// payload (assumed to be declared as ‘payload’) 

payload.color += rad; 

To properly attenuate shadow rays, all materials use an any hit program which 
adjusts the attenuation and terminates ray traversal.  The following code sets the 
attenuation to zero, assuming an opaque material: 

shadow_payload.attenuation = 0; // assume opaque 

material 

rtTerminateRay(); // it won’t get any darker, so 

terminate 

3.1.3. Global State 
Aside from ray type and entry point counts, there are several other global settings 
encapsulated within OptiX contexts.  

Each context holds a number of  attributes that can be queried and set using 
rtContext{Get|Set}Attribute. For example, the amount of  memory an 
OptiX context has allocated on the host can be queried by specifying 

RT_CONTEXT_ATTRIBUTE_USED_HOST_MEMORY as attribute parameter. 
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RTcontext context = ...; 

RTsize used_host_memory; 

rtContextGetAttribute( context, 

RT_CONTEXT_ATTRIBUTE_USED_HOST_MEMORY, sizeof(RTsize), 

&used_host_memory ); 

Currently, rtContextGetAttribute supports the following attributes: 

RT_CONTEXT_ATTRIBUTE_MAX_TEXTURE_COUNT, 

RT_CONTEXT_CPU_NUM_THREADS, 

RT_CONTEXT_USED_HOST_MEMORY, 
RT_CONTEXT_AVAILABLE_DEVICE_MEMORY, 

RT_CONTEXT_ATTRIBUTE_GPU_PAGING_FORCED_OFF, 

RT_CONTEXT_ATTRIBUTE_GPU_PAGING_ACTIVE. 

rtContextSetAttribute allows for setting the number of  CPU threads used 
for various tasks such as acceleration structure builds via 
RT_CONTEXT_CPU_NUM_THREADS and allows disabling large memory paging 

via RT_CONTEXT_ATTRIBUTE_GPU_PAGING_FORCED_OFF. All other 
attributes are read-only. 

To support recursion, OptiX uses a small stack of  memory associated with each 
thread of  execution.  rtContext{Get|Set}StackSize allows for setting 
and querying the size of  this stack.  The stack size should be set with care as 
unnecessarily large stacks will result in performance degradation while overly small 
stacks will cause overflows within the ray engine.  Stack overflow errors can be 
handled with user defined exception programs.   

The rtContextSetPrint* functions are used to enable C-style printf 
printing from within OptiX programs, allowing these programs to be more easily 
debugged.  The CUDA C function rtContextSetPrintEnabled turns on 

or off  printing globally while rtContextSetPrintLaunchIndex toggles 
printing for individual computation grid cells.  Print statements have no adverse 
effect on performance while printing is globally disabled, which is the default 
behavior. 

Print requests are buffered in an internal buffer, the size of  which can be specified 
with rtContextSetPrintBufferSize.  Overflow of  this buffer will cause 
truncation of  the output stream.  The output stream is printed to the standard 
output after all computation has completed but before rtContextLaunch has 
returned. 

RTcontext context = ...; 

rtContextSetPrintEnabled( context, 1 ); 

rtContextSetPrintBufferSize( context, 4096 ); 

Within an OptiX program, the rtPrintf function works similarly to C's 

printf.  Each invocation of  rtPrintf will be atomically deposited into the 
print output buffer, but separate invocations by the same thread or by different 
threads will be interleaved arbitrarily. 

rtDeclareVariable( uint2, launch_index, rtLaunchIndex, 

); 

RT_PROGRAM void any_hit() 

{ 

   rtPrintf( "Hello from index %u, %u!\n", 
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            launch_index.x, launch_index.y );  

} 

The context also serves as the outermost scope for OptiX variables.  Variables 
declared via rtContextDeclareVariable are available to all OptiX objects 
associated with the given context.  To avoid name conflicts, existing variables may 
be queried with either rtContextQueryVariable (by name) or 

rtContextGetVariable (by index), and removed with 

rtContextRemoveVariable.   

rtContextValidate can be used at any point in the setup process to check 
the state validity of  a context and all of  its associated OptiX objects.  This will 
include checks for the presence of  necessary programs (e.g., an intersection 
program for a geometry node), invalid internal state such as unspecified children in 
graph nodes and the presence of  variables referred to by all specified programs.  
Validation is always implicitly performed upon a context launch. 

rtContextCompile can be used to explicitly request a compilation of  the 
computation kernel associated with a context object.  Use of  
rtContextCompile is not strictly necessary since any changes to a context's 
scene specification or programs will cause a compilation upon the next invocation 
of  rtContextLaunch.  rtContextCompile does allow the user to control 
the timing of  the compilation, but the context should normally be finalized before 
compilation because any subsequent changes will cause a recompile within 
rtContextLaunch. 

rtContextSetTimeoutCallback specifies a callback function of  type 

RTtimeoutcallback that is called at a specified maximum frequency from 
OptiX API calls that can run long, such as acceleration structure builds, 
compilation, and kernel launches. This allows the application to update its interface 
or perform other tasks. The callback function may also ask OptiX to cease its 
current work and return control to the application. This request is complied with as 
soon as possible. Output buffers expected to be written to by an 
rtContextLaunch are left in an undefined state, but otherwise OptiX tracks 
what tasks still need to be performed and resumes cleanly in subsequent API calls. 

// Return 1 to ask for abort, 0 to continue. 

// An RTtimeoutcallback. 

int CBFunc() 

{ 

  update_gui(); 

 

  return bored_yet(); 

} 

 

… 

// Call CBFunc at most once every 100 ms. 

rtContextSetTimeoutCallback( context, CBFunc, 0.1 ); 

rtContextGetErrorString can be used to get a description of  any failures 
occurring during context state setup, validation or launch execution. 
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3.2. Buffers 

OptiX uses buffers to pass data between the host and the device.  Buffers are 
created by the host prior to invocation of  rtContextLaunch using the 

rtBufferCreate function.  This function also sets the buffer type as well as 
optional flags. The type and flags are specified as a bitwise OR combination. 

The buffer type determines the direction of  data flow between host and device.  Its 
options are enumerated by RTbuffertype: 

 RT_BUFFER_INPUT - Only the host may write to the buffer.  Data is 
transferred from host to device and device access is restricted to be read-only. 

 RT_BUFFER_OUTPUT - The converse of  RT_BUFFER_INPUT.  Only the 
device may write to the buffer.  Data is transferred from device to host. 

 RT_BUFFER_INPUT_OUTPUT - Allows read-write access from both the host 
and the device.   

Buffer flags specify certain buffer characteristics and are enumerated by 
RTbufferflags: 

 RT_BUFFER_GPU_LOCAL - Can only be used in combination with 

RT_BUFFER_INPUT_OUTPUT. This restricts the host to write operations 
as the buffer is not copied back from the device to the host. The device is 
allowed read-write access. However, writes from multiple devices are not 
coherent, as a separate copy of  the buffer resides on each device. 

Before using a buffer, its size, dimensionality and element format must be specified.  
The format can be set and queried with rtBuffer{Get|Set}Format and 

format options are enumerated by the RTformat type.  Formats exist for C and 

CUDA C data types such as unsigned int and float3.  Buffers of  arbitrary 

elements can be created by choosing the format RT_FORMAT_USER and 

specifying an element size with the rtBufferSetElementSize function.  The 

size of  the buffer is set with rtBufferSetSize{1,2,3}D which also 
specifies the dimensionality implicitly. 

RTcontext context = ...; 

RTbuffer buffer; 

typedef struct { float r; float g; float b; } rgb;  

rtBufferCreate( context, RT_BUFFER_INPUT_OUTPUT, 

&buffer ); 

rtBufferSetFormat( RT_FORMAT_USER ); 

rtBufferSetElementSize( sizeof(rgb) ); 

rtBufferSetSize2D( buffer, 512, 512 ); 

Host access to the data stored within a buffer is performed with the 
rtBufferMap function.  This function returns a pointer to a one dimensional 
array representation of  the buffer data.  All buffers must be unmapped via 
rtBufferUnmap before context validation will succeed. 

// Using the buffer created above 

unsigned int width, height; 

rtBufferGetSize2D( buffer, &width, &height ); 

void* data; 

rtBufferMap( buffer, &data ); 
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rgb* rgb_data = (rgb*)data; 

for( unsigned int i = 0; i < width*height; ++I ) { 

    rgb_data[i].r = rgb_data[i].g = rgb_data[i].b = 

0.0f; 

} 

rtBufferUnmap( buffer ); 

Access to buffers within OptiX programs uses a simple array syntax.  The two 
“template” arguments in the declaration below are the element type and the 
dimensionality, respectively. 

rtBuffer<rgb, 2> buffer; 

... 

uint2 index = ...; 

float r = buffer[index].r; 

3.3. Textures 

OptiX textures provide support for common texture mapping functionality 
including texture filtering, various wrap modes, and texture sampling.  
rtTextureSamplerCreate is used to create texture objects.  Each texture 
object is associated with one or more buffers containing the texture data.  The 
buffers may be 1D, 2D or 3D and can be set with 
rtTextureSamplerSetBuffer. 

rtTextureSamplerSetFilteringModes can be used to set the filtering 
methods for minification, magnification and mipmapping.  Wrapping for texture 
coordinates outside of  [0, 1] can be specified per-dimension with 
rtTextureSamplerSetWrapMode.  The maximum anisotropy for a given 

texture can be set with rtTextureSamplerSetMaxAnisotropy.  A value 
greater than 0 will enable anisotropic filtering at the specified value.  
rtTextureSamplerSetReadMode can be used to request all texture read 
results be automatically converted to normalized float values. 

The OptiX API has been designed to allow support for texture arrays and mip-
mapping via the rtTextureSamplerSetArraySize, 

rtTextureSamplerSetMipLevelCount and 

rtTextureSamplerSetIndexingMode.  However, OptiX 2.0 supports 
only a single mip level and a single element texture array.  Future releases will fully 
support these features. 

RTcontext context = ...; 

RTbuffer tex_buffer = ...; // 2D buffer 

RTtexturesampler tex_sampler; 

rtTextureSamplerCreate( context, &tex_sampler ); 

rtTextureSamplerSetWrapMode( tex_sampler, 0, 

                             RT_WRAP_CLAMP_TO_EDGE ); 

rtTextureSamplerSetWrapMode( tex_sampler, 1,  

                             RT_WRAP_CLAMP_TO_EDGE ); 

rtTextureSamplerSetFilteringModes( tex_sampler,  

                                   RT_FILTER_LINEAR, 

                                   RT_FILTER_LINEAR,  
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                                   RT_FILTER_NONE ); 

rtTextureSamplerSetIndexingMode( tex_sampler,  

                 

RT_TEXTURE_INDEX_NORMALIZED_COORDINATES ); 

rtTextureSamplerSetReadMode( tex_sampler, 

                        

RT_TEXTURE_READ_NORMALIZED_FLOAT ); 

rtTextureSamplerSetMaxAnisotropy( tex_sampler, 1.0f ); 

rtTextureSamplerSetMipLevelCount( tex_sampler, 1 ); 

rtTextureSamplerSetArraySize( tex_sampler, 1 ); 

rtTextureSamplerSetBuffer( tex_sampler, 0, 0, 

tex_buffer ); 

 

OptiX programs can access texture data with CUDA C's built-in tex1D, tex2D 

and tex3D functions. 

rtTextureSampler<uchar4, 2, 

cudaReadModeNormalizedFloat> t; 

... 

float2 tex_coord = ...; 

float4 value = tex2D( t, tex_coord.x, tex_coord.y ); 

As of  version 3.0, OptiX supports bindless textures.  Bindless textures allow OptiX 
programs to reference textures without having to bind them to specific variables.  
This is accomplished through the use of  texture IDs. 

Using bindless textures, it is possible to dynamically switch between multiple 
textures without the need to explicitly declare all possible textures in a program and 
without having to manually implement switching code.  The set of  textures being 
switched on can have varying attributes, such as wrap mode, and varying sizes, 
providing increased flexibility over texture arrays. 

To obtain a device handle from an existing texture sampler, 
rtTextureSamplerGetId can be used: 

RTtexturesampler tex_sampler = ...; 

 

int tex_id; 

rtTextureSamplerGetId( tex_sampler, &tex_id ); 

A texture ID value is immutable and is valid until the destruction of  its associated 
texture sampler. In order to make texture IDs available to OptiX programs, input 
buffers or OptiX variables can be used: 

RTbuffer tex_id_buffer = ...; // 1D buffer 

 

unsigned int index = ...; 

 

void* tex_id_data; 

rtBufferMap( tex_id_buffer, &tex_id_data ); 

((int*)tex_id_data)[index] = tex_id; 

rtBufferUnmap( tex_id_buffer ); 



 

 
   
OptiX Programming Guide Version 3.0 17 

Similar to CUDA C’s texture functions, OptiX programs can access textures in a 
bindless way with rtTex1D<>,  rtTex2D<>, and rtTex3D<> functions: 

 

rtBuffer<int, 1> tex_id_buffer; 

 

unsigned int index = ...; 

 

int tex_id = tex_id_buffer[index]; 

float2 tex_coord = ...; 

float4 value = rtTex2D<float4>( tex_id, tex_coord.x, 

tex_coord.y ); 

For further discussion of  using textures within OptiX programs see Section 4.1. 

 

3.4. Graph Nodes 

When a ray is traced from a program using the rtTrace function, a node is given 
that specifies the root of  the graph.  The host application creates this graph by 
assembling various types of  nodes provided by the OptiX API.  The basic structure 
of  the graph is a hierarchy, with nodes describing geometric objects at the bottom, 
and collections of  objects at the top. 

The graph structure is not meant to be a scene graph in the classical sense.  Instead, 
it serves as a way of  binding different programs or actions to portions of  the scene.  
Since each invocation of  rtTrace specifies a root node, different trees or subtrees 
may be used.  For example, shadowing objects or reflective objects may use a 
different representation – for performance or for artistic effect. 

Graph nodes are created via rt*Create calls, which take the Context as a 
parameter. Since these graph node objects are owned by the context, rather than by 
their parent node in the graph, a call to rt*Destroy will delete that object’s 
variables, but not do any reference counting or automatic freeing of  its child nodes. 

Figure 1 shows an example of  what a graph might look like.  The following sections 
will describe the individual node types. 
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Figure 1 A sample node graph. 

3.4.1. Geometry 
A geometry node is the fundamental node to describe a geometric object: a 
collection of  user-defined primitives against which rays can be intersected.  The 
number of  primitives contained in a geometry node is specified using 
rtGeometrySetPrimitiveCount. 

To define the primitives, an intersection program is assigned to the geometry node 

using rtGeometrySetIntersectionProgram.  The input parameters to 
an intersection program are a primitive index and a ray, and it is the program’s job to 
return the intersection between the two.  In combination with program variables, 
this provides the necessary mechanisms to define any primitive type that can be 
intersected against a ray.  A common example is a triangle mesh, where the 
intersection program reads a triangle’s vertex data out of  a buffer (passed to the 
program via a variable) and performs a ray-triangle intersection. 

In order to build an acceleration structure over arbitrary geometry, it is necessary for 
OptiX to query the bounds of  individual primitives.  For this reason, a separate 
bounds program must be provided using 
rtGeometrySetBoundingBoxProgram.  This program simply computes 
bounding boxes of  the requested primitives, which are then used by OptiX as the 
basis for acceleration structure construction. 

Geometry nodes can be fully dynamic, i.e. the number of  primitives as well as the 
variables on which the intersection and bounding box programs depend can vary 
between calls to rtContextLaunch.  Whenever this is the case, acceleration 
structures containing references to the modified geometry node must be notified, 
which is achieved by calling rtGeometryMarkDirty.  For more information 
on acceleration structure rebuilds, see Section 3.5. 

The following example shows how to construct a geometry object describing a 
sphere, using a single primitive.  The intersection and bounding box program are 
assumed to depend on a single parameter variable specifying the sphere radius: 

RTgeometry geometry; 
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RTvariable variable; 

 

// Set up geometry object. 

rtGeometryCreate( context, &geometry ); 

rtGeometrySetPrimitiveCount( geometry, 1 ); 

rtGeometrySetIntersectionProgram( geometry,  

                                  sphere_intersection 

); 

rtGeometrySetBoundingBoxProgram( geometry, 

                                 sphere_bounds ); 

 

// Declare and set the radius variable. 

rtGeometryDeclareVariable( geometry, "radius", 

&variable ); 

rtVariableSet1f( variable, 10.0f ); 

3.4.2. Material 
A material encapsulates the actions that are taken when a ray intersects a primitive 
associated with a given material.  Examples for such actions include: computing a 
reflectance color, tracing additional rays, ignoring an intersection, and terminating a 
ray.  Arbitrary parameters can be provided to materials by declaring program 
variables. 

Two types of  programs may be assigned to a material, closest hit programs and any 
hit programs.  The two types differ in when and how often they are executed.  The 
closest hit program, which is similar to a shader in a classical rendering system, is 
executed at most once per ray, for the closest intersection of  a ray with the scene.  It 
typically performs actions that involve texture lookups, reflectance color 
computations, light source sampling, recursive ray tracing, and so on, and stores the 
results in a ray payload data structure. 

The any hit program is executed for each potential closest intersection found during 
ray traversal.  The intersections for which the program is executed may not be 
ordered along the ray, but eventually all intersections of  a ray with the scene can be 
enumerated if  required (by calling rtIgnoreIntersection on each of  them).  
Typical uses of  the any hit program include early termination of  shadow rays (using 
rtTerminateRay) and binary transparency, e.g., by ignoring intersections based 
on a texture lookup. 

It is important to note that both types of  programs are assigned to materials per ray 
type, which means that each material can actually hold more than one closest hit or 
any hit program.  This is useful if  an application can identify that a certain kind of  
ray only performs specific actions.  For example, a separate ray type may be used for 
shadow rays, which are only used to determine binary visibility between two points 
in the scene.  In this case, a simple any hit program attached to all materials under 
that ray type index can immediately terminate such rays, and the closest hit program 
can be omitted entirely.  This concept allows for highly efficient specialization of  
individual ray types. 

The closest hit program is assigned to the material by calling 
rtMaterialSetClosestHitProgram, and the any hit program is assigned 

with rtMaterialSetAnyHitProgram.  If  a program is omitted, an empty 
program is the default. 
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3.4.3. GeometryInstance 
A geometry instance represents a coupling of  a single geometry node with a set of  
materials.  The geometry object the instance refers to is specified using 
rtGeometryInstanceSetGeometry.  The number of  materials associated 

with the instance is set by rtGeometryInstanceSetMaterialCount, and 
the individual materials are assigned with 
rtGeometryInstanceSetMaterial.  The number of  materials that must 
be assigned to a geometry instance is determined by the highest material index that 
may be reported by an intersection program of  the referenced geometry. 

Note that multiple geometry instances are allowed to refer to a single geometry 
object, enabling instancing of  a geometric object with different materials.  Likewise, 
materials can be reused between different geometry instances. 

This example configures a geometry instance so that its first material index is 
mat_phong and the second one is mat_diffuse, both of  which are assumed 

to be rtMaterial objects with appropriate programs assigned.  The instance is 

made to refer to the rtGeometry object triangle_mesh. 

RTgeometryinstance ginst; 

 

rtGeometryInstanceCreate( context, &ginst ); 

rtGeometryInstanceSetGeometry( ginst, triangle_mesh ); 

 

rtGeometryInstanceSetMaterialCount( ginst, 2 ); 

rtGeometryInstanceSetMaterial( ginst, 0, mat_phong ); 

rtGeometryInstanceSetMaterial( ginst, 1, mat_diffuse 

); 

3.4.4. GeometryGroup 
A geometry group is a container for an arbitrary number of  geometry instances.  
The number of  contained geometry instances is set using 
rtGeometryGroupSetChildCount, and the instances are assigned with 

rtGeometryGroupSetChild.  Each geometry group must also be assigned an 

acceleration structure using rtGeometryGroupSetAcceleration (see 
Section 3.5). 

The minimal sample use case for a geometry group is to assign it a single geometry 
instance: 

RTgeometrygroup geomgroup; 

 

rtGeometryGroupCreate( context, &geomgroup ); 

rtGeometryGroupSetChildCount( geomgroup, 1 ); 

rtGeometryGroupSetChild( geomgroup, 0, 

geometry_instance ); 

Multiple geometry groups are allowed to share children, that is, a geometry instance 
can be a child of  more than one geometry group. 
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3.4.5. Group 
A group represents a collection of  higher level nodes in the graph.  They are used to 
compile the graph structure which is eventually passed to rtTrace for 
intersection with a ray. 

A group can contain an arbitrary number of  child nodes, which must themselves be 

of  type rtGroup, rtGeometryGroup, rtTransform, or rtSelector.  

The number of  children in a group is set by rtGroupSetChildCount, and the 

individual children are assigned using rtGroupSetChild.  Every group must 

also be assigned an acceleration structure via rtGroupSetAcceleration. 

A common use case for groups is to collect several geometry groups which 
dynamically move relative to each other.  The individual position, rotation, and 
scaling parameters can be represented by transform nodes, so the only acceleration 
structure that needs to be rebuilt between calls to rtContextLaunch is the one 
for the top level group.  This will usually be much cheaper than updating 
acceleration structures for the entire scene. 

Note that the children of  a group can be shared with other groups, that is, each 
child node can also be the child of  another group (or of  any other graph node for 
which it is a valid child).  This allows for very flexible and lightweight instancing 
scenarios, especially in combination with shared acceleration structures (see Section 
3.5). 

3.4.6. Transform 
A transform node is used to represent a projective transformation of  its underlying 
scene geometry.  The transform must be assigned exactly one child of  type 
rtGroup, rtGeometryGroup, rtTransform, or rtSelector, using 

rtTransformSetChild.  That is, the nodes below a transform may simply be 
geometry in the form of  a geometry group, or a whole new subgraph of  the scene. 

The transformation itself  is specified by passing a 4×4 floating point matrix 
(specified as a 16-element one-dimensional array) to rtTransformSetMatrix.  
Conceptually, it can be seen as if  the matrix were applied to all the underlying 
geometry.  However, the effect is instead achieved by transforming the rays 
themselves during traversal.  This means that OptiX does not rebuild any 
acceleration structures when the transform changes. 

This example shows how a transform object with a simple translation matrix is 
created: 

RTtransform transform; 

const float x=10.0f, y=20.0f, z=30.0f; 

 

// Matrices are row-major. 

const float m[16] = { 1, 0, 0, x, 

                      0, 1, 0, y, 

                      0, 0, 1, z, 

                      0, 0, 0, 1 }; 

 

rtTransformCreate( context, &transform ); 

rtTransformSetMatrix( transform, 0, m, 0 ); 
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Note that the transform child node may be shared with other graph nodes. That is, a 
child node of  a transform may be a child of  another node at the same time.  This is 
often useful for instancing geometry. 

3.4.7. Selector 
A selector is similar to a group in that it is a collection of  higher level graph nodes.  
The number of  nodes in the collection is set by rtSelectorSetChildCount, 

and the individual children are assigned with rtSelectorSetChild.  Valid 

child types are rtGroup, rtGeometryGroup, rtTransform, and 

rtSelector. 

The main difference between selectors and groups is that selectors do not have an 
acceleration structure associated with them.  Instead, a visit program is specified 
with rtSelectorSetVisitProgram.  This program is executed every time a 
ray encounters the selector node during graph traversal.  The program specifies 
which children the ray should continue traversal through by calling 

rtIntersectChild. 

A typical use case for a selector is dynamic (i.e. per-ray) level of  detail: an object in 
the scene may be represented by a number of  geometry nodes, each containing a 
different level of  detail version of  the object.  The geometry groups containing 
these different representations can be assigned as children of  a selector.  The visit 
program can select which child to intersect using any criterion (e.g. based on the 
footprint or length of  the current ray), and ignore the others. 

As for groups and other graph nodes, child nodes of  a selector can be shared with 
other graph nodes to allow flexible instancing. 

 

3.5. Acceleration Structures for Ray Tracing 

Acceleration structures are an important tool for speeding up the traversal and 
intersection queries for ray tracing, especially for large scene databases.  Most 
successful acceleration structures represent a hierarchical decomposition of  the 
scene geometry.  This hierarchy is then used to quickly cull regions of  space not 
intersected by the ray. 

There are many different types of  acceleration structures, each with their own 
advantages and drawbacks.  Furthermore, different scenes require different kinds of  
acceleration structures for optimal performance (e.g., static vs. dynamic scenes, 
generic primitives vs. triangles, and so on).  The most common tradeoff  is 
construction speed vs. ray tracing performance, and extreme solutions exist on both 
ends of  the spectrum.  For example, a high quality kd-tree or SBVH builder can 
take minutes to construct its acceleration structure.  Once finished, though, rays can 
be traced more efficiently than with other types of  acceleration structures, which in 
turn might be much faster to construct. 

No single type of  acceleration structure is optimal for all scenes.  To allow an 
application to balance the tradeoffs, OptiX lets you choose between several kinds of  
supported structures.  You can even mix and match different types of  acceleration 
structures within the same node graph. 
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3.5.1. Acceleration objects in the Node Graph 
Acceleration structures are individual API objects in OptiX, called 
rtAcceleration.  Once an acceleration object is created with 

rtAccelerationCreate, it is assigned to either a group (using 

rtGroupSetAcceleration) or a geometry group (using 

rtGeometryGroupSetAcceleration).  Every group and geometry group 
in the node graph needs to have an acceleration object assigned for ray traversal to 
intersect those nodes. 

This example creates a geometry group and an acceleration structure and connects 
the two: 

RTgeometrygroup geomgroup; 

RTacceleration accel; 

 

rtGeometryGroupCreate( context, &geomgroup ); 

rtAccelerationCreate( context, &accel ); 

rtGeometryGroupSetAcceleration( geomgroup, accel ); 

By making use of  groups and geometry groups when assembling the node graph, 
the application has a high level of  control over how acceleration structures are 
constructed over the scene geometry.  If  one considers the case of  several geometry 
instances in a scene, there are a number of  ways they can be placed in groups or 
geometry groups to fit the application’s use case. 

For example, Figure 2 places all the geometry instances in a single geometry group.  
An acceleration structure on a geometry group will be constructed over the 
individual primitives defined by the collection of  child geometry instances.  This will 
allow OptiX to build an acceleration structure which is as efficient as if  the 
geometries of  the individual instances had been merged into a single object. 

A different approach to managing multiple geometry instances is shown in Figure 3.  
Each instance is placed in its own geometry group, i.e. there is a separate 
acceleration structure for each instance.  The resulting collection of  geometry 
groups is aggregated in a top level group, which itself  has an acceleration structure.  
Acceleration structures on groups are constructed over the bounding volumes of  
the child nodes.  Because the number of  child nodes is usually relatively low, high 
level structures are typically quick to update.  The advantage of  this approach is that 
when one of  the geometry instances is modified, the acceleration structures of  the 
other instances need not be rebuilt.  However, because higher level acceleration 
structures introduce an additional level of  complexity and are built only on the 
coarse bounds of  their group’s children, the graph in Figure 3 will likely not be as 
efficient to traverse as the one in Figure 2.  Again, this is a tradeoff  the application 
needs to balance, e.g. in this case by considering how frequently individual geometry 
instances will be modified. 
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Figure 2 Multiple geometry instances in a geometry group 

 

Figure 3 Multiple geometry instances, each in a separate geometry group 

3.5.2. Builders and Traversers 
An rtAcceleration consists of  a builder and a traverser.  The builder is 
responsible for collecting input geometry (in most cases, this geometry is the 
bounding boxes created by geometry nodes’ bounding box programs) and 
computing a data structure that allows a traverser to accelerate a ray-scene 
intersection query. Builders and traversers are not application-defined programs. 
Instead, the application chooses an appropriate builder and its corresponding 
traverser from Table 2:
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Builder / Traverser Description 

Sbvh / Bvh or 

BvhCompact 

The Split-BVH (SBVH) is a high quality bounding volume hierarchy.  
While build times and memory footprint are highest, it is usually the 
method of choice for static geometry due to its high ray tracing 
performance. 

Improvements over regular BVHs are especially visible if the geometry 
is non-uniform (e.g. triangles of different sizes).  This builder can be 
used for any type of geometry, but for optimal performance with 
triangle geometry, specialized properties should be set (see Table 3)1. 

Bvh / Bvh or 

BvhCompact2 

The Bvh builder constructs a classic bounding volume hierarchy.  It 
focuses on quality over construction performance and delivers a good 
middle ground between the Sbvh and MedianBvh.  It also supports 

refitting for fast incremental updates (see Table 3). 

Bvh is often the best choice for acceleration structures built over 
groups. 

MedianBvh / 

Bvh or 

BvhCompact 

The MedianBvh builder uses a fast construction scheme to produce a 
medium-quality bounding volume hierarchy.  It is typically useful for 
dynamic and semi-dynamic content, as well as for acceleration 
structures on groups. 

Lbvh / Bvh or 

BvhCompact 

The Lbvh builder uses the new HLBVH2 algorithm3 to perform a very 
fast GPU-based bounding volume hierarchy build.  It is ideal for many 
applications including very large or animated scenes where acceleration 
construction time dominates run time. 

TriangleKdTree 

/ KdTree 

This builder constructs a high quality kd-tree, which in most cases is 
comparable to the SBVH in ray tracing performance.  Build times and 
memory footprint are usually higher for the kd-tree.  This builder is 
specialized for triangle geometry and thus needs to be configured using 
certain properties (see Table 3). 

NoAccel / 

NoAccel 

This is a dummy builder which does not construct an actual 
acceleration structure.  Traversal loops over all elements and intersects 
each one with the ray.  This is very inefficient for anything but very 
simple cases, but can sometimes outperform real acceleration 
structures, e.g. on a group with very few child nodes. 

                                                      

1 More details on the SBVH can be found in Martin Stich, Heiko Friedrich, Andreas 
Dietrich. Spatial Splits in Bounding Volume Hierarchies. 
http://www.nvidia.com/object/nvidia_research_pub_012.html 

2 The BvhCompact traverser compresses the BVH data by a factor of four before uploading 
to the device and uses the compressed data structure in real-time during traversal of a 
bounding volume hierarchy. It is typically useful for large datasets to minimize the number 
of page misses when virtual memory is turned on. 

3More information on the HLBVH2 can be found in Kirill Garanzha, Jacopo Pantaleoni, 
David McAllister. Simpler and Faster HLBVH with Work Queues. 
http://research.nvidia.com/publication/simpler-and-faster-hlbvh-work-queues 

http://www.nvidia.com/object/nvidia_research_pub_012.html
http://research.nvidia.com/publication/simpler-and-faster-hlbvh-work-queues
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Table 2 Supported builders and traversers 

 

Table 2 shows the builders and traversers currently available in OptiX.  A builder is 
set using rtAccelerationSetBuilder, and the corresponding traverser, 
which must be compatible with the builder, is set with 
rtAccelerationSetTraverser.  The builder and traverser can be changed 
at any time; switching builders will cause an acceleration structure to be flagged for 
rebuild. 

This example shows a typical initialization of  an acceleration object: 

RTacceleration accel; 

 

rtAccelerationCreate( context, &accel ); 

rtAccelerationSetBuilder( accel, "Bvh" ); 

rtAccelerationSetTraverser( accel, "Bvh" ); 
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3.5.3. Properties 
Fine-tuning acceleration structure construction can be useful depending on the 
situation.  For this purpose, builders expose various named properties, which are 
listed in Table 3: 

 

Property Available 

in Builder 

Description 

refine Bvh 

Lbvh 

MedianBvh 

The number of BVH refinement 
passes to perform in order to 
improve BVH quality. Refinement 
can be effective when the initial 
BVH build was heavily optimized 
for build speed (e.g. when using the 
Lbvh builder). 

The default is “0”. 

refit Bvh If set to “1”, the builder will only 
readjust the node bounds of the 
bounding volume hierarchy instead 
of constructing it from scratch.  
Refit is only effective if there is an 
initial BVH already in place, and 
the underlying geometry has 
undergone relatively modest 
deformation.  In this case, the 
builder delivers a very fast BVH 
update without sacrificing too 
much ray tracing performance. 

The default is “0”. 

vertex_buffer_name Sbvh 

TriangleKdTree 

The name of the buffer variable 
holding triangle vertex data.  Each 
vertex consists of 3 floats.  
Mandatory for 

TriangleKdTree, optional for 

Sbvh (but recommended if the 
geometry consists of triangles). 

The default is “vertex_buffer”. 

vertex_buffer_stride Sbvh 

TriangleKdTree 

The offset between two vertices in 
the vertex buffer, given in bytes. 

The default value is “0”, which 
assumes the vertices are tightly 
packed. 
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Property Available 

in Builder 

Description 

index_buffer_name Sbvh 

TriangleKdTree 

The name of the buffer variable 
holding vertex index data.  The 

entries in this buffer are indices of 
type int, where each index refers 

to one entry in the vertex buffer.  A 
sequence of three indices 
represents one triangle.  If no index 
buffer is given, the vertices in the 
vertex buffer are assumed to be a 
list of triangles, i.e. every 3 vertices 
in a row form a triangle. 

The default is “index_buffer”. 

index_buffer_stride Sbvh 

TriangleKdTree 

The offset between two indices in 
the index buffer, given in bytes. 

The default value is “0”, which 
assumes the indices are tightly 
packed. 

Table 3 Acceleration structure properties 

Properties are specified using rtAccelerationSetProperty.  Their values 
are given as strings, which are parsed by OptiX.  Properties take effect only when an 
acceleration structure is actually rebuilt.  Setting or changing the property does not 
itself  mark the acceleration structure for rebuild; see the next section for details on 
how to do that. Properties not recognized by a builder will be silently ignored. 

// Enable fast refitting on a BVH acceleration. 

rtAccelerationSetProperty( accel, "refit", "1" ); 

3.5.4. Acceleration Structure Builds 
In OptiX, acceleration structures are flagged (marked “dirty”) when they need to be 
rebuilt.  During rtContextLaunch, all flagged acceleration structures are built 

before ray tracing begins.  Every newly created rtAcceleration object is 
initially flagged for construction.   

An application can decide at any time to explicitly mark an acceleration structure for 
rebuild.  For example, if  the underlying geometry of  a geometry group changes, the 
acceleration structure attached to the geometry group must be recreated.  This is 
achieved by calling rtAccelerationMarkDirty.  This is also required if, for 
example, new child geometry instances are added to the geometry group, or if  
children are removed from it. 

The same is true for acceleration structures on groups: adding or removing children, 
changing transforms below the group, etc., are operations which require the group’s 
acceleration to be marked as dirty.  As a rule of  thumb, every operation that causes a 
modification to the underlying geometry over which the structure is built (in the 
case of  a group, that geometry is the children’s axis-aligned bounding boxes) 
requires a rebuild.  However, no rebuild is required if, for example, some parts of  
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the graph change further down the tree, without affecting the bounding boxes of  
the immediate children of  the group. 

Note that the application decides independently for each single acceleration 
structure in the graph whether a rebuild is necessary.  OptiX will not attempt to 
automatically detect changes, and marking one acceleration structure as dirty will not 
propagate the dirty flag to any other acceleration structures.  Failure to mark 
acceleration structures as dirty when necessary may result in unexpected behavior – 
usually missing intersections or performance degradation. 

3.5.5. Caching Acceleration Data 
Depending on the choice of  builder and the complexity of  the underlying data, 
acceleration structure construction can be slow.  OptiX provides a way to extract 
data from already-built acceleration structures, which allows the application to store 
that data for later reuse. 

Acceleration data can be queried from an acceleration object using 

rtAccelerationGetData and can be restored using 

rtAccelerationSetData.  The following sample shows how to request data 
from an acceleration structure: 

RTsize size; 

void* data; 

 

rtAccelerationGetDataSize( accel, &size ); 

data = malloc( size ); 

rtAccelerationGetData( accel, data ); 

Note that data can only be extracted from an acceleration structure that is currently 
not flagged dirty (i.e. construction must have occurred), which guarantees that the 
data is valid.  Therefore, it can be useful to force an acceleration structure build 
without actually performing any ray tracing.  This can be done by calling 
rtContextLaunch with all dimension arguments set to zero: 

rtContextLaunch1D( context, 0, 0 ); 

The data returned by rtAccelerationGetData will include information such 
as the used builder, traverser, and properties.  Upon a successful call to 
rtAccelerationSetData, all these data points will be restored and the 
acceleration structure will be flagged as non-dirty, as if  a regular construction had 
been performed.  This means, for example, that the current builder set in an 
acceleration object may change due to a call to rtAccelerationSetData. 

Note, however, that it is only the information required to reconstruct the 
acceleration structure that is included in the returned data.  In particular, actual 
geometry data and graph information of  a group or geometry group are not 
included.  The application should ensure that the restored acceleration structure 
matches the underlying geometry or the ensuing behavior is undefined. 

It is also important to note that a well-written application should always be prepared 
for rtAccelerationSetData to fail.  Among the reasons for failure of  this 
call can be internal format changes from one version of  OptiX to another, or 
incompatibilities between different platforms.  It is usually straightforward to 
implement a correct handling of  this case by simply marking the acceleration 
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structure dirty if  the call fails, which will cause the acceleration structure to be built 
on the fly instead of  being reconstructed from cached data: 

if( rtAccelerationSetData(accel,data,size) != 

RT_SUCCESS ) 

{ 

  rtAccelerationMarkDirty( accel ); 

} 

3.5.6. Shared Acceleration Structures 
Mechanisms such as a graph node being attached as a child to multiple other graph 
nodes make composing the node graph flexible, and enable interesting instancing 
applications.  Instancing can be seen as inexpensive reuse of  scene objects or parts 
of  the graph by referencing nodes multiple times instead of  duplicating them. 

OptiX decouples acceleration structures as separate objects from other graph nodes.  
Hence, acceleration structures can naturally be shared between several groups or 
geometry groups, as long as the underlying geometry on which the structure is built 
is the same: 

// Attach one acceleration to multiple groups. 

rtGroupSetAcceleration( group1, accel ); 

rtGroupSetAcceleration( group2, accel ); 

rtGroupSetAcceleration( group3, accel ); 

Note that the application must ensure that each node sharing the acceleration 
structure has matching underlying geometry.  Failure to do so will result in 
undefined behavior.  Also, acceleration structures cannot be shared between groups 
and geometry groups. 

The capability of  sharing acceleration structures is a powerful concept to maximize 
efficiency, as shown in Figure 4.  The acceleration node in the center of  the figure is 
attached to both geometry groups, and both geometry groups reference the same 
geometry objects.  This reuse of  geometry and acceleration structure data minimizes 
both memory footprint and acceleration construction time.  Additional geometry 
groups could be added in the same manner at very little overhead. 
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Figure 4 Two geometry groups sharing an acceleration structure and the underlying 
geometry objects. 
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Chapter 4. 
Programs 

This chapter describes the different kinds of  OptiX programs, which provide 
programmatic control over ray intersection, shading, and other general computation 
in OptiX ray tracing kernels.  OptiX programs are associated with binding points 
serving different semantic roles during a ray tracing computation.  Like other 
concepts, OptiX abstracts programs through its object model as program objects. 

4.1. OptiX Program Objects 

The central theme of  the OptiX API is programmability.  OptiX programs are 
written in CUDA C, and specified to the API through a string or file containing 
PTX, the parallel thread execution virtual assembly language associated with CUDA.  

The nvcc compiler that is distributed with the CUDA SDK is used to create PTX 
in conjunction with the OptiX header files. 

These PTX files are then bound to Program objects via the host API.  Program 
objects can be used for any of  the OptiX program types discussed later in this 
section. 

4.1.1. Managing Program Objects 
OptiX provides two API entry points for creating Program objects: 
rtProgramCreateFromPTXString, and 

rtProgramCreateFromPTXFile.  The former creates a new Program object 
from a string of  PTX source code.  The latter creates a new Program object from a 
file of  PTX source on disk: 

RTcontext context = ...; 

const char *ptx_filename = ...; 

const char *program_name = ...; 

RTprogram program = ...; 

rtProgramCreateFromPTXFile( context, ptx_filename, 

                            function_name, &program ); 

In this example, ptx_filename names a file of  PTX source on disk, and 

function_name names a particular function of  interest within that source.  If  
the program is ill-formed and cannot compile, these entry points return an error 
code. 

Program objects may be checked for completeness using the 

rtProgramValidate function, as the following example demonstrates:



 

 
   
OptiX Programming Guide Version 3.0 33 

 

if( rtProgramValidate(context, program) != RT_SUCCESS 

) 

{ 

  printf( "Program is not complete." ); 

} 

An error code returned from rtProgramValidate indicates an error condition 
due to the program object or any other objects bound to it. 

Finally, the rtProgramGetContext function reports the context object 

owning the program object, while rtProgramDestroy invalidates the object 
and frees all resources related to it. 

4.1.2. Communication Through Variables 
OptiX program objects communicate with the host program through variables.  
Variables are declared in an OptiX program using the rtDeclareVariable 
macro: 

rtDeclareVariable( float, x, , ); 

This declaration creates a variable named x of  type float which is available to 
both the host program through the OptiX variable object API, and to the device 
program code through usual C language semantics.  Notice that the last two 
arguments are left blank in this example.  The commas must still be specified. 

Variables declared in this way may be read and written by the host program through 
the rtVariableGet* and rtVariableSet* family of  functions.  When 

variables are declared this way, they are implicitly const-qualified from the device 
program’s perspective.  If  communication from the program to the host is 
necessary, an rtBuffer should be used instead. 

As of  OptiX 2.0, variables may be declared inside arbitrarily nested namespaces to 
avoid name conflicts.  References from the host program to namespace-enclosed 
OptiX variables will need to include the full namespace. 

Program variables may also be declared with semantics.  Declaring a variable with a 
semantic binds the variable to a special value which OptiX manages internally over 
the lifetime of  the ray tracing kernel.  For example, declaring a variable with the 
rtCurrentRay semantic creates a special read-only program variable that 

mirrors the value of  the Ray currently being traced through the program flow: 

rtDeclareVariable( optix::Ray, ray, rtCurrentRay, ); 

Variables declared with a built-in semantic exist only during ray tracing kernel 
runtime and may not be modified or queried by the host program.  Unlike regular 
variables, some semantic variables may be modified by the device program. 

Declaring a variable with an annotation associates with it a read-only string which, for 
example, may be interpreted by the host program as a human-readable description 
of  the variable.  For example: 

rtDeclareVariable( float, shininess, , “The shininess 

of the sphere” ); 
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A variable’s annotation is the fourth argument of  rtDeclareVariable, 
following the variable’s optional semantic argument.  The host program may query a 
variable’s annotation with the rtVariableGetAnnotation function. 

4.1.3. Internally Provided Semantics 
OptiX currently manages four internal semantics for program variable binding.  
Table 4 summarizes in which types of  program these semantics are available, along 
with their access rules from device programs and a brief  description of  their 
meaning. 

Table 4 Semantic Variables 

4.1.4. Attribute Variables 
In addition to the semantics provided by OptiX, variables may also be declared with 
user-defined semantics called attributes.  Unlike built-in semantics, the value of  
variables declared in this way must be managed by the programmer.  Attribute 
variables provide a mechanism for communicating data between the intersection 
program and the shading programs (e.g., surface normal, texture coordinates).  

Name rtLaunchIndex rtCurrentRay rtPayload rtIntersectionDistance 

Access read only read only read/write read only 

Description The unique index 
identifying each thread 

launched by 

rtContextLaunch

{1|2|3}D. 

The state of the 
current ray. 

The state of the 
current ray’s 
payload of 

user-defined 
data. 

The parametric distance from the 
current ray’s origin to the closest 
intersection point yet discovered. 

Ray 
Generation 

Yes No No No 

Exception Yes No No No 

Closest Hit Yes Yes Yes Yes 

Any Hit Yes Yes Yes Yes 

Miss Yes Yes Yes No 

Intersection Yes Yes No Yes 

Bounding 
Box 

No No No No 

Visit Yes Yes Yes Yes 
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Attribute variables may only be written in an intersection program between calls to 
rtPotentialIntersection and rtReportIntersection.  Although 
OptiX may not find all object intersections in order along the ray, the value of  the 
attribute variable is guaranteed to reflect the value at the closest intersection at the 
time that the closest hit program is invoked.  For this reason, programs should use 
attribute variables (as opposed to the ray payload) to communicate information 
about the local hit point between intersection and shading programs. 

The following example declares an attribute variable of  type float3 named 
normal.  The semantic association of  the attribute is specified with the user-defined 
name normal_vec.  This name is arbitrary, and is the link between the variable 
declared here and another variable declared in the closest hit program.  The two 
attribute variables need not have the same name as long as their attribute names 
match. 

rtDeclareVariable( float3, normal, attribute 

normal_vec, ); 

4.1.5. Program Variable Scoping 
OptiX program variables can have their values defined in two ways: static 
initializations, and (more typically) by variable declarations attached to API objects.  
A variable declared with a static initializer will only use that value if  it does not find 
a definition attached to an API object.  A declaration with static initialization is 
written: 

rtDeclareVariable( float, x, , ) = 5.0f; 

The OptiX variable scoping rules provide a valuable inheritance mechanism that is 
designed to create compact representations of  material and object parameters.  To 
enable this, each program type also has an ordered list of  scopes through which it 
will search for variable definitions in order.  For example, a closest hit program that 
refers to a variable named color  will search the Program, GeometryInstance, Material 
and Context API objects for definitions created with the 
rt*DeclareVariable() functions, in that order.  Similar to scoping rules in a 
programming language, variables in one scope will shadow those in another scope. 
Table 5 summarizes the scopes that are searched for variable declarations for each 
type of  program. 

 

Ray Generation Program Context   

Exception Program Context   

Closest Hit Program GeometryInstance Material Context 

Any Hit Program GeometryInstance Material Context 

Miss Program Context   

Intersection Program GeometryInstance Geometry Context 

Bounding Box Program GeometryInstance Geometry Context 

Visit Program Node   



 

 
 

36 Version 3.0 OptiX Programming Guide 

Table 5 Scope search order for each type of program (from left to right) 

 

It is possible for a program to find multiple definitions for a variable in its scopes 
depending upon where the program is called.  For example, a closest hit program 
may be attached to several Material objects and reference a variable named shininess.  
We can attach a variable definition to the Material object as well as attach a variable 
definition to specific GeometryInstance objects that we create that reference that 
Material.   

During execution of  a specific GeometryInstance’s closest hit program, the value of  
shininess depends on whether the particular instance has a definition attached: if  the 
GeometryInstance defines shininess, then that value will be used.  Otherwise, the 
value will be taken from the Material object.  As you can see from Table 5 above, the 
program searches the GeometryInstance scope before the Material scope.  Variables 
with definitions in multiple scopes are said to be dynamic and may incur a 
performance penalty.  Dynamic variables are therefore best used sparingly. 

4.1.6. Program Variable Transformation 
Recall that rays have a projective transformation applied to them upon encountering 
Transform nodes during traversal.  The transformed ray is said to be in object space, 
while the original ray is said to be in world space.  

Programs with access to the rtCurrentRay semantic operate in the spaces 
summarized in Table 6: 

Ray Generation World  

Closest Hit  World 

Any Hit Object 

Miss World 

Intersection Object 

Visit Object 

Table 6 Space of rtCurrentRay for Each Program Type 

 

To facilitate transforming variables from one space to another, OptiX’s CUDA C 
API provides a set of  functions: 

__device__ float3 rtTransformPoint( RTtransformkind kind, 

                                    const float3& p ) 

__device__ float3 rtTransformVector( RTtransformkind kind, 

                                     const float3& v ) 

__device__ float3 rtTransformNormal( RTtransformkind kind, 

                                     const float3& n ) 

__device__ void rtGetTransform( RTtransformkind kind, 

                                float matrix[16] ) 
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The first three functions transform a float3, interpreted as a point, vector, or 
normal vector, from object to world space or vice versa depending on the value of  a 
RTtransformkind flag passed as an argument.  rtGetTransform returns 
the four-by-four matrix representing the current transformation from object to 
world space (or vice versa depending on the RTtransformkind argument).  For 

best performance, use the rtTransform*() functions rather than performing 

your own explicit matrix multiplication with the result of  rtGetTransform().   

A common use case of  variable transformation occurs when interpreting attributes 
passed from the intersection program to the closest hit program.  Intersection 
programs often produce attributes, such as normal vectors, in object space.  Should 
a closest hit program wish to consume that attribute, it often must transform the 
attribute from object space to world space: 

float3 n = rtTransformNormal( RT_OBJECT_TO_WORLD, normal ); 

4.2. Which OptiX calls are supported where? 

Not all OptiX function calls are supported in all types of  user provided programs.  
For example, it doesn’t make sense to spawn a new ray inside an intersection 
program, so this behavior is disallowed.  A complete table of  what device-side 
functions are allowed is given below: 
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rtTransform*   • • • • • • 
rtTrace •  •  •    
rtThrow •  • • • • • • 
rtPrint • • • • • • • • 
rtTerminateRay    • •    
rtIgnoreIntersection    •     
rtIntersectChild        • 
rtPotentialIntersection      •   
rtReportIntersection      •   
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4.3. Ray Generation Programs 

A ray generation program serves as the first point of  entry upon a call to 
rtContextLaunch{1|2|3}D.  As such, it serves a role analogous to the 

main function of  a C program.  Like C’s main function, any subsequent 
computation performed by the kernel, from casting rays to reading and writing from 
buffers, is spawned by the ray generation program.  However, unlike a serial C 
program, an OptiX ray generation program is executed many times in parallel – 

once for each thread implied by rtContextLaunch{1|2|3}D’s parameters. 

Each thread is assigned a unique rtLaunchIndex.  The value of  this variable 
may be used to distinguish it from its neighbors for the purpose of, e.g., writing to a 
unique location in an rtBuffer: 

rtBuffer<float, 1> output_buffer; 

rtDeclareVariable( unsigned int, index, rtLaunchIndex, 

); 

...; 

float result = ...; 

output_buffer[index] = result; 

In this case, the result is written to a unique location in the output buffer.  In 
general, a ray generation program may write to any location in output buffers, as 
long as care is taken to avoid race conditions between buffer writes. 

4.3.1. Entry Point Indices 
To configure a ray tracing kernel launch, the programmer must specify the desired 
ray generation program using an entry point index.  The total number of  entry points 
for a context is specified with rtContextSetEntryPointCount: 

RTcontext context = ...; 

unsigned int num_entry_points = ...; 

rtContextSetEntryPointCount( context, num_entry_points 

); 

OptiX requires that each entry point index created in this manner have a ray 
generation program associated with it.  A ray generation program may be associated 
with multiple indices.  Use the rtContextSetRayGenerationProgram 
function to associate a ray generation program with an entry point index in the 
range [0, num_entry_points): 

RTprogram prog = ...; 

// index is >= 0 and < num_entry_points 

unsigned int index = ...; 

rtContextSetRayGenerationProgram( context, index, prog 

); 

4.3.2. Launching a Ray Generation Program 
rtContextLaunch{1|2|3}D takes as a parameter the entry point index of  
the ray generation program to launch: 
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RTsize width = ...; 

rtContextLaunch1D( context, index, width ); 

If  no ray generation program has been associated with the entry point index 
specified by rtContextLaunch{1|2|3}D’s parameter, the launch will fail. 

4.3.3. Ray Generation Program Function Signature 
In CUDA C, ray generation programs return void and take no parameters.  Like all 
OptiX programs, ray generation programs written in CUDA C must be tagged with 
the RT_PROGRAM qualifier.  The following snippet shows an example ray 
generation program function prototype: 

RT_PROGRAM void ray_generation_program( void ); 

4.3.4. Example Ray Generation Program 
The following example ray generation program implements a pinhole camera model 
in a rendering application.  This example demonstrates that ray generation programs 
act as the gateway to all ray tracing computation by initiating traversal through the 
rtTrace function, and often store the result of  a ray tracing computation to an 
output buffer. 

Note the variables eye, U, V, and W.  Together, these four variables allow the host 
API to specify the position and orientation of  the camera. 

rtBuffer<uchar4, 2> output_buffer; 

rtDeclareVariable( uint2, index, rtLaunchIndex, ); 

rtDeclareVariable( rtObject, top_object, , ); 

rtDeclareVariable(float3,        eye, , ); 

rtDeclareVariable(float3,        U, , ); 

rtDeclareVariable(float3,        V, , ); 

rtDeclareVariable(float3,        W, , ); 

 

struct Payload 

{ 

  uchar4 result; 

}; 

 

RT_PROGRAM void pinhole_camera( void ) 

{ 

  uint2 screen = output_buffer.size(); 

 

  float2 d = make_float2( index ) / 

             make_float2( screen ) * 2.f - 1.f; 

  float3 origin = eye; 

  float3 direction = normalize( d.x*U + d.y*V + W ); 

   

  optix::Ray ray = 

    optix::make_Ray( origin, direction, 0, 

                     0.05f, RT_DEFAULT_MAX ); 

 

  Payload payload; 
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  rtTrace( top_object, ray, payload ); 

 

  output_buffer[index] = payload.result; 

} 

4.4. Exception Programs 

OptiX ray tracing kernels invoke an exception program when certain types of  serious 
errors are encountered.  Exception programs provide a means of  communicating to 
the host program that something has gone wrong during a launch. The information 
an exception program provides may be useful in avoiding an error state in a future 
launch or for debugging during application development. 

4.4.1. Exception Program Entry Point Association 
An exception program is associated with an entry point using the 
rtContextSetExceptionProgram function: 

RTcontext context = ...; 

RTprogram program = ...; 

// index is >= 0 and < num_entry_points 

unsigned int index = ...; 

rtContextSetExceptionProgram( context, index, program 

); 

Unlike with ray generation programs, the programmer need not associate an 
exception program with an entry point.  By default, entry points are associated with 
an internally provided exception program that silently ignores errors. 

As with ray generation programs, a single exception program may be associated with 
many different entry points. 

4.4.2. Exception Types 
OptiX detects a number of  different error conditions that result in exception 
programs being invoked. An exception is identified by its code, which is an integer 
defined by the OptiX API. For example, the exception code for the stack overflow 
exception is RT_EXCEPTION_STACK_OVERFLOW. 

The type or code of  a caught exception can be queried by calling 
rtGetExceptionCode from the exception program. More detailed 
information on the exception can be printed to the standard output using 
rtPrintExceptionDetails. 

In addition to the built in exception types, OptiX provides means to introduce user-
defined exceptions. Exception codes between RT_EXCEPTION_USER (0x400) 

and 0xFFFF are reserved for user exceptions. To trigger such an exception, 

rtThrow is used: 

// Define user-specified exception codes. 

#define MY_EXCEPTION_0 RT_EXCEPTION_USER + 0 

#define MY_EXCEPTION_1 RT_EXCEPTION_USER + 1 
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RT_PROGRAM void some_program() 

{ 

  ... 

  // Throw user exceptions from within a program. 

  if( condition0 ) 

    rtThrow( MY_EXCEPTION_0 ); 

  if( condition1 ) 

    rtThrow( MY_EXCEPTION_1 ); 

  ... 

} 

In order to control the runtime overhead involved in checking for error conditions, 
individual types of  exceptions may be switched on or off  using 

rtContextSetExceptionEnabled. Disabling exceptions usually results in 
faster performance, but is less safe. By default, only 
RT_EXCEPTION_STACK_OVERFLOW is enabled. During debugging, it is often 
useful to turn on all available exceptions. This can be achieved with a single call: 

... 

rtContextSetExceptionEnabled(context, 

RT_EXCEPTION_ALL, 1); 

... 

4.4.3. Exception Program Function Signature 
In CUDA C, exception programs return void, take no parameters, and use the 

RT_PROGRAM qualifier: 

RT_PROGRAM void exception_program( void ); 

4.4.4. Example Exception Program 
The following example code demonstrates a simple exception program which 
indicates a stack overflow error by outputting a special value to an output buffer 
which is otherwise used as a buffer of  pixels. In this way, the exception program 
indicates the rtLaunchIndex of  the failed thread by marking its location in a 
buffer of  pixels with a known color. Exceptions which are not caused by a stack 
overflow are reported by printing their details to the console. 

rtDeclareVariable( int, launch_index, rtLaunchIndex, 

); 

rtDeclareVariable( float3, error, , ) = 

make_float3(1,0,0); 

rtBuffer<float3, 2> output_buffer; 

 

RT_PROGRAM void exception_program( void ) 

{ 

  const unsigned int code = rtGetExceptionCode(); 

 

  if( code == RT_EXCEPTION_STACK_OVERFLOW ) 

    output_buffer[launch_index] = error; 

  else 
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    rtPrintExceptionDetails(); 

} 

4.5. Closest Hit Programs 

After a call to the rtTrace function, OptiX invokes a closest hit program once it 
identifies the nearest primitive intersected along the ray from its origin.  Closest hit 
programs are useful for performing primitive-dependent processing that should 
occur once a ray’s visibility has been established.  A closest hit program may 
communicate the results of  its computation by modifying per-ray data or writing to 
an output buffer.  It may also recursively call the rtTrace function.  For example, 
a computer graphics application might implement a surface shading algorithm with 
a closest hit program.   

4.5.1. Closest Hit Program Material Association 
A closest hit program is associated with each (material, ray_type) pair.  Each pair’s 
default program is a no-op.  This is convenient when an OptiX application requires 
many types of  rays but only a small number of  those types require special closest hit 
processing.   

The programmer may change an association with the 
rtMaterialSetClosestHitProgram function: 

RTmaterial material = ...; 

RTprogram program = ...; 

unsigned int type = ...; 

rtMaterialSetClosestHitProgram( material, type, 

program ); 

4.5.2. Closest Hit Program Function Signature 
In CUDA C, closest hit programs return void, take no parameters, and use the 

RT_PROGRAM qualifier: 

RT_PROGRAM void closest_hit_program( void ); 

4.5.3. Recursion in a Closest Hit Program 
Though the rtTrace function is available to all programs with access to the 

rtLaunchIndex semantic, a common use case of  closest hit programs is to 
perform recursion by tracing more rays upon identification of  the closest surface 
intersected by a ray.  For example, a computer graphics application might implement 
Whitted-style ray tracing by recursive invocation of  rtTrace and closest hit 
programs.  Care must be used to limit the recursion depth to avoid stack overflow. 

4.5.4. Example Closest Hit Program 
The following code example demonstrates a closest hit program that transforms the 
normal vector computed by an intersection program (not shown) from the 
intersected primitive’s local coordinate system to a global coordinate system.  The 
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transformed normal vector is returned to the calling function through a variable 
declared with the rtPayload semantic.  Note that this program is quite trivial; 
normally the transformed normal vector would be used by the closest hit program 
to perform some calculation (e.g., lighting).  See the OptiX Quickstart Guide for 
examples. 

rtDeclareVariable( float3, normal, attribute 

normal_vec, ); 

 

struct Payload 

{ 

  float3 result; 

}; 

 

rtDeclareVariable( Payload, ray_data, rtPayload, ); 

 

RT_PROGRAM void closest_hit_program( void ) 

{ 

  float3 norm; 

  norm = rtTransformNormal( RT_OBJECT_TO_WORLD, normal 

); 

  norm = normalize( norm ); 

  ray_data.result = norm; 

} 

 

4.6. Any Hit Programs 

Instead of  the closest intersected primitive, an application may wish to perform 
some computation for any primitive intersection that occurs along a ray cast during 

the rtTrace function; this usage model can be implemented using  any hit 
programs.  For example, a rendering application may require some value to be 
accumulated along a ray at each surface intersection. 

4.6.1. Any Hit Program Material Association 
Like closest hit programs, an any hit program is associated with each (material, 
ray_type) pair.  Each pair’s default association is with an internally-provided any hit 
program which implements a no-op. 

The rtMaterialSetAnyHitProgram function changes a (material, 

ray_type) pair’s association:  

RTmaterial material = ...; 

RTprogram program = ...; 

unsigned int type = ...; 

rtMaterialSetAnyHitProgram( material, type, program ); 
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4.6.2. Termination in an Any Hit Program 
A common OptiX usage pattern is for an any hit program to halt ray traversal upon 
discovery of  an intersection.  The any hit program can do this by calling 
rtTerminateRay.  This technique can increase performance by eliminating 
redundant traversal computations when an application only needs to determine 
whether any intersection occurs and identification of  the nearest intersection is 
irrelevant.  For example, a rendering application might use this technique to 
implement shadow ray casting, which is often a binary true or false computation. 

4.6.3. Any Hit Program Function Signature 
In CUDA C, any hit programs return void, take no parameters, and use the 

RT_PROGRAM qualifier: 

RT_PROGRAM void any_hit_program( void ); 

4.6.4. Example Any Hit Program 
The following code example demonstrates an any hit program that implements early 
termination of  shadow ray traversal upon intersection.  The program also sets the 
value of  a per-ray payload member, attenuation, to zero to indicate the 
material associated with the program is totally opaque. 

struct Payload 

{ 

  float attenuation; 

}; 

 

rtDeclareVariable( Payload, payload, rtPayload, ); 

 

RT_PROGRAM void any_hit_program( void ) 

{ 

  payload.attenuation = 0.f; 

 

  rtTerminateRay(); 

} 

4.7. Miss Programs 

When a ray traced by the rtTrace function intersects no primitive, a miss program 

is invoked.  Miss programs may access variables declared with the rtPayload 
semantic in the same way as closest hit and any hit programs. 

4.7.1. Miss Program Function Signature 
In CUDA C, miss programs return void,  take no parameters, and use the 

RT_PROGRAM qualifier: 

RT_PROGRAM void miss_program( void ); 
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4.7.2. Example Miss Program 
In a computer graphics application, the miss program may implement an 
environment mapping algorithm using a simple gradient, as this example 
demonstrates: 

rtDeclareVariable( float3, environment_light, , ); 

rtDeclareVariable( float3, environment_dark, , ); 

rtDeclareVariable( float3, up, , ); 

 

struct Payload 

{ 

  float3 result; 

}; 

 

rtDeclareVariable( Payload, payload, rtPayload, ); 

rtDeclareVariable( optix::Ray, ray, rtCurrentRay, ); 

 

RT_PROGRAM void miss(void) 

{ 

  float t = max( dot( ray.direction, up ), 0.0f ); 

  payload.result = lerp( environment_light, 

                         environment_dark, t ); 

} 

4.8. Intersection and Bounding Box Programs 

Intersection and bounding box programs represents geometry by implementing ray-
primitive intersection and bounding algorithms.  These program types are associated 
with and queried from Geometry objects using 

rtGeometrySetIntersectionProgram, 

rtGeometryGetIntersectionProgram, 

rtGeometrySetBoundingBoxProgram, and 

rtGeometryGetBoundingBoxProgram.   

4.8.1. Intersection and Bounding Box Program Function 
Signatures 

Like the previously discussed OptiX programs, in CUDA C, intersection and 
bounding box programs return void and use the RT_PROGRAM qualifier.  
Because Geometry objects are collections of  primitives, these functions require a 
parameter to specify the index of  the primitive of  interest to the computation.  This 
parameter is always in the range [0, N), where N is given by the argument to the 

rtGeometrySetPrimitiveCount function. 

Additionally, the bounding box program requires an array of  floats to store the 
result of  the bounding box computation, yielding these function signatures: 

RT_PROGRAM void intersection_program( int prim_index 

); 

RT_PROGRAM void bounding_box_program( int prim_index, 
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                                      float result[6] 

); 

4.8.2. Reporting Intersections 
Ray traversal invokes an intersection program when the current ray encounters one 
of  a Geometry object’s primitives.  It is the responsibility of  an intersection 
program to compute whether the ray intersects with the primitive, and to report the 
parametric t-value of  the intersection.  Additionally, the intersection program is 
responsible for computing and reporting any details of  the intersection, such as 
surface normal vectors, through attribute variables. 

Once the intersection program has determined the t-value of  a ray-primitive 
intersection, it must report the result by calling a pair of  OptiX functions, 
rtPotentialIntersection and rtReportIntersection: 

__device__ bool rtPotentialIntersection( float tmin ) 

__device__ bool rtReportIntersection( unsigned int 

material ) 

rtPotentialIntersection takes the intersection’s t-value as an argument.   
If  the t-value could potentially be the closest intersection of  the current traversal 
the function narrows the t-interval of  the current ray accordingly and returns true.  

If  the t-value lies outside the t-interval the function returns false, whereupon the 
intersection program may trivially return. 

If  rtPotentialIntersection returns true, the intersection program may 

then set any attribute variable values and call rtReportIntersection.  This 

function takes an unsigned int specifying the index of  a material that must be 
associated with an any hit and closest hit program.  This material index can be used 
to support primitives of  several different materials flattened into a single Geometry 
object.  Traversal then immediately invokes the corresponding any hit program.  
Should that any hit program invalidate the intersection via the 
rtIgnoreIntersection function, then rtReportIntersection will 

return false.  Otherwise, it will return true. 

The values of  attribute variables must be modified only between the call to 
rtPotentialIntersection and the call to rtReportIntersection.  
The result of  writing to an attribute variable outside the bounds of  these two calls is 
undefined.  The values of  attribute variables written in this way are accessible by any 
hit and closest hit programs. 

If  the any hit program invokes rtIgnoreIntersection, any attributes 
computed will be reset to their previous values and the previous t-interval will be 
restored. 

If  no intersection exists between the current ray and the primitive, an intersection 
program need only return. 

4.8.3. Specifying Bounding Boxes 
Acceleration structures use bounding boxes to bound the spatial extent of  scene 
primitives to accelerate the performance of  ray traversal.  A bounding box 
program’s responsibility is to describe the minimal three dimensional axis-aligned 
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bounding box that contains the primitive specified by its first argument and store 
the result in its second argument.  Bounding boxes are always specified in object 
space, so the user should not apply any transformations to them. 

For correct results bounding boxes must merely contain the primitive. For best 
performance bounding boxes should be as tight as possible. 

4.8.4. Example Intersection and Bounding Box Programs 
The following code demonstrates how an intersection and bounding box program 
combine to describe a simple geometric primitive.  The sphere is a simple analytic 
shape with a well-known ray intersection algorithm.  In the following code example,  
the sphere variable encodes the center and radius of  a three-dimensional sphere in a 
float4: 

rtDeclareVariable( float4, sphere, , ); 

rtDeclareVariable( optix::Ray, ray, rtCurrentRay, ); 

rtDeclareVariable( float3, normal, attribute normal ); 

 

RT_PROGRAM void intersect_sphere( int prim_index ) 

{ 

  float3 center = make_float3( sphere.x, sphere.y,  

                               sphere.z ); 

  float radius = sphere.w; 

  float3 O = ray.origin - center; 

  float b = dot( O, ray.direction ); 

  float c = dot( O, O ) - radius*radius; 

  float disc = b*b - c; 

  if( disc > 0.0f ) { 

    float sdisc = sqrtf( disc );  

    float root1 = (-b - sdisc); 

    bool check_second = true; 

    if( rtPotentialIntersection( root1 ) ) { 

      shading_normal = geometric_normal = 

        (O + root1*D) / radius; 

      if( rtReportIntersection( 0 ) ) 

        check_second = false; 

    }  

    if( check_second ) { 

      float root2 = (-b + sdisc); 

      if( rtPotentialIntersection( root2 ) ) { 

        shading_normal = geometric_normal = 

          (O + root2*D) / radius; 

        rtReportIntersection( 0 ); 

      } 

    } 

  } 

} 

Note that this intersection program ignores its prim_index argument and passes 

a material index of  0 to rtReportIntersection; it represents only the single 
primitive of  its corresponding Geometry object.   
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The bounding box program for the sphere is very simple: 

RT_PROGRAM void bound_sphere( int, float result[6] ) 

{ 

  float3 cen = make_float3( sphere.x, sphere.y, 

sphere.z ); 

  float3 rad = make_float3( sphere.w, sphere.w, 

sphere.w ); 

 

  // compute the minimal and maximal corners of 

  // the axis-aligned bounding box 

  float3 min = cen - rad; 

  float3 max = cen + rad; 

  // store results in order 

  result[0] = min.x; 

  result[1] = min.y; 

  result[2] = min.z; 

  result[3] = max.x; 

  result[4] = max.y; 

  result[5] = max.z; 

} 

4.9. Selector Programs 

Ray traversal invokes selector visit programs upon encountering a Selector node to 
programmatically select which of  the node’s children the ray shall visit.  A visit 
program dispatches the current ray to a particular child by calling the 
rtIntersectChild function.  The argument to rtIntersectChild 

selects the child by specifying its index in the range [0, N), where N is given by 

the argument to rtSelectorSetChildCount. 

4.9.1. Selector Visit Program Function Signature 
In CUDA C, visit programs return void, take no parameters, and use the 

RT_PROGRAM qualifier: 

RT_PROGRAM void visit_program( void ); 

4.9.2. Example Visit Program 
Visit programs may implement, for example, sophisticated level-of-detail systems or 
simple selections based on ray direction.  The following code sample demonstrates 
an example visit program that selects between two children based on the direction 
of  the current ray: 

rtDeclareVariable( optix::Ray, ray, rtCurrentRay, ); 

 

RT_PROGRAM void visit( void ) 

{ 

  unsigned int index = (unsigned int)( ray.direction.y 

< 0 ); 

  rtIntersectChild( index ); 
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} 

4.10. Callable Programs 

It is possible to load an RT_CALLABLE_PROGRAM at runtime and provide OptiX 
with a callable handle to it, called a Callable Program Variable.  This feature allows 
you to easily change the target of  a function call at runtime to achieve, for example, 
different shading effects in response to user input. Also, if  you have a function that 
is invoked from many different places in your OptiX node graph, making it an 
RT_CALLABLE_PROGRAM can reduce code replication and compile time, and 
improve runtime through increased warp utilization. 

4.10.1. Defining a Callable Program in CUDA 
Defining an RT_CALLABLE_PROGRAM is similar to defining an RT_PROGRAM:  

RT_CALLABLE_PROGRAM float3 get_color( 

            float3 input_color, float scale) 

{ 

  uint2 tile_size = make_uint2(launch_dim.x / N, 

                               launch_dim.y / N); 

  if (launch_index.x/tile_size.x ^ 

      launch_index.y/tile_size.y) 

    return input_color; 

  else 

    return input_color * scale; 

} 

RT_CALLABLE_PROGRAMs can take arguments and return values just like other 

functions in CUDA, whereas RT_PROGRAMs must return void. 

4.10.2. Declaring a Callable Program Variable in CUDA 
To invoke an RT_CALLABLE_PROGRAM from inside another RT_PROGRAM, you 

must first declare its handle using the rtCallableProgram macro: 

rtCallableProgram(return_type, function_name, 

                  (argument_list) ); 

 (Note that the third argument must be contained in parentheses). 

This macro operates similarly to other rtDeclareVariable macros; once the 

program variable is declared, your OptiX program may invoke function_name 
as if  it were a standard CUDA function.  For example: 

rtCallableProgram(float3, get_color, (float3, float));  

 

RT_PROGRAM camera() 

{ 

  float3 initial_color, final_color; 

  // … trace a ray, get the initial color … 

  final_color = get_color( initial_color, 0.5f ); 
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  // … write new final color to output buffer …  

} 

Because the target of  the get_color program variable is specified at runtime by 

the host, camera does not need to know how its colors are being modified by the 

get_color function.  In fact, the function could be swapped out between frames 
to modify the appearance of  the final image.   

Callable programs enable much more modular rendering designs for features such as 
shade trees, gamma correction, noise functions, sample filtering, etc. 

4.10.3. Passing Pointers on SM 1.x Devices 
A special procedure is required on GPUs that support the SM1.x computation 
model if  your callable program needs to accept arguments by reference (i.e., takes 
pointer arguments). If  you only intend to target SM2.x or newer GPUs, then 
nothing special is required.  Everything described in this section will work on SM2.x 
or newer, so for maximum portability it is advised to use this method. 

Only pointers to local memory are supported as parameters to callable 
programs; pointers to other memory spaces will not work. 

Pointer arguments must be explicitly “pickled” before being passed to a callable 
program, and then “unpickled” once inside the callable program.  This can be done 
using the rtPickleLocalPointer and rtUnpickleLocalPointer 
functions, as shown in the example below.  Instead of  declaring your callable 
program to take a pointer argument, it should instead take an argument ot type 
rtPickledLocalPointer. 

For example, here is a simple callable program that adds one to its argument, as well 
as its invocation: 

rtCallableProgram(void, pbr, (rtPickledLocalPointer)); 

 

RT_CALLABLE_PROGRAM 

void plus_one( rtPickledLocalPointer pointer ) 

{ 

  int *p = rtUnpickleLocalPointer( pointer ); 

  *p += 1; 

} 

 

RT_PROGRAM 

void some_program() 

{ 

  int x = 42; 

  rtPickledLocalPointer p = rtPickleLocalPointer(&x); 

  pbr( p ); 

  // local variable ‘x’ should now have value 43 

 } 
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4.10.4. Loading a Callable Program on the Host 
To set up an RT_CALLABLE_PROGRAM in your host code, simply load the PTX 

function using rtProgramCreateFromPTXFile, just like you would any 

other OptiX program.  The resulting RTprogram object can be passed to 

rtVariableSetObject in order to bind the program variable to a specific 
PTX function.  For example: 

RTprogram color_program; 

RTvariable color_program_variable; 

 

rtProgramCreateFromPTXFile( context, ptx_path, 

                            “my_color_program”, 

                            &color_program ); 

rtProgramDeclareVariable( camera_program, “get_color”, 

                          &color_program_variable ); 

rtVariableSetObject( color_program_variable, 

                     color_program ); 

This code will load the RT_CALLABLE_PROGRAM my_color_program and 

bind it to the program variable get_color (e.g., from the example above). 

4.10.5. OptiX Variable Scopes for Program Variables 
RT_CALLABLE_PROGRAMs have many of  the same privileges that normal 

RT_PROGRAMs do.  They can have OptiX variables of  their own, and they can 

invoke OptiX functions such as rtTrace or read or write attribute variables. 

In order to determine the lookup scope for any OptiX variable referred to by a 
callable program, OptiX considers where the program variable is called from. Specifically, 
OptiX will assign a scope lookup chain to your callable program that is compatible 
with OptiX programs that invoke it. 

For example, if  the program variable is invoked from one or more closest hit 
programs, that callable program will have the same lookup scope chain as a closest 
hit program (i.e., the program itself, the current geometry instance, the current 
material, and the context). 

Where the callable program is attached to the OptiX node graph determines which 
callable program is invoked when called from another optix program.  This follows 
the same variable lookup method that other rtVariables employ.  The only difference 
is that you cannot specify a default initializer. 
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Chapter 5.Building with 
OptiX 

5.1. Libraries 

OptiX comes with several header files and two supporting libraries, optix and optixu 
in 32- and 64-bit versions.  On Windows these libraries are statically linked against 
the C runtime libraries and are suitable for use in any version of  MS Visual Studio, 
though only VS 2008 and 2010 have been tested.  In addition, if  you wish to 
distribute the OptiX libraries with your application, the VS redistributables are not 
required by our DLL. 

The OptiX libraries are numbered not by release version, but by binary 
compatibility.  Incrementing this number means that a library will not work in place 
of  an earlier version (e.g. optix.2.dll will not work when an optix.1.dll is requested).  
On Linux, you will find liboptix.so which is a soft link to liboptix.so.1 which is a soft 
link to liboptix.so.2.1.0, the actual library.  liboptix.so.1 is the binary compatibility 
number similar to optix.1.dll.  On MacOS X, liboptix.2.1.0.dylib is the actual library, 
and you will also find a soft link named liboptix.1.dylib (again, with the 1 indicating 
the level of  binary compatibility), as well as liboptix.dylib. 

5.2. Header Files 

There are two principal methods to gain access to the OptiX API.  Including 
<optix.h> in host and device code will give access strictly to the C API.  Using 

<optix_world.h> in host and device code will provide access to the C and 
C++ API as well as importing additional helper classes, functions, and types into the 
optix namespace (including wrappers for CUDA’s vector types such as float3).  

Sample5 from the SDK provides two identical implementations using both the C 
(<optix.h>) and C++ (<optixpp_namespace.h>) API, respectively.  
Understanding this sample should give you a good sense of  how the C++ wrappers 
work. 

The optixu include directory contains several headers that augment the C API.  

The namespace versions of  the header files (see the list of  files below) place all 

the classes, functions, and types into the optix namespace.  This allows better 
integration into systems which would have had conflicts within the global 
namespace.  Backward compatibility is maintained if  you include the old headers.  It 
is not recommended to mix the old global namespace versions of  the headers with 
the new optix namespace versions of  the headers in the same project.  Doing so 
can result in linker errors and type confusion. 
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 <optix_world.h> – General include file for the C/C++ APIs for host 
and device code, plus various helper classes, functions, and types all 
wrapped in the optix namespace. 

 <optix.h> – General include file for the C API for host and device 
code. 

 <optixu/optixu_math_namespace.h> – Provides additional 
operators for CUDA’s vector types as well as a host of  functions such as 

fminf, refract, and an ortho normal basis class. 

 <optixu/optixupp_namespace.h> – C++ API for OptiX 
(backward compatibility with optixu:: namespace is provided in 
<optixpp.h>) 

 <optixu/optixu_matrix_namespace.h> – Templated multi-
dimensional matrix class with certain operations specialized for specific 
dimensions. 

 <optixu/optixu_aabb_namespace.h> – Axis-Aligned Bounding 
Box class. 

 <optixu/optixu_math_stream_namespace.h> – Standard 
template library stream operators for CUDA’s vector types. 

 <optixu/optixu_vector_types.h> – Wrapper around CUDA’s 

<vector_types.h> header that defines the CUDA vector types in the 

optix namespace. 

 <optixu/optixu_vector_functions.h> – Wrapper around 

CUDA’s <vector_functions.h> header that defines CUDA’s vector 
functions (e.g. make_float3) into the optix namespace. 

5.3. PTX Generation 

Programs supplied to the OptiX API must be written in PTX.  This PTX could be 
generated from any mechanism, but the most common method is to use the CUDA 
Toolkit’s nvcc compiler to generate PTX from CUDA C code. 

When nvcc is used, make sure the desired device code bitness is targeted by using 

the -m32 or -m64 flag.  The bitness of  all PTX given to the OptiX API must 
match, and will determine the bitness of  the generated device code. 64-bit PTX may 
only be used with 64-bit application binaries.  Note that on devices that do not 
support 64 bit device pointers, the memory space available to the application will be 
limited to 32 bits despite the use of  64 bit PTX. 

When using nvcc to generate PTX output specify the -ptx flag.  Note that any 
host code in the CUDA file will not be present in the generated PTX file.  Your 
CUDA files should include <optix_world.h> or <optix.h> to gain access 
to functions and definitions required by OptiX.  In addition, there is 
<optixu/optixu_math_namespace.h> that defines many useful 
operations for vector types and ray tracing.  

<optixu/optixu_math_namespace.h> can be included in both host and 

device code.  Note that <optix_world.h> includes this file automatically. 
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In order to run nvcc from within Visual Studio while building 64-bit host code, add 
“-ccbin $(VCInstallDir)bin” to tell nvcc where to find the 32-bit Visual 

Studio compiler.  Visual Studio will replace $(VCInstallDir) with the path on 
any command executed through its build system. 

In order to provide better support for compilation of  PTX to different SM targets, 
OptiX uses the .target information found in the PTX code to determine 
compatibility with the currently utilized hardware.  If  you wish your code to run a 
sm_12 device, compiling the PTX with -arch sm_13 will generate an error even 
if  no sm_13 features are present in the code.  Compiling to sm_12 will run on 
sm_12 and higher targets (e.g. sm_13 and sm_20). 

5.4. SDK Build 

Our SDK samples' build environment is generated by CMake.  CMake is a cross 
platform tool that generates several types of  build systems, such as Visual Studio 
projects and makefiles.  The SDK comes with three text files describing the 
installation procedures on Windows, Macintosh, and Linux, currently named 
INSTALL-WIN.txt, INSTALL-MAC.txt and INSTALL-LINUX.txt respectively.  
See the appropriate file for your operating system for details on how to compile the 
SDK. 
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Chapter 6.Interoperability 
with OpenGL and 

Direct3D 

OptiX supports the sharing of  data between OpenGL/D3D applications and both 

rtBuffers and rtTextureSamplers.  This way, OptiX applications can 
read data directly from objects such as vertex and pixel buffers, and can also write 
arbitrary data for direct consumption by graphics shaders.  This sharing is referred 
to as interop. 

6.1. OpenGL Interop 

OptiX supports interop for OpenGL buffer objects, textures, and render buffers. 
OpenGL buffer objects can be read and written by OptiX program objects, whereas 
textures and render buffers can only be read. 

6.1.1. Buffer Objects 
OpenGL buffer objects like PBOs and VBOs can be encapsulated for use in OptiX 
with rtBufferCreateFromGLBO. The resulting buffer is a reference only to 
the OpenGL data; the size of  the OptiX buffer as well as the format have to be set 

via rtBufferSetSize and rtBufferSetFormat. When the OptiX buffer 
is destroyed, the state of  the OpenGL buffer object is unaltered. Once an OptiX 
buffer is created, the original GL buffer object is immutable, meaning the properties 
of  the GL object like its size cannot be changed while registered with OptiX. 
However, it is still possible to read and write to the GL buffer object using the 
appropriate GL functions. If  it is necessary to change properties of  an object, first 
call rtBufferGLUnregister  before making changes. After the changes are 

made the object has to be registered again with rtBufferGLRegister. This is 
necessary to allow OptiX to access the objects data again. Registration and 
unregistration calls are expensive and should be avoided if  possible. 

6.1.2. Textures and Render Buffers 
OpenGL texture and render buffer objects must be encapsulated for use in OptiX 
with rtTextureSamplerCreateFromGLImage. This call may return with 

RT_ERROR_MEMORY_ALLOCATION_FAILED for textures that have a size of  
0. Once an OptiX texture sampler is created, the original GL texture is immutable, 
meaning the properties of  the GL texture like its size cannot be changed while 
registered with OptiX. However, it is still possible to read and write to the GL 
texture using the appropriate GL functions. If  it is necessary to change properties 
of  a GL texture, first call rtTextureSamplerGLUnregister before making 
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changes. After the changes are made the texture has to be registered again with 
rtTextureSamplerGLRegister. This is necessary to allow OptiX to 
access the textures data again. Registration and unregistration calls are expensive and 
should be avoided if  possible.  

Currently, only textures with the following GL targets are supported: 

 GL_TEXTURE_2D 

 GL_TEXTURE_2D_RECT 

 GL_TEXTURE_3D 

Supported attachment points for render buffers are: 

 GL_COLOR_ATTACHMENT<NUM> 

Not all OpenGL texture formats are currently supported by OptiX. A table that lists 
the supported texture formats can be found in Appendix A. 

OptiX detects automatically the size, texture format, and number of  mipmap levels 
of  a texture. rtTextureSamplerSetMipLevelCount, 
rtTextureSamplerSetArraySize, and 

rtTextureSampler(Set/Get)Buffer cannot be called for OptiX interop 

texture samplers and will return RT_ERROR_INVALID_VALUE. 

6.2. Direct3D Interop 

OptiX also provides interop functionality for D3D9, D3D10, and D3D11 buffer 
objects, as well as textures/surfaces on appropriate Windows platforms. D3D buffer 
objects can be read and written by OptiX program objects, whereas textures and 
surfaces can only be read. 

Before any subsequent call can be made to create OptiX interop buffers or texture 
samplers, rtContextSetD3D<9/10/11>InteropDevice has to be called 
in order to register the device with the OptiX context that performs the D3D 
commands.  A context can only be bound to a single D3D device. The binding is 
immutable throughout the lifetime of  a context. 

6.2.1. Buffer Objects 
Currently OptiX supports the following D3D buffer types: 

 IDirect3DIndexBuffer9  

 IDirect3DVertexBuffer9 

 ID3D10Buffer 

 ID3D11Buffer 

OptiX buffer objects must be created from existing D3D resources with 
rtBufferCreateFromD3D<9/10/11>Resource. These calls may return 

with RT_ERROR_MEMORY_ALLOCATION_FAILED for buffers that have a size 
of  0. The resulting buffer is a reference only to the D3D data; the size of  the OptiX 
buffer as well as the format have to be set via rtBufferSetSize and 

rtBufferSetFormat. Once an OptiX buffer is created, the original D3D 
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buffer object is immutable, meaning properties of  the D3D object like its size 
cannot be changed while the buffer is registered with OptiX. However, it is still 
possible to read and write to the D3D buffer object using the appropriate D3D 
functions. If  it is necessary to change properties of  an object, unregister the buffer 

with rtBufferD3D<9/10/11>Unregister. After the changes are made the 

object has to be registered again with rtBufferD3D<9/10/11>Register. 
This is necessary to allow OptiX to access the objects data again. Registration and 
unregistration calls are expensive and should be avoided if  possible.  

rtBufferGetD3D<9/10/11>Resource can be used to query the bound 
D3D resource pointer.  The appropriate size and format of  the OptiX buffer must 
be set with rtBufferSetSize<1/2/3>D and rtBufferSetFormat. 

6.2.1.1. D3D Buffer-Creation Flags 

In certain situations OptiX requires host-side (CPU) access to interop objects.  
Because of  this, D3D buffers should be created with the proper flags to allow 
OptiX access to the underlying data.  

D3D9 buffers require no special flags.  

For the current version of  OptiX (2.1), CPU access flags are required to be set in 
the appropriate D3D buffer description for D3D10 and D3D11, e.g. 
D3D11_CPU_ACCESS_READ. A future version of  OptiX will remove this 
requirement. 

6.2.2. Textures and Surfaces 
Currently OptiX supports the following D3D texture and surface types: 

 IDirect3DSurface9 

 IDirect3DTexture9 

 IDirect3DVolumeTexture9 

 ID3D10Texture<1/2/3>D 

 ID3D11Texture<1/2/3>D 

Cube maps, texture arrays as well as mipmap levels are not supported. OptiX texture 
sampler objects must be created from existing D3D resources with 

rtTextureSamplerCreateFromD3D<9/10/11>Resource. These calls 

may return with RT_ERROR_MEMORY_ALLOCATION_FAILED for textures that 
have a size of  0. Once an OptiX texture sampler is created, the original D3D texture 
is immutable, meaning the properties of  the D3D texture like its size cannot be 
changed while registered with OptiX. However, it is still possible to read and write 
to the D3D texture using the appropriate D3D functions. If  it is necessary to 
change properties of  a D3D texture, unregister the texture with 
rtTextureSamplerD3D<9/10/11>Unregister. After the changes are 
made the texture has to be registered again with 
rtTextureSampler<9/10/11>Register. This is necessary to allow 
OptiX to access the textures data again. Registration and unregistration calls are 
expensive and should be avoided if  possible.  
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rtTextureSamplerGetD3D<9/10/11>Resource can be used to query 
the bound D3D resource pointer. A list with the currently supported texture 
formats can be found in the Appendix A. 

OptiX automatically detects the size, texture format, and number of  mipmap levels 
of  a texture. rtTextureSamplerSetMipLevelCount, 
rtTextureSamplerSetArraySize, and 

rtTextureSampler(Set/Get)Buffer cannot be called for OptiX interop 

texture samplers and will return RT_ERROR_INVALID_VALUE. 

6.2.2.1. D3D Texture-Creation Flags 

In certain situations OptiX requires host-side (CPU) access to interop objects.  
Because of  this, D3D textures should be created with the proper flags to allow 
OptiX access to the underlying data.  

OptiX requires D3D9 textures to be created with the memory pool argument using 
either D3DPOOL_MANAGED or D3DPOOL_DEFAULT in combination with 
D3DUSAGE_DYNAMIC. 

For the current version of  OptiX (2.1), CPU access flags are required to be set in 
the appropriate D3D texture description for D3D10 and D3D11, e.g. 
D3D11_CPU_ACCESS_READ. A future version of  OptiX will remove this 
requirement. 
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Chapter 7.Interoperability 
with CUDA 

It is often desirable to combine general purpose CUDA programs with an OptiX-
based raytracing kernel.  For example, you might use a CUDA program before 
launching OptiX to determine what rays to trace, or to tabulate reflection properties 
for a material, or to compute geometry.  In addition, you may wish to write a CUDA 
program that postprocesses OptiX’s output, especially if  OptiX is generating data 
structures full of  intermediate calculations rather than just a rendered image, such as 
computing object or character movement based on visibility and collision rays. 

Both of  these usage scenarios are possible using the OptiX-CUDA interoperability 
functions described in this chapter. 

7.1. CUDA Context Sharing 

In order for CUDA and OptiX to interoperate, it is necessary that there be only a 
single CUDA context per device.  Furthermore, CUDA must be initialized using the 
CUDA runtime API; OptiX does not currently support interop with the CUDA 
driver API.  There are two possible CUDA interop scenarios: 

1)  The application has created a CUDA context (by performing some CUDA 

operations) prior to OptiX initialization 

2)  OptiX creates its own CUDA context (either upon a call to 

rtContextLaunch or rtBufferGetDevicePointer) prior to 

the application creating any CUDA contexts. 

In scenario 1, OptiX will latch on to the existing CUDA context instead of  creating 
its own.  In scenario 2, OptiX’s context(s) will have been created using the CUDA 
runtime API, so any subsequent CUDA calls made by the application will use 
OptiX’s already created contexts. 

Note: If the application creates a CUDA context before OptiX, the applicaton 
should make sure to use: 

cudaSetDeviceFlags(cudaDeviceMapHost | cudaDeviceLmemResizeToMax); 

 to ensure subsequent maximum performance from OptiX.  

Because OptiX and the application’s CUDA programs will share a single context per 
device, any device pointers passed to or from OptiX can be used for reading or 
writing OptiX data. 
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7.2. Getting CUDA Device Pointers from OptiX 

One way to achieve CUDA-OptiX interop is to ask OptiX to manage and allocate 
device memory and simply get a pointer to it.  This is done using the 
rtBufferGetDevicePointer call: 

rtBufferGetDevicePointer( buffer, optix_device_number, 

&device_ptr); 

This call will return the device pointer for the given buffer on the specified OptiX 
device.  If  the application requests the buffer device pointer before OptiX has 
launched, this pointer can be used to provide data to OptiX.  If  the application 
requests the buffer device pointer after OptiX has launched, the application can then 
postprocess OptiX’s output.   

Some special issues to consider when OptiX is running in a multi-GPU 
environment will be covered at the end of  this chapter. 

7.3. Providing CUDA Device Pointers to OptiX 

If  the application already has a device pointer and wants to use its contents as an 
OptiX buffer, the special rtBufferCreateForCUDA creation mechanism must 
be used: 

rtBufferCreateForCuda( context, type, &buffer ); 

The arguments to rtBufferCreateForCUDA are identical to the standard 

rtBufferCreate function, and the resulting buffers function identically to 
standard OptiX buffers, except that the application is responsible for providing a 
device pointer for them.  OptiX will neither allocate memory nor upload data for 
these buffers (again with special considerations for multi-GPU environments; see 
the end of  this chapter). 

Before providing a device pointer for the buffer, the application must first specify 
the size and format of  the buffer.  The buffer pointer can then be specified: 

rtBufferSetDevicePointer( buffer, optix_device_number, 

device_ptr ); 

7.4. Multi-GPU considerations 

If  the application provides or requests device pointers for all devices on which 
OptiX is running, no additional data copies need to be made.  However, whenever 
there is a mismatch between the devices on which the application has provided or 
requested pointers and the devices on which OptiX is running, OptiX will need to 
make sure that all of  its devices have the necessary data. 

Note that these issues can arise in some circumstances even when OptiX is only 
using one GPU.  If  the application is running CUDA code on one GPU, but has 
instructed OptiX to only run on another GPU, it is legal to use 
rtBufferSetDevicePointer to provide a device pointer on the non-OptiX 
GPU; OptiX will handle any required data transfer internally. 



 

 
 

62 Version 3.0 OptiX Programming Guide 

7.4.1. When the application provides pointers to OptiX 
If  a device pointer is provided for one device but not for all OptiX devices, OptiX 
will allocate memory on the missing devices and copy the buffer data from the 
provided pointer to the missing devices during rtContextLaunch.  It is a 
caught runtime error for the application to specify pointers for more than one but 
less than all devices.  

This implementation allows applications to be ignorant, if  desired, of  whether one 
or multiple devices are being used for OptiX and whether CUDA is being run on 
the same or a different device than OptiX. Conversely, the application may be fully 
in control of  which devices run OptiX and which devices run CUDA and fill each 
device’s copy of  a buffer either by CUDA or by OptiX. 

Note: The current beta supports buffer device memory only for those devices on 
which OptiX is being run. Thus, setting buffer device pointers for devices on 
which OptiX isn't being run is disallowed. 

If you need to copy data to/from a CUDA device on which OptiX is not running, 
our suggested workaround for this beta is to get the OptiX buffer pointer on the 
device that OptiX is running on, and then manually allocate CUDA memory on 
the devices that OptiX is not running on, and then manually copy data across to 
the devices used by OptiX (using cudaMemcpyPeer/cudaMemcpyPeerAsync for 
improved performance). 

7.4.2. When the application receives pointers from OptiX 
When the application requests a pointer from OptiX (to an RT_BUFFER_INPUT 

or RT_BUFFER_INPUT_OUTPUT buffer), we assume that the application is 
modifying the data contained in that buffer.  Therefore we keep track of  which 
OptiX devices the application has requested pointers for, and if  the application has 
requested only one pointer but there are additional OptiX devices, we will copy the 
data from that device to all others on the next launch.  If  the application requests 
pointers on all devices, we assume they have set up the data how they want it, and 
no copying will happen.  It is a caught runtime error to request pointers for more 
than one but fewer than all devices. 

7.4.3. Avoiding unnecessary copies 
If  the application provides or requests a pointer on one device in a multi-GPU 
environment (so that data copies are required), those copies will happen on every 
subsequent rtContextLaunch.  If  the application knows that the data are not 

changing every frame, the RT_BUFFER_COPY_ON_DIRTY flag can be OR’ed 

into the type parameter of  rtBufferCreate or 

rtBufferCreateForCUDA.  This will cause the data copies to happen only 
when OptiX has explicit reason to believe that the data are dirty. 

A buffer being used for CUDA interop and marked for dirty copies is considered 
dirty in two circumstances:   

1) No OptiX launch has occurred since the buffer had its device pointer provided 
or requested 
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2) The application explicitly calls the rtBufferMarkDirty function: 

rtBufferMarkDirty( buffer ); 

This will let OptiX know that the underlying CUDA data have changed, and a fresh 
copy must be broadcast from the device on which the application has manipulated 
the data to all other OptiX devices. 
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Chapter 8.OptiXpp: C++ 
Wrapper for the 

OptiX C API 

OptiXpp wraps each OptiX C API opaque type in a C++ class and provides 
relevant operations on that type. Most of  the OptiXpp class member functions map 
directly to C API function calls. For example, VariableObj::getContext 

wraps rtVariableGetContext and ContextObj::createBuffer 

wraps rtBufferCreate. 

Some functions perform slightly more complex sequences of  C API calls. For 
example 

ContextObj::createBuffer(unsigned int type, RTformat 

format, RTsize width) 

provides in one call the functionality of 

rtBufferCreate 

rtBufferSetFormat 

rtBufferSetSize1D 

See OptiX_Utility_Library_Reference.pdf  or optixpp_namespace.h for a full 
list of  the available OptiXpp functions. The usage of  the API is described below. 

8.1. OptiXpp Objects 

The OptiXpp classes consist of  a Handle class, a class for each API opaque type, 
and three classes that provide attributes to these objects.  

8.1.1. Handle Class 
All classes are manipulated via the reference counted Handle class. Rather than 

working with a ContextObj directly you would use a Context instead, which is 

simply a typedef for Handle<ContextObj>. 

In addition to providing reference counting and automatic destruction when the 
reference count reaches zero, the Handle class provides a mechanism to create a 
handle from a C API opaque type, as follows: 

    RTtransform t; 

    rtTransformCreate( my_context, &t ); 

    Transform Tr = Transform::take( t ); 



 

 
   
OptiX Programming Guide Version 3.0 65 

The converse of  take is get, which returns the underlying C API opaque type, 
but does not decrement the reference count within the handle. 

Transform Tr; 

... 

rtTransformDestroy( Tr->get( ) ); 

These functions are typically used when calling C API functions, though such is 
rarely necessary since OptiXpp provides nearly all OptiX functionality. 

8.1.2. Attribute Classes 
The attributes are API, Destroyable, and Scoped. 

API: All object types have the API attribute. This attribute provides the following 
functions to objects: 

 getContext() – Return the context to which this object belongs 

 checkError() – Check the given result code and throw an error with 

appropriate message if  the code is not RTsuccess. checkError is 
often used as a wrapper around a call to a function that makes OptiX API 
calls: 

my_context->checkError( sutilDisplayFilePPM( ... ) ); 

Destroyable: This attribute provides the following functions to objects: 

 destroy() – Equivalent to rt*Destroy() 

 validate() – Equivalent to rt*Validate() 

Scoped: This attribute applies only to API objects that are containers for 
RTvariables. It provides functions for accessing the contained variables. The 

most basic access is via operator[], as follows: 

my_context["new_variable"]->setFloat( 1.0f ); 

This access returns the variable, but first creates it within the containing object if  it 
does not already exist. 

This array operator syntax with the string variable name argument is probably the 
most powerful feature of  OptiXpp, as it greatly reduces the amount of  code 
necessary to access a variable.  

The following functions are also available to Scoped objects: 

 declareVariable() – Declare a variable associated with this object 

 queryVariable() – Query a variable associated with this object by 
name 

 removeVariable() – Remove a variable associated with this object 

 getVariableCount() – Query the number of  variables associated 
with this object, typically so as to iterate over them 
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 getVariable() – Query variable by index, typically while iterating over 
them 

The following table lists all of  the OptiXpp objects and their attributes. 

Object  API Destroyable Scoped 

Context yes yes yes 

Program yes yes yes 

Buffer yes   

Variable yes   

TextureSampler yes yes  

Group yes yes  

GeometryGroup yes yes  

GeometryInstance yes yes yes 

Geometry yes yes yes 

Material yes yes yes 

Transform yes yes  

Selector yes yes  

Table 7 OptiXpp Opaque Types and Their Attributes 

8.1.3. API Objects 
In addition to the methods provided by the attribute classes that give commonality 
to the different API objects each object type also has a unique set of  methods. 
These functions cover the complete set of  functionality from the C API, although 
not all methods will be described here. See optixpp_namespace.h for the 
complete set.  

8.1.3.1. Context 

The Context object provides create* functions for creating all other opaque 
types. These are owned by the context and handles to the created object are 
returned: 

Context my_context; 

Buffer Buf = my_context->createBuffer(RT_BUFFER_INPUT, 

RT_FORMAT_FLOAT4, 1024, 1024); 

Context also provides launch() functions, with overloads for 1D, 2D, and 3D 

kernel launches. It provides many other functions that wrap rtContext* C API 
calls. 
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8.1.3.2. Buffer 

The Buffer class provides a map call that returns a pointer to the buffer data, and 

provides an unmap call. It also provides set and get functions for the buffer 
format, element size, and 1D, 2D, and 3D buffer size. Finally, it provides 
registerGLBuffer and unregisterGLBuffer. 

8.1.3.3. Variable 

The Variable class provides getName, getAnnotation, getType, and 

getSize functions for returning properties of  the variable. It also contains a 

multitude of  set* functions that set the value of  the variable and its type, if  the 
type is not already set: 

my_context["my_dim3"]->setInt( 512, 512, 1024 ); 

The Variable object also offers set functions for setting its value to an API object, 

and provides setUserData and getUserData. 

8.1.3.4. TextureSampler 

The TextureSampler class provides functions to set and get the attributes of  an 

RTtexturesampler, such as setWrapMode, setMipLevelCount, etc. 

It also provides setBuffer, getBuffer, registerGLTexture, and 

unregisterGLTexture. 

8.1.3.5. Group and GeometryGroup 

The remaining API object classes are for OptiX node types. They offer member 
functions for setting and querying the nodes to which they attach. 

The Group class provides setAcceleration, getAcceleration, 

setChildCount, getChildCount, setChild, and getChild.  

8.1.3.6. GeometryInstance 

RTgeometryinstance is a binding of  Geometry and Material. Thus, 

GeometryInstance provides functions to set and get both the Geometry and 

the Materials. This includes addMaterial, which increments the material 
count and appends the given Material to the list. 

8.1.3.7. Geometry 

The unique functions provided by the Geometry class set and get the 

BoundingBoxProgram, the IntersectionProgram and the 

PrimitiveCount. It also offers markDirty and isDirty. 

8.1.3.8. Material 

A Material consists of  a ClosestHitProgram and an AnyHitProgram, and 

is a container for the variables appertaining to these programs. It contains set and 

get functions for these programs. 
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8.1.3.9. Transform 

An RTtransform node applies a transformation matrix to its child, so the 

Transform class offers setChild, getChild, setMatrix, and getMatrix 
methods. 

8.1.3.10. Selector 

A Selector node applies a Visit program to operate on its multiple children. Thus, 

the Selector class includes functions to set and get the VisitProgram, 

ChildCount, and Child. 

8.1.4. Exceptions 
The Exception class of  OptiXpp encapsulates an error message. These errors are 
often the direct result of  a failed OptiX C API function call and subsequent 
rtContextGetErrorString call. Nearly all methods of  all object types can 

throw an exception using the Exception class. Likewise, the checkError() 
function can throw an Exception. 

Additionally, the Exception class can be used explicitly by user code as a convenient 
way to throw exceptions of  the same type as OptiXpp. 

Call Exception::makeException to create an Exception. 

Call getErrorString() to return an std::string for the error message as 

returned by rtContextGetErrorString(). 
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Chapter 9.Performance 
Guidelines 

 

Subtle changes in your code can dramatically alter performance.  This list of  
performance tips should help when using OptiX. 

 Where possible use floats instead of  doubles.  This also extends to the use 
of  literals and math functions.  For example, use 0.5f instead of  0.5 and 

sinf instead of  sin to prevent automatic type promotion. To check for 
automatic type promotion, search the PTX files for the “.f64” instruction 
modifier. 

 OptiX will try to partition thread launches into tiles that are the same 
dimensionality as the launch. To have maximal coherency between the 
threads of  a tile you should choose a launch dimensionality that is the same 
as the coherence dimensionality of  your problem. For example, the 
common problem of  rendering an image has 2D coherency (adjacent pixels 
both horizontally and vertically look at the same part of  the scene), so a 2D 
launch is appropriate. Conversely, a collision detection problem with many 
agents each looking in many directions may appear to be 2D (the agents in 
one dimension and the ray directions in another), but there is rarely 
coherence between different agents, so the coherence dimensionality is one, 
and performance will be better by using a 1D launch. 

 Do not build an articulate scene graph with Groups, Transforms and 

GeometryInstances.  Try to make the topology as shallow and 
minimal as possible.  For example, for static scenes the fastest performance 
is achieved by having a single GeometryGroup, where transforms are 

flattened to the geometry.  For scenes where Transforms are changing all 

the static geometry should go in one GeometryGroup and each 

Transform should have a single GeometryGroup.  Also, if  possible, 
combine multiple meshes into a single mesh. 

 Each new Program object can introduce execution divergence.  Try to reuse 
the same program with different variable values.  However, don’t take this 
idea too far and attempt to create an “über shader”.  This will create 
execution divergence within the program.  Experiment with your scene to 
find the right balance. 

 Try to minimize live state across calls to rtTrace in programs.  For 
example, in a closest hit program temporary values used after a recursive call 
to rtTrace should be computed after the call to rtTrace, rather than 
before, since these values must be saved and restored when calling 
rtTrace, impacting performance.  RTvariables declared outside of  
the program body are exempt from this rule. 
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 No acceleration structure is best in all situations.  For static geometry 
groups, use Sbvh or TriangleKdTree.  For dynamic geometry groups 

or large number of  elements, experiment with Lbvh (recommended) and 

MedianBvh.  For Group nodes (e.g. higher level graph nodes), Bvh is the 

best choice in many cases, but if  there are few enough children NoAccel 
can be useful. 

 In multi-GPU environments INPUT_OUTPUT and OUTPUT buffers are 
stored on the host.  In order to optimize writes to these buffers, types of  
either 4 bytes or 16 bytes (e.g. float, uint, or float4) should be used 
when possible.  One might be tempted to make an output buffer used for 
the screen out of  float3’s (RGB), however using a float4 buffer will 
result in improved performance (e.g. 
output_buffer[launch_index] = make_float4( 

result_color )).  This also affects defined types (see the 
progressivePhotonMap sample for an example of  accessing user defined 
structs with float4s). 

 In multi-GPU environments INPUT_OUTPUT buffers may be stored on 
the device, with a separate copy per device by using the 
RT_BUFFER_GPU_LOCAL buffer attribute. This is useful for avoiding 
the slower reads and writes by the device to host memory. 
RT_BUFFER_GPU_LOCAL is useful for scratch buffers, such as random 
number seed buffers and variance buffers. 

 Use iteration instead of  recursion where possible (e.g. path tracing with no 
ray branching).  See the path_tracer sample for an example of  how to use 
iteration instead of  recursion when tracing secondary rays. 

 For best performance, use the rtTransform* functions rather than 

explicitly transforming by the matrix returned by rtGetTransform. 

 Disable exceptions that are not needed. While it is recommended to turn on 
all available exception types during development and for debugging, the 
error checking involved e.g. to validate buffer index bounds is usually not 
necessary in the final product. 

 Avoid recompiling the OptiX kernel.  These recompiles can be triggered 
when certain changes to the input programs or variables occur.  For 
example, swapping the ClosestHit program of  a Material between two 
programs will cause a recompile on each swap because the kernel consists 
of  different code, whereas creating two Materials, one with each program, 
and swapping between the two Materials will not cause a recompile because 
only the node graph is changing, not the code. Creating dummy nodes with 
the alternate programs is one way to provide all of  the code at once. Also 
avoid changing the layout of  variables attached to scope objects. 

 It is possible for a program to find multiple definitions for a variable in its 
scopes depending upon where the program is called. Variables with 
definitions in multiple scopes are said to be dynamic and may incur a 
performance penalty.  
For example, a closest hit program may be attached to several Material 
objects and reference a variable named shininess. We can attach a variable 
definition to the Material object as well as attach a variable definition to 
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specific GeometryInstance objects that we create that reference that 
Material. During execution of  a specific GeometryInstance’s closest hit 
program, the value of  shininess depends on whether the particular instance 
has a definition attached: if  the GeometryInstance defines shininess, then 
that value will be used. Otherwise, the value will be taken from the Material 
object. 

 When creating PTX code using nvcc, adding --use-fast-math as a 
compile option can reduce code size and increase the performance for most 
OptiX programs. This can come at the price of  slightly decreased numerical 
floating point accuracy. See the nvcc documentation for more details. 

 While OptiX supports bindless texture access on all architectures, hardware 
supported bindless textures are only available on Kepler (sm_30) devices 
and above with 304 driver . On pre-Kepler devices, bindless texture 
references are handled in software and may be slower compared to regularly 
bound textures. 
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Chapter 10.Caveats 

Keep in mind the following caveats when using OptiX. 

 Setting a large stack size will consume GPU device memory.  Try to 
minimize the stack as much as possible.  Start with a small stack and with 
the use of  an exception program that will make it obvious you have 
exceeded your memory, increase the stack size until the stack is sufficiently 
large. 

 The use of  __shared__ memory within a program is not recommended.  
This is currently untested. 

 Don’t use PTX bar() or CUDA syncthreads().  It will lock up your 
machine. 

 threadIdx in CUDA can map to multiple launch indices (e.g. pixels).  

Use the rtLaunchIndex semantic instead. 

 Use of  the CUDA malloc(), free(), and printf() functions 
within a program is not supported.  Attempts to use these functions will 
result in an illegal symbol error. 

 Currently, OptiX is not guaranteed to be thread-safe. While it may be 
successful in some applications to use OptiX contexts in different host 
threads, it may fail in others. OptiX should therefore only be used from 
within a single host thread. 
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Appendix A. Supported Interop Texture 
Formats 

OpenGL 
Texture 
Format 

D3D Format DXGI Format 

GL_RGBA8 D3DFMT_R32F 

 

DXGI_FORMAT_R8_SINT 

GL_RGBA16 D3DFMT_L16 

 

DXGI_FORMAT_R8_SNORM 

GL_R32F D3DFMT_L8 

 

DXGI_FORMAT_R8_UINT 

GL_RG32F D3DFMT_A8 

 

DXGI_FORMAT_R8_UNORM 

GL_RGBA32F D3DFMT_G32R32F 

 

DXGI_FORMAT_R16_SINT 

GL_R8I D3DFMT_G16R16 

 

DXGI_FORMAT_R16_SNORM 

GL_R8UI D3DFMT_V16U16 

 

DXGI_FORMAT_R16_UINT 

GL_R16I D3DFMT_A8L8 

 

DXGI_FORMAT_R16_UNORM 

GL_R16UI D3DFMT_V8U8 

 

DXGI_FORMAT_R32_SINT 

GL_R32I D3DFMT_A32B32G32R32F 

 

DXGI_FORMAT_R32_UINT 

GL_R32UI D3DFMT_A16B16G16R16 

 

DXGI_FORMAT_R32_FLOAT 

GL_RG8I D3DFMT_A8R8G8B8 

 

DXGI_FORMAT_R8G8_SINT 

GL_RG8UI D3DFMT_X8R8G8B8 

 

DXGI_FORMAT_R8G8_SNORM 

GL_RG16I D3DFMT_A8B8G8R8 

 

DXGI_FORMAT_R8G8_UINT_ 

GL_RG16UI D3DFMT_X8B8G8R8 

 

DXGI_FORMAT_R8G8_UNORM 

GL_RG32I D3DFMT_Q16W16V16U16 DXGI_FORMAT_R16G16_SINT 

GL_RG32UI D3DFMT_Q8W8V8U8 

 

DXGI_FORMAT_R16G16_SNORM 

GL_RGBA8I  DXGI_FORMAT_R16G16_UINT 

GL_RGBA8UI  DXGI_FORMAT_R16G16_UNORM 

GL_RGBA16I  DXGI_FORMAT_R32G32_SINT 

GL_RGBA16UI  DXGI_FORMAT_R32G32_UINT 

GL_RGBA32I 

 

 DXGI_FORMAT_R32G32_FLOAT 

GL_RGBA32UI  DXGI_FORMAT_R8G8B8A8_SINT 

  DXGI_FORMAT_R8G8B8A8_SNORM 

  DXGI_FORMAT_R8G8B8A8_UINT 

  DXGI_FORMAT_R8G8B8A8_UNORM 

  DXGI_FORMAT_R16G16B16A16_SINT 

  DXGI_FORMAT_R16G16B16A16_SNORM 

  DXGI_FORMAT_R16G16B16A16_UINT 

  DXGI_FORMAT_R16G16B16A16_UNORM 

  DXGI_FORMAT_R32G32B32A32_SINT 

  DXGI_FORMAT_R32G32B32A32_UINT 

  DXGI_FORMAT_R32G32B32A32_FLOAT 
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