
Contents

1 API Reference 1

1.1 Context . 2

1.2 Geometry Group . 62

1.3 Group Node . 78

1.4 Selector Node . 92

1.5 Transform Node . 116

1.6 Acceleration Structure . 129

1.7 Geometry Instance . 152

1.8 Geometry . 176

1.9 Material . 200

1.10 Program . 223

1.11 Buffer . 239

1.12 Texture Sampler . 295

1.13 Variables . 346

1.14 Context Free Functions . 373

2 CUDA C Reference 385

2.1 Declarations . 386

2.2 Types . 393

2.3 Functions . 405

3 Appendix 421

3.1 Interop Formats . 422

i

Chapter 1

API Reference

1

2 CHAPTER 1. API REFERENCE

1.1 Context

NAME

Context

DESCRIPTION

This section describes the API functions for creation and handling of rendering contexts.

rtContextCompile

rtContextCreate

rtContextDeclareVariable

rtContextDestroy

rtContextGetAttribute

rtContextGetDevices

rtContextGetDeviceCount

rtContextGetEntryPointCount

rtContextGetErrorString

rtContextGetExceptionEnabled

rtContextGetExceptionProgram

rtContextGetMissProgram

rtContextGetPrintBufferSize

rtContextGetPrintEnabled

rtContextGetPrintLaunchIndex

rtContextGetRayGenerationProgram

rtContextGetRayTypeCount

rtContextGetRunningState

rtContextGetStackSize

rtContextGetVariableCount

rtContextGetVariable

rtContextQueryVariable

rtContextRemoveVariable

rtContextSetAttribute

rtContextSetD3D9Device

1.1. CONTEXT 3

rtContextSetD3D10Device

rtContextSetD3D11Device

rtContextSetDevices

rtContextSetEntryPointCount

rtContextSetExceptionEnabled

rtContextSetExceptionProgram

rtContextSetMissProgram

rtContextSetPrintBufferSize

rtContextSetPrintEnabled

rtContextSetPrintLaunchIndex

rtContextSetRayGenerationProgram

rtContextSetRayTypeCount

rtContextSetStackSize

rtContextSetTimeoutCallback

rtContextLaunch

rtContextValidate

HISTORY

Contexts were introduced in OptiX 1.0.

SEE ALSO

Geometry Group, Group Node, Selector Node, Transform Node, Acceleration Structure, Geometry Instance,
Geometry, Material, Program, Buffer, Texture Sampler, Variables, Context-Free Functions

4 CHAPTER 1. API REFERENCE

1.1.1 rtContextCompile

NAME

rtContextCompile - Compiles a context object.

SYNOPSIS

#include <optix.h>

RTresult rtContextCompile(RTcontext context)

PARAMETERS

context

The context to be compiled.

DESCRIPTION

rtContextCompile creates a final computation kernel from the given context’s programs and scene hier-
archy. This kernel will be executed upon subsequent invocations of rtContextLaunch.

Calling rtContextCompile is not strictly necessary since any changes to the scene specification or programs
will cause an internal compilation upon the next rtContextLaunch call. rtContextCompile allows the
application to control when the compilation work occurs.

Conversely, if no changes to the scene specification or programs have occurred since the last compilation,
rtContextCompile and rtContextLaunch will not perform a recompilation.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR INVALID SOURCE

HISTORY

rtContextCompile was introduced in OptiX 1.0.

1.1. CONTEXT 5

SEE ALSO

rtContextLaunch

6 CHAPTER 1. API REFERENCE

1.1.2 rtContextCreate

NAME

rtContextCreate - Creates a new context object.

SYNOPSIS

#include <optix.h>

RTresult rtContextCreate(RTcontext* context)

PARAMETERS

context

Handle to context for return value.

DESCRIPTION

rtContextCreate allocates and returns a handle to a new context object. Returns RT ERROR INVALID VALUE

if passed a NULL pointer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR NO DEVICE

RT ERROR INVALID VALUE

HISTORY

rtContextCreate was introduced in OptiX 1.0.

SEE ALSO

1.1. CONTEXT 7

1.1.3 rtContextDeclareVariable

NAME

rtContextDeclareVariable - Declares a new named variable associated with this context.

SYNOPSIS

#include <optix.h>

RTresult rtContextDeclareVariable(RTcontext context,

const char* name,

RTvariable* v)

PARAMETERS

context

The context node to which the variable will be attached.

name

The name that identifies the variable to be queried.

v

Pointer to variable handle used to return the new object.

DESCRIPTION

rtContextDeclareVariable - Declares a new variable named name and associated with this context. Only
a single variable of a given name can exist for a given context and any attempt to create multiple variables
with the same name will cause a failure with a return value of RT ERROR VARIABLE REDECLARED. Returns
RT ERROR INVALID VALUE if passed a NULL pointer. Return RT ERROR ILLEGAL SYMBOL if name is
not syntactically valid.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

RT ERROR VARIABLE REDECLARED

HISTORY

rtContextDeclareVariable was introduced in OptiX 1.0.

8 CHAPTER 1. API REFERENCE

SEE ALSO

rtGeometryDeclareVariable, rtGeometryInstanceDeclareVariable, rtMaterialDeclareVariable, rtProgramDe-
clareVariable, rtSelectorDeclareVariable, rtContextGetVariable, rtContextGetVariableCount, rtContext-
QueryVariable, rtContextRemoveVariable

1.1. CONTEXT 9

1.1.4 rtContextDestroy

NAME

rtContextDestroy - Destroys a context and frees all associated resources

SYNOPSIS

#include <optix.h>

RTresult rtContextDestroy(RTcontext context)

PARAMETERS

context

Handle of the context to destroy

DESCRIPTION

rtContextDestroy frees all resources, including OptiX objects, associated with this object. Returns
RT ERROR INVALID VALUE if passed a NULL context. RT ERROR LAUNCH FAILED may be returned if a pre-
vious call to rtContextLaunch failed.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

RT ERROR LAUNCH FAILED

HISTORY

rtContextDestroy was introduced in OptiX 1.0.

SEE ALSO

rtContextCreate

10 CHAPTER 1. API REFERENCE

1.1.5 rtContextGetAttribute

NAME

rtContextGetAttribute - returns an attribute specific to an OptiX context.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtContextGetAttribute(RTcontext context,

RTcontextattribute attrib,

RTsize size,

void* p);

PARAMETERS

context

The context object to be queried.

attrib

Attribute to query.

size

Size of the attribute being queried. Parameter p must have at least this much memory backing it.

p

Return pointer where the value of the attribute will be copied into. This must point to at least size
bytes of memory.

DESCRIPTION

rtContextGetAttribute() returns in p the value of the per context attribute specified by attrib.

Each attribute can have a different size. The sizes are given in the following list:

RT_CONTEXT_ATTRIBUTE_MAX_TEXTURE_COUNT sizeof(int)

RT_CONTEXT_ATTRIBUTE_CPU_NUM_THREADS sizeof(int)

RT_CONTEXT_ATTRIBUTE_USED_HOST_MEMORY sizeof(RTsize)

RT_CONTEXT_ATTRIBUTE_GPU_PAGING_ACTIVE sizeof(int)

RT_CONTEXT_ATTRIBUTE_GPU_PAGING_FORCED_OFF sizeof(int)

RT_CONTEXT_ATTRIBUTE_AVAILABLE_DEVICE_MEMORY sizeof(RTsize)

RT CONTEXT ATTRIBUTE MAX TEXTURE COUNT queries the maximum number of textures handled by OptiX.
For OptiX versions below 2.5 this value depends on the number of textures supported by CUDA.

RT CONTEXT ATTRIBUTE CPU NUM THREADS queries the number of host CPU threads OptiX can use for various
tasks.

1.1. CONTEXT 11

RT CONTEXT ATTRIBUTE USED HOST MEMORY queries the amount of host memory allocated by OptiX.

RT CONTEXT ATTRIBUTE GPU PAGING ACTIVE queries if software paging of device memory has been turned on
by the context. The returned value is a boolean, where 1 means that paging is currently active.

RT CONTEXT ATTRIBUTE GPU PAGING FORCED OFF queries if software paging has been prohibited by the user.
The returned value is a boolean, where 0 means that OptiX is allowed to activate paging if necessary, 1
means that paging is always off.

RT CONTEXT ATTRIBUTE AVAILABLE DEVICE MEMORY queries the amount of free device memory.

Some attributes are used to get per device information. In constrast to rtDeviceGetAttribute, these
attributes are determined by the context and are therefore queried through the context. This is done by
summing the attribute with the OptiX ordinal number when querying the attribute. The following are per
device attributes.

RT_CONTEXT_ATTRIBUTE_AVAILABLE_DEVICE_MEMORY

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE - Can be returned if size does not match the proper size of the attribute, if p is
NULL, or if attribute+ordinal does not correspond to an OptiX device.

HISTORY

rtContextGetAttribute was introduced in OptiX 2.0.

SEE ALSO

rtContextGetDeviceCount, rtContextSetAttribute, rtDeviceGetAttribute

12 CHAPTER 1. API REFERENCE

1.1.6 rtContextGetDevices

NAME

rtContextGetDevices - Retrieve a list of hardware devices being used by the kernel.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetDevices(RTcontext context,

int* devices)

PARAMETERS

context

The context to which the hardware list is applied.

devices

Return parameter for the list of devices. The memory must be able to hold entries numbering least
the number of devices as returned by rtContextGetDeviceCount.

DESCRIPTION

rtContextGetDevices retrieves a list of hardware devices used during execution of the subsequent trace
kernels.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtContextGetDevices was introduced in OptiX 2.0.

SEE ALSO

rtContextSetDevices, rtContextGetDeviceCount

1.1. CONTEXT 13

1.1.7 rtContextGetDeviceCount

NAME

rtContextGetDeviceCount - Query the number of devices currently being used.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetDeviceCount(RTcontext context,

unsigned int* count)

PARAMETERS

context

The context containing the devices.

devices

Return parameter for the device count.

DESCRIPTION

rtContextGetDeviceCount - Query the number of devices currently being used.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtContextGetDeviceCount was introduced in OptiX 2.0.

SEE ALSO

rtContextSetDevices, rtContextGetDevices

14 CHAPTER 1. API REFERENCE

1.1.8 rtContextGetEntryPointCount

NAME

rtContextGetEntryPointCount - Query the number of entry points for this context.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetEntryPointCount(RTcontext context,

unsigned int* num_entry_points)

PARAMETERS

context

The context node to be queried.

num entry points

Return parameter for passing back the entry point count.

DESCRIPTION

rtContextGetEntryPointCount passes back the number of entry points associated with this context in
num entry points. Returns RT ERROR INVALID VALUE if passed a NULL pointer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetEntryPointCount was introduced in OptiX 1.0.

SEE ALSO

rtContextSetEntryPointCount

1.1. CONTEXT 15

1.1.9 rtContextGetErrorString

NAME

rtContextGetErrorString - returns the error string associated with a given error.

SYNOPSIS

#include <optix.h>

void rtContextGetErrorString(RTcontext context,

RTresult code,

char** return_string)

PARAMETERS

context

The context object to be queried, or NULL.

code

The error code to be converted to string.

return string

The return parameter for the error string.

DESCRIPTION

rtContextGetErrorString return a descriptive string given an error code. If context is valid and ad-
ditional information is available from the last OptiX failure, it will be appended to the generic error code
description. return string will be set to point to this string. The memory return string points to will be
valid until the next API call that returns a string.

RETURN VALUES

rtContextGetErrorString does not return a value.

HISTORY

rtContextGetErrorString was introduced in OptiX 1.0.

SEE ALSO

16 CHAPTER 1. API REFERENCE

1.1.10 rtContextGetExceptionEnabled

NAME

rtContextGetExceptionEnabled - Query whether a specified exception is enabled.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtContextGetExceptionEnabled(RTcontext context,

RTexception exception,

int* enabled)

PARAMETERS

context

The context to be queried.

exception

The exception of which to query the state.

enabled

Return parameter to store whether the exception is enabled.

DESCRIPTION

rtContextGetExceptionEnabled passes back 1 in the location pointed to by enabled if the given excep-
tion is enabled, 0 otherwise. exception specifies the type of exception to be queried. For a list of available
types, see rtContextSetExceptionEnabled. If exception is RT EXCEPTION ALL, enabled is set to 1 only
if all possible exceptions are enabled.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetExceptionEnabled was introduced in OptiX 1.1.

1.1. CONTEXT 17

SEE ALSO

rtContextSetExceptionEnabled, rtContextSetExceptionProgram, rtContextGetExceptionProgram, rtGetExcep-
tionCode, rtThrow, rtPrintExceptionDetails

18 CHAPTER 1. API REFERENCE

1.1.11 rtContextGetExceptionProgram

NAME

rtContextGetExceptionProgram - Queries the exception program associated with the given context and
entry point.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetExceptionProgram(RTcontext context,

unsigned int entry_point_index,

RTprogram* program)

PARAMETERS

context

The context node associated with the exception program.

entry point index

The entry point index for the desired exception program.

program

Return parameter to store the exception program.

DESCRIPTION

rtContextGetExceptionProgram passes back the exception program associated with the given
context and entry point. This program is set via rtContextSetExceptionProgram. Returns
RT ERROR INVALID VALUE if given an invalid entry point index or NULL pointer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetExceptionProgram was introduced in OptiX 1.0.

1.1. CONTEXT 19

SEE ALSO

rtContextSetExceptionProgram, rtContextSetEntryPointCount, rtContextSetExceptionEnabled, rtContextGe-
tExceptionEnabled, rtGetExceptionCode, rtThrow, rtPrintExceptionDetails

20 CHAPTER 1. API REFERENCE

1.1.12 rtContextGetMissProgram

NAME

rtContextGetMissProgram - Queries the miss program associated with the given context and ray type.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetMissProgram(RTcontext context,

unsigned int ray_type_index,

RTprogram* program)

PARAMETERS

context

The context node associated with the miss program.

ray type index

The ray type index for the desired miss program.

program

Return parameter to store the miss program.

DESCRIPTION

rtContextGetMissProgram passes back the miss program associated with the given context and ray type.
This program is set via rtContextSetMissProgram. Returns RT ERROR INVALID VALUE if given a NULL

pointer or ray type index is outside of the range [0, rtContextGetRayTypeCount()-1].

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetMissProgram was introduced in OptiX 1.0.

SEE ALSO

rtContextSetMissProgram, rtContextGetRayTypeCount

1.1. CONTEXT 21

1.1.13 rtContextGetPrintBufferSize

NAME

rtContextGetPrintBufferSize - Get the current size of the print buffer.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtContextGetPrintBufferSize(RTcontext context,

RTsize* buffer_size_bytes)

PARAMETERS

context

The context from which to query the print buffer size.

buffer size bytes

The returned print buffer size in bytes.

DESCRIPTION

rtContextGetPrintBufferSize is used to query the buffer size available to hold data generated by rt-
Printf. Returns RT ERROR INVALID VALUE if passed a NULL pointer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetPrintBufferSize was introduced in OptiX 1.0.

SEE ALSO

rtPrintf, rtContextSetPrintEnabled, rtContextGetPrintEnabled, rtContextSetPrintBufferSize, rtContextSet-
PrintLaunchIndex, rtContextGetPrintLaunchIndex

22 CHAPTER 1. API REFERENCE

1.1.14 rtContextGetPrintEnabled

NAME

rtContextGetPrintEnabled - Query whether text printing from programs is enabled.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtContextGetPrintEnabled(RTcontext context,

int* enabled)

PARAMETERS

context

The context to be queried.

enabled

Return parameter to store whether printing is enabled.

DESCRIPTION

rtContextGetPrintEnabled passes back 1 if text printing from programs through rtPrintf is currently
enabled for this context; 0 otherwise. Returns RT ERROR INVALID VALUE if passed a NULL pointer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetPrintEnabled was introduced in OptiX 1.0.

SEE ALSO

rtPrintf, rtContextSetPrintEnabled, rtContextSetPrintBufferSize, rtContextGetPrintBufferSize, rtCon-
textSetPrintLaunchIndex, rtContextGetPrintLaunchIndex

1.1. CONTEXT 23

1.1.15 rtContextGetPrintLaunchIndex

NAME

rtContextGetPrintLaunchIndex - Gets the active print launch index.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtContextGetPrintLaunchIndex(RTcontext context,

int* x,

int* y,

int* z)

PARAMETERS

context

The context from which to query the print launch index.

x

Returns the launch index in the x dimension to which the output of rtPrintf invocations is limited.
Will not be written to if a NULL pointer is passed.

y

Returns the launch index in the y dimension to which the output of rtPrintf invocations is limited.
Will not be written to if a NULL pointer is passed.

z

Returns the launch index in the z dimension to which the output of rtPrintf invocations is limited.
Will not be written to if a NULL pointer is passed.

DESCRIPTION

rtContextGetPrintLaunchIndex is used to query for which launch indices rtPrintf generates output.
The initial value of (x,y,z) is (-1,-1,-1), which generates output for all indices.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

24 CHAPTER 1. API REFERENCE

HISTORY

rtContextGetPrintLaunchIndex was introduced in OptiX 1.0.

SEE ALSO

rtPrintf, rtContextGetPrintEnabled, rtContextSetPrintEnabled, rtContextSetPrintBufferSize, rtContextGet-
PrintBufferSize, rtContextSetPrintLaunchIndex

1.1. CONTEXT 25

1.1.16 rtContextGetRayGenerationProgram

NAME

rtContextGetRayGenerationProgram - Queries the ray generation program associated with the given
context and entry point.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetRayGenerationProgram(RTcontext context,

unsigned int entry_point_index,

RTprogram* program)

PARAMETERS

context

The context node associated with the ray generation program.

entry point index

The entry point index for the desired ray generation program.

program

Return parameter to store the ray generation program.

DESCRIPTION

rtContextGetRayGenerationProgram passes back the ray generation program associated with the
given context and entry point. This program is set via rtContextSetRayGenerationProgram. Returns
RT ERROR INVALID VALUE if given an invalid entry point index or NULL pointer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetRayGenerationProgram was introduced in OptiX 1.0.

26 CHAPTER 1. API REFERENCE

SEE ALSO

rtContextSetRayGenerationProgram

1.1. CONTEXT 27

1.1.17 rtContextGetRayTypeCount

NAME

rtContextGetRayTypeCount - Query the number of ray types associated with this context.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetRayTypeCount(RTcontext context,

unsigned int* num_ray_types)

PARAMETERS

context

The context node to be queried.

num ray types

Return parameter to store the number of ray types.

DESCRIPTION

rtContextGetRayTypeCount passes back the number of entry points associated with this context in
num ray types. Returns RT ERROR INVALID VALUE if passed a NULL pointer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetRayTypeCount was introduced in OptiX 1.0.

SEE ALSO

rtContextSetRayTypeCount

28 CHAPTER 1. API REFERENCE

1.1.18 rtContextGetRunningState

NAME

rtContextGetRunningState - Query whether the given context is currently running.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetRunningState(RTcontext context,

int* running)

PARAMETERS

context

The context node to be queried.

running

Return parameter to store the running state.

DESCRIPTION

rtContextGetRunningState passes back 1 if an rtContextLaunch is currently active for this context;
0 otherwise. Returns RT ERROR INVALID VALUE if passed a NULL pointer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetRunningState was introduced in OptiX 1.0.

SEE ALSO

rtContextLaunch1D, rtContextLaunch2D, rtContextLaunch3D

1.1. CONTEXT 29

1.1.19 rtContextGetStackSize

NAME

rtContextGetStackSize - Query the stack size for this context.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetStackSize(RTcontext context,

RTsize* stack_size_bytes)

PARAMETERS

context

The context node to be queried.

stack size bytes

Return parameter to store the size of the stack.

DESCRIPTION

rtContextGetStackSize passes back the stack size associated with this context in stack size bytes.
Returns RT ERROR INVALID VALUE if passed a NULL pointer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetStackSize was introduced in OptiX 1.0.

SEE ALSO

rtContextSetStackSize

30 CHAPTER 1. API REFERENCE

1.1.20 rtContextGetVariableCount

NAME

rtContextGetVariableCount - Returns the number of variables associated with this context.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetVariableCount(RTcontext context,

unsigned int* count)

PARAMETERS

context

The context to be queried for number of attached variables.

count

Return parameter to store the number of variables.

DESCRIPTION

rtContextGetVariableCount returns the number of variables that are currently attached to context.
Returns RT ERROR INVALID VALUE if passed a NULL pointer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetVariableCount was introduced in OptiX 1.0.

SEE ALSO

rtGeometryGetVariableCount, rtGeometryInstanceGetVariableCount, rtMaterialGetVariableCount, rtPro-
gramGetVariableCount, rtSelectorGetVariable, rtContextDeclareVariable, rtContextGetVariable, rtContext-
QueryVariable, rtContextRemoveVariable

1.1. CONTEXT 31

1.1.21 rtContextGetVariable

NAME

rtContextGetVariable - Queries an indexed variable associated with this context.

SYNOPSIS

#include <optix.h>

RTresult rtContextGetVariable(RTcontext context,

unsigned int index,

RTvariable* v)

PARAMETERS

context

The context node to be queried for an indexed variable.

index

The index that identifies the variable to be queried.

v

Return value to store the queried variable.

DESCRIPTION

rtContextGetVariable queries the variable at position index in the variable array from context and
stores the result in the parameter v. A variable has to be declared first with rtContextDeclareVariable
and index has to be in the range [0, rtContextGetVariableCount()-1].

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextGetVariable was introduced in OptiX 1.0.

32 CHAPTER 1. API REFERENCE

SEE ALSO

rtGeometryGetVariable, rtGeometryInstanceGetVariable, rtMaterialGetVariable, rtProgramGetVariable, rtS-
electorGetVariable, rtContextDeclareVariable, rtContextGetVariableCount, rtContextQueryVariable, rtCon-
textRemoveVariable

1.1. CONTEXT 33

1.1.22 rtContextQueryVariable

NAME

rtContextQueryVariable - Returns a named variable associated with this context.

SYNOPSIS

#include <optix.h>

RTresult rtContextQueryVariable(RTcontext context,

const char* name,

RTvariable* v)

PARAMETERS

context

The context node to query a variable from.

name

The name that identifies the variable to be queried.

v

Return value to store the queried variable.

DESCRIPTION

rtContextQueryVariable queries a variable identified by the string name from context and stores the
result in the parameter v. A variable has to be declared first with rtContextDeclareVariable before
it can be queried. The return parameter v will be set to 0 if no variable exists with the given name.
RT ERROR INVALID VALUE will be returned if name is NULL.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextQueryVariable was introduced in OptiX 1.0.

34 CHAPTER 1. API REFERENCE

SEE ALSO

rtGeometryQueryVariable, rtGeometryInstanceQueryVariable, rtMaterialQueryVariable, rtProgramQuery-
Variable, rtSelectorQueryVariable, rtContextDeclareVariable, rtContextGetVariableCount, rtContextGetVari-
able, rtContextRemoveVariable

1.1. CONTEXT 35

1.1.23 rtContextRemoveVariable

NAME

rtContextRemoveVariable - Removes a variable from the given context.

SYNOPSIS

#include <optix.h>

RTresult rtContextRemoveVariable(RTcontext context,

RTvariable v)

PARAMETERS

context

The context node from which to remove a variable.

v

The variable to be removed.

DESCRIPTION

rtContextRemoveVariable removes variable v from context if present. Returns
RT ERROR VARIABLE NOT FOUND if the variable is not attached to this context. Returns
RT ERROR INVALID VALUE if passed an invalid variable.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

RT ERROR VARIABLE NOT FOUND

HISTORY

rtContextRemoveVariable was introduced in OptiX 1.0.

SEE ALSO

rtGeometryRemoveVariable, rtGeometryInstanceRemoveVariable, rtMaterialRemoveVariable, rtProgramRe-
moveVariable, rtSelectorRemoveVariable, rtContextDeclareVariable, rtContextGetVariable, rtContextGet-
VariableCount, rtContextQueryVariable,

36 CHAPTER 1. API REFERENCE

1.1.24 rtContextSetAttribute

NAME

rtContextSetAttribute - set an attribute specific to an OptiX context.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtContextSetAttribute(RTcontext context,

RTcontextattribute attrib,

RTsize size,

void* p);

PARAMETERS

context

The context object to be modified.

attrib

Attribute to set.

size

Size of the attribute being set.

p

Pointer to where the value of the attribute will be copied from. This must point to at least size bytes
of memory.

DESCRIPTION

rtContextSetAttribute() sets p as the value of the per context attribute specified by attrib.

Each attribute can have a different size. The sizes are given in the following list:

RT_CONTEXT_ATTRIBUTE_CPU_NUM_THREADS sizeof(int)

RT_CONTEXT_ATTRIBUTE_GPU_PAGING_FORCED_OFF sizeof(int)

RT CONTEXT ATTRIBUTE CPU NUM THREADS sets the number of host CPU threads OptiX can use for various
tasks.

RT CONTEXT ATTRIBUTE GPU PAGING FORCED OFF prohibits software paging of device memory. A value of 0
means that OptiX is allowed to activate paging if necessary, 1 means that paging is always off. Note that
currently paging cannot be disabled once it has been activated.

1.1. CONTEXT 37

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE - Can be returned if size does not match the proper size of the attribute, or if p
is NULL.

HISTORY

rtContextSetAttribute was introduced in OptiX 2.5.

SEE ALSO

rtContextGetAttribute

38 CHAPTER 1. API REFERENCE

1.1.25 rtContextSetD3D9Device

NAME

rtContextSetD3D9Device - Binds a D3D9 device to a context and enables interop

SYNOPSIS

#include <optix_d3d9_interop.h>

RTresult rtContextSetD3D9Device(RTcontext context,

IDirect3DDevice9* device);

PARAMETERS

context

The context to bind the device with.

device

The D3D9 device to be used for interop with the associated context.

DESCRIPTION

rtContextSetD3D9Device binds device to context and enables D3D9 interop capabilities in context.
This function must be executed once for context before any call to rtBufferCreateFromD3D9Resource
or rtTextureSamplerCreateFromD3D9Resource can take place. A context can only be bound to one
device. Once device is bound to context, the binding is immutable and remains upon destruction of
context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtContextSetD3D9Device was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D9Resource rtTextureSamplerCreateFromD3D9Resource

1.1. CONTEXT 39

1.1.26 rtContextSetD3D10Device

NAME

rtContextSetD3D10Device - Binds a D3D10 device to a context and enables interop

SYNOPSIS

#include <optix_d3d10_interop.h>

RTresult rtContextSetD3D10Device(RTcontext context,

IDirect3DDevice10* device);

PARAMETERS

context

The context to bind the device with.

device

The D3D10 device to be used for interop with the associated context.

DESCRIPTION

rtContextSetD3D10Device binds device to context and enables D3D10 interop capabilities in context.
This function must be executed once for context before any call to rtBufferCreateFromD3D10Resource
or rtTextureSamplerCreateFromD3D10Resource can take place. A context can only be bound to one
device. Once device is bound to context, the binding is immutable and remains upon destruction of
context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtContextSetD3D10Device was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D10Resource rtTextureSamplerCreateFromD3D10Resource

40 CHAPTER 1. API REFERENCE

1.1.27 rtContextSetD3D11Device

NAME

rtContextSetD3D11Device - Binds a D3D11 device to a context and enables interop

SYNOPSIS

#include <optix_d3d11_interop.h>

RTresult rtContextSetD3D11Device(RTcontext context,

IDirect3DDevice11* device);

PARAMETERS

context

The context to bind the device with.

device

The D3D11 device to be used for interop with the associated context.

DESCRIPTION

rtContextSetD3D11Device binds device to context and enables D3D11 interop capabilities in context.
This function must be executed once for context before any call to rtBufferCreateFromD3D11Resource
or rtTextureSamplerCreateFromD3D11Resource can take place. A context can only be bound to one
device. Once device is bound to context, the binding is immutable and remains upon destruction of
context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtContextSetD3D11Device was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D11Resource rtTextureSamplerCreateFromD3D11Resource

1.1. CONTEXT 41

1.1.28 rtContextSetDevices

NAME

rtContextSetDevices - Specify a list of hardware devices to be used by the kernel.

SYNOPSIS

#include <optix.h>

RTresult rtContextSetDevices(RTcontext context,

unsigned int count,

const int* devices)

PARAMETERS

context

The context to which the hardware list is applied.

count

The number of devices in the list.

devices

The list of devices.

DESCRIPTION

rtContextSetDevices specifies a list of hardware devices to be used during execution of the subsequent
trace kernels.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR NO DEVICE

RT ERROR INVALID DEVICE

HISTORY

rtContextSetDevices was introduced in OptiX 1.0.

SEE ALSO rtContextGetDevices, rtContextGetDeviceCount

42 CHAPTER 1. API REFERENCE

1.1.29 rtContextSetEntryPointCount

NAME

rtContextSetEntryPointCount - Set the number of entry points for a given context.

SYNOPSIS

#include <optix.h>

RTresult rtContextSetEntryPointCount(RTcontext context,

unsigned int num_entry_points)

PARAMETERS

context

The context to be modified.

num entry points

The number of entry points to use.

DESCRIPTION

rtContextSetEntryPointCount sets the number of entry points associated with the given context to
num entry points.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextSetEntryPointCount was introduced in OptiX 1.0.

SEE ALSO

rtContextGetEntryPointCount

1.1. CONTEXT 43

1.1.30 rtContextSetExceptionEnabled

NAME

rtContextSetExceptionEnabled - Enable or disable an exception.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtContextSetExceptionEnabled(RTcontext context,

RTexception exception,

int enabled)

PARAMETERS

context

The context for which the exception is to be enabled or disabled.

exception

The exception which is to be enabled or disabled.

enabled

Nonzero to enable the exception, 0 to disable the exception.

DESCRIPTION

rtContextSetExceptionEnabled is used to enable or disable specific exceptions. If an exception is en-
abled, the exception condition is checked for at runtime, and the exception program is invoked if the condition
is met. The exception program can query the type of the caught exception by calling rtGetExceptionCode.
exception may take one of the following values:

RT_EXCEPTION_INDEX_OUT_OF_BOUNDS

RT_EXCEPTION_STACK_OVERFLOW

RT_EXCEPTION_BUFFER_INDEX_OUT_OF_BOUNDS

RT_EXCEPTION_INVALID_RAY

RT_EXCEPTION_INTERNAL_ERROR

RT_EXCEPTION_USER

RT_EXCEPTION_ALL

RT EXCEPTION INDEX OUT OF BOUNDS checks that rtIntersectChild and rtReportIntersection are called
with a valid index.

RT EXCEPTION STACK OVERFLOW checks the runtime stack against overflow. The most common cause for an
overflow is a too deep rtTrace recursion tree.

RT EXCEPTION BUFFER INDEX OUT OF BOUNDS checks every read and write access to rtBuffer objects to be
within valid bounds.

44 CHAPTER 1. API REFERENCE

RT EXCEPTION INVALID RAY checks the each ray’s origin and direction values against NaNs and infinity

values.

RT EXCEPTION INTERNAL ERROR indicates an unexpected internal error in the runtime.

RT EXCEPTION USER is used to enable or disable all user-defined exceptions. The reserved range of exception
codes for user-defined exceptions starts at RT EXCEPTION USER (0x400) and ends at 0xFFFF. See
rtThrow for more information.

RT EXCEPTION ALL is a placeholder value which can be used to enable or disable all possible exceptions with
a single call to rtContextSetExceptionEnabled.

By default, RT EXCEPTION STACK OVERFLOW is enabled and all other exceptions are disabled.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextSetExceptionEnabled was introduced in OptiX 1.1.

SEE ALSO

rtContextGetExceptionEnabled, rtContextSetExceptionProgram, rtContextGetExceptionProgram, rtGetEx-
ceptionCode, rtThrow, rtPrintExceptionDetails

1.1. CONTEXT 45

1.1.31 rtContextSetExceptionProgram

NAME

rtContextSetExceptionProgram - Specifies the exception program for a given context entry point.

SYNOPSIS

#include <optix.h>

RTresult rtContextSetExceptionProgram(RTcontext context,

unsigned int entry_point_index,

RTprogram program)

PARAMETERS

context

The context node to which the exception program will be added.

entry point index

The entry point the program will be associated with.

program

The exception program.

DESCRIPTION

rtContextSetExceptionProgram sets context’s exception program at entry point entry point index.
RT ERROR INVALID VALUE is returned if entry point index is outside of the range [0, rtContextGetEn-
tryPointCount()-1].

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

RT ERROR TYPE MISMATCH

HISTORY

rtContextSetExceptionProgram was introduced in OptiX 1.0.

46 CHAPTER 1. API REFERENCE

SEE ALSO

rtContextGetEntryPointCount, rtContextGetExceptionProgram rtContextSetExceptionEnabled, rtCon-
textGetExceptionEnabled, rtGetExceptionCode, rtThrow, rtPrintExceptionDetails

1.1. CONTEXT 47

1.1.32 rtContextSetMissProgram

NAME

rtContextSetMissProgram - Specifies the miss program for a given context ray type.

SYNOPSIS

#include <optix.h>

RTresult rtContextSetMissProgram(RTcontext context,

unsigned int ray_type_index,

RTprogram program)

PARAMETERS

context

The context node to which the miss program will be added.

ray type index

The ray type the program will be associated with.

program

The miss program.

DESCRIPTION

rtContextSetMissProgram sets context’s miss program associated with ray type ray type index.
RT ERROR INVALID VALUE is returned if ray type index is outside of the range [0, rtContextGetRay-
TypeCount()-1].

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR TYPE MISMATCH

HISTORY

rtContextSetMissProgram was introduced in OptiX 1.0.

48 CHAPTER 1. API REFERENCE

SEE ALSO

rtContextGetRayTypeCount, rtContextGetMissProgram

1.1. CONTEXT 49

1.1.33 rtContextSetPrintBufferSize

NAME

rtContextSetPrintBufferSize - Set the size of the print buffer.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtContextSetPrintBufferSize(RTcontext context,

RTsize buffer_size_bytes)

PARAMETERS

context

The context for which to set the print buffer size.

buffer size bytes

The print buffer size in bytes.

DESCRIPTION

rtContextSetPrintBufferSize is used to set the buffer size available to hold data generated by rtPrintf.
The default size is 65536 bytes.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextSetPrintBufferSize was introduced in OptiX 1.0.

SEE ALSO

rtPrintf, rtContextSetPrintEnabled, rtContextGetPrintEnabled, rtContextGetPrintBufferSize, rtContextSet-
PrintLaunchIndex, rtContextGetPrintLaunchIndex

50 CHAPTER 1. API REFERENCE

1.1.34 rtContextSetPrintEnabled

NAME

rtContextSetPrintEnabled - Enable or disable text printing from programs.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtContextSetPrintEnabled(RTcontext context,

int enabled)

PARAMETERS

context

The context for which printing is to be enabled or disabled.

enabled

Setting this parameter to a nonzero value enables printing, 0 disables printing.

DESCRIPTION

rtContextSetPrintEnabled is used to control whether text printing in programs through rtPrintf is
currently enabled for this context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextSetPrintEnabled was introduced in OptiX 1.0.

SEE ALSO

rtPrintf, rtContextGetPrintEnabled, rtContextSetPrintBufferSize, rtContextGetPrintBufferSize, rtCon-
textSetPrintLaunchIndex, rtContextGetPrintLaunchIndex

1.1. CONTEXT 51

1.1.35 rtContextSetPrintLaunchIndex

NAME

rtContextSetPrintLaunchIndex - Sets the active launch index to limit text output.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtContextSetPrintLaunchIndex(RTcontext context,

int x,

int y,

int z)

PARAMETERS

context

The context for which to set the print launch index.

x

The launch index in the x dimension to which to limit the output of rtPrintf invocations. If set to
-1, output is generated for all launch indices in the x dimension.

y

The launch index in the y dimension to which to limit the output of rtPrintf invocations. If set to
-1, output is generated for all launch indices in the y dimension.

z

The launch index in the z dimension to which to limit the output of rtPrintf invocations. If set to
-1, output is generated for all launch indices in the z dimension.

DESCRIPTION

rtContextSetPrintLaunchIndex is used to control for which launch indices rtPrintf generates output.
The initial value of (x,y,z) is (-1,-1,-1), which generates output for all indices.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

52 CHAPTER 1. API REFERENCE

HISTORY

rtContextSetPrintLaunchIndex was introduced in OptiX 1.0.

SEE ALSO

rtPrintf, rtContextGetPrintEnabled, rtContextSetPrintEnabled, rtContextSetPrintBufferSize, rtContextGet-
PrintBufferSize, rtContextGetPrintLaunchIndex

1.1. CONTEXT 53

1.1.36 rtContextSetRayGenerationProgram

NAME

rtContextSetRayGenerationProgram - Specifies the ray generation program for a given context entry
point.

SYNOPSIS

#include <optix.h>

RTresult rtContextSetRayGenerationProgram(RTcontext context,

unsigned int entry_point_index,

RTprogram program)

PARAMETERS

context

The context node to which the exception program will be added.

entry point index

The entry point the program will be associated with.

program

The ray generation program.

DESCRIPTION

rtContextSetRayGenerationProgram sets context’s ray generation program at entry point en-
try point index. RT ERROR INVALID VALUE is returned if entry point index is outside of the range [0,
rtContextGetEntryPointCount()-1].

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR TYPE MISMATCH

HISTORY

rtContextSetRayGenerationProgram was introduced in OptiX 1.0.

54 CHAPTER 1. API REFERENCE

SEE ALSO

rtContextGetEntryPointCount, rtContextGetRayGenerationProgram

1.1. CONTEXT 55

1.1.37 rtContextSetRayTypeCount

NAME

rtContextSetRayTypeCount - Sets the number of ray types for a given context.

SYNOPSIS

#include <optix.h>

RTresult rtContextSetRayTypeCount(RTcontext context,

unsigned int num_ray_types)

PARAMETERS

context

The context node.

num ray types

The number of ray types to be used.

DESCRIPTION

rtContextSetRayTypeCount Sets the number of ray types associated with the given context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextSetRayTypeCount was introduced in OptiX 1.0.

SEE ALSO

rtContextGetRayTypeCount

56 CHAPTER 1. API REFERENCE

1.1.38 rtContextSetStackSize

NAME

rtContextSetStackSize - Set the stack size for a given context.

SYNOPSIS

#include <optix.h>

RTresult rtContextSetStackSize(RTcontext context,

RTsize stack_size_bytes)

PARAMETERS

context

The context node to be modified.

stack size bytes

The desired stack size in bytes.

DESCRIPTION

rtContextSetStackSize sets the stack size for the given context to stack size bytes bytes. Returns
RT ERROR INVALID VALUE if context is not valid.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtContextSetStackSize was introduced in OptiX 1.0.

SEE ALSO

rtContextGetStackSize

1.1. CONTEXT 57

1.1.39 rtContextSetTimeoutCallback

NAME

rtContextSetTimeoutCallback - Set an application-side timeout callback function.

SYNOPSIS

#include <optix.h>

RTresult rtContextSetTimeoutCallback(RTcontext context,

RTtimeoutcallback callback,

double min_polling_seconds)

PARAMETERS

context

The context node to be modified.

callback

The function to be called.

min polling seconds

The timeout interval after which the function is called.

DESCRIPTION

rtContextSetTimeoutCallback sets an application-side callback function callback and a time interval
min polling seconds in seconds. Long-running OptiX API calls such as rtContextCompile and rtCon-
textLaunch call the callback function about every min polling seconds seconds. If the callback function
returns true, the API call tries to abort, leaving the context in a clean but unfinished state. Output buffers
are left in an unpredictable state. In case an OptiX API call is terminated by a callback function, it returns
RT TIMEOUT CALLBACK.

RTtimeoutcallback is defined as int (*RTtimeoutcallback)(void).

To unregister a callback function, callback needs to be set to NULL and min polling seconds to 0.

Returns RT ERROR INVALID VALUE if context is not valid, if min polling seconds is negative, if callback
is NULL but min polling seconds is not 0, or if callback is not NULL but min polling seconds is 0.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

58 CHAPTER 1. API REFERENCE

HISTORY

rtContextSetTimeoutCallback was introduced in OptiX 2.5.

SEE ALSO

rtContextContextCompile, rtContextLaunch

1.1. CONTEXT 59

1.1.40 rtContextLaunch

NAME

rtContextLaunch - Executes the computation kernel for a given context.

SYNOPSIS

#include <optix.h>

RTresult rtContextLaunch1D(RTcontext context,

unsigned int entry_point_index,

RTsize image_width)

RTresult rtContextLaunch2D(RTcontext context,

unsigned int entry_point_index,

RTsize image_width,

RTsize image_height)

RTresult rtContextLaunch3D(RTcontext context,

unsigned int entry_point_index,

RTsize image_width,

RTsize image_height,

RTsize image_depth)

PARAMETERS

context

The context to be executed.

entry point index

The initial entry point into kernel.

image width, image height, image depth

Specifies the size of the computation grid.

DESCRIPTION

rtContextLaunch executes the computation kernel associated with the given context. If the context has
not yet been compiled, or if the context has been modified since the last compile, rtContextLaunch will
recompile the kernel internally. Acceleration structures of the context which are marked dirty will be updated
and their dirty flags will be cleared. Similarly, validation will occur if necessary. The ray generation program
specified by entry point index will be invoked once for every element (pixel or voxel) of the computation
grid specified by image width, image height, and image depth.

RT ERROR INVALID SOURCE is returned if t

60 CHAPTER 1. API REFERENCE

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR INVALID SOURCE

RT ERROR LAUNCH FAILED

HISTORY

rtContextLaunch was introduced in OptiX 1.0.

SEE ALSO

rtContextIsRunningState, rtContextCompile, rtContextValidate

1.1. CONTEXT 61

1.1.41 rtContextValidate

NAME

rtContextValidate - Checks the given context for valid internal state.

SYNOPSIS

#include <optix.h>

RTresult rtContextValidate(RTcontext context)

PARAMETERS

context

The context to be validated.

DESCRIPTION

rtContextValidate checks the the given context and all of its associated OptiX objects for a valid state.
These checks include tests for presence of necessary programs (eg. an intersection program for a geometry
node), invalid internal state such as NULL children in graph nodes, and presence of variables required by all
specified programs. rtContextGetErrorString can be used to retrieve a description of a validation failure.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR INVALID SOURCE

HISTORY

rtContextValidate was introduced in OptiX 1.0.

SEE ALSO

rtContextGetErrorString

62 CHAPTER 1. API REFERENCE

1.2 Geometry Group

NAME

Geometry Group

DESCRIPTION

This section describes the API functions for creation and handling of GeometryGroup objects.

rtGeometryGroupCreate

rtGeometryGroupDestroy

rtGeometryGroupGetAcceleration

rtGeometryGroupGetChildCount

rtGeometryGroupGetChild

rtGeometryGroupGetContext

rtGeometryGroupSetAcceleration

rtGeometryGroupSetChildCount

rtGeometryGroupSetChild

rtGeometryGroupValidate

HISTORY

GeometryGroup objects were introduced in OptiX 1.0.

SEE ALSO

Context, Group Node, Selector Node, Transform Node, Acceleration Structure, Geometry Instance, Geometry,
Material, Program, Buffer, Texture Sampler, Variables, Context-Free Functions

1.2. GEOMETRY GROUP 63

1.2.1 rtGeometryGroupCreate

NAME

rtGeometryGroupCreate - Creates a new geometry group.

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGroupCreate(RTcontext context,

RTgeometrygroup* geometrygroup)

PARAMETERS

context

Specifies a context within which to create a new geometry group.

geometrygroup

Returns a newly created geometry group.

DESCRIPTION

rtGeometryGroupCreate creates a new geometry group within a context. context specifies the target
context, and should be a value returned by rtContextCreate. After the call, *geometrygroup shall be
set to the handle of a newly created group within context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGroupCreate was introduced in OptiX 1.0.

SEE ALSO

rtGeometryGroupDestroy, rtContextCreate

64 CHAPTER 1. API REFERENCE

1.2.2 rtGeometryGroupDestroy

NAME

rtGeometryGroupDestroy - Destroys a geometry group node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGroupDestroy(RTgeometrygroup geometrygroup)

PARAMETERS

geometrygroup

Handle of the geometry group node to destroy

DESCRIPTION

rtGeometryGroupDestroy removes geometrygroup from its context and deletes it. geometrygroup
should be a value returned by rtGeometryGroupCreate. No child graph nodes are destroyed. After the
call, geometrygroup is no longer a valid handle.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGroupDestroy was introduced in OptiX 1.0.

SEE ALSO

rtGeometryGroupCreate

1.2. GEOMETRY GROUP 65

1.2.3 rtGeometryGroupGetAcceleration

NAME

rtGeometryGroupGetAcceleration - Returns the acceleration structure attached to a geometry group.

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGroupGetAcceleration(RTgeometrygroup geometrygroup,

RTacceleration* acceleration)

PARAMETERS

geometrygroup

The geometry group handle.

acceleration

The returned acceleration structure object.

DESCRIPTION

rtGeometryGroupGetAcceleration returns the acceleration structure attached to a geometry group
using rtGeometryGroupSetAcceleration. If no acceleration structure has previously been set, *accel-
eration is not written to, and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGroupGetAcceleration was introduced in OptiX 1.0.

SEE ALSO

rtGeometryGroupSetAcceleration, rtAccelerationCreate

66 CHAPTER 1. API REFERENCE

1.2.4 rtGeometryGroupGetChildCount

NAME

rtGeometryGroupGetChildCount - Returns the number of child slots for a group.

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGroupGetChildCount(RTgeometrygroup geometrygroup,

unsigned int* count)

PARAMETERS

geometrygroup

The parent geometry group handle.

count

Returned number of child slots.

DESCRIPTION

rtGeometryGroupGetChildCount returns the number of child slots allocated using rtGeometry-
GroupSetChildCount. This includes empty slots which may not yet have actual children assigned by
rtGeometryGroupSetChild.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGroupGetChildCount was introduced in OptiX 1.0.

1.2. GEOMETRY GROUP 67

SEE ALSO

rtGeometryGroupSetChild, rtGeometryGroupGetChild, rtGeometryGroupSetChildCount, rtGeometry-
GroupGetChildType

68 CHAPTER 1. API REFERENCE

1.2.5 rtGeometryGroupGetChild

NAME

rtGeometryGroupGetChild - Returns a child node of a geometry group.

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGroupGetChild(RTgeometrygroup geometrygroup,

unsigned int index,

RTgeometryinstance* geometryinstance)

PARAMETERS

geometrygroup

The parent geometry group handle.

index

The index of the child slot to query.

geometryinstance

The returned child geometry instance.

DESCRIPTION

rtGeometryGroupGetChild returns the child geometry instance at slot index of the parent ge-
ometrygroup. If no child has been assigned to the given slot, *child is not written to and
RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGroupGetChild was introduced in OptiX 1.0.

1.2. GEOMETRY GROUP 69

SEE ALSO

rtGeometryGroupSetChild, rtGeometryGroupSetChildCount, rtGeometryGroupGetChildCount, rtGeometry-
GroupGetChildType

70 CHAPTER 1. API REFERENCE

1.2.6 rtGeometryGroupGetContext

NAME

rtGeometryGroupGetContext - Returns the context associated with a geometry group.

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGroupGetContext(RTgeometrygroup geometrygroup,

RTcontext* context)

PARAMETERS

geometrygroup

Specifies the geometry group to query.

context

Returns the context associated with the geometry group.

DESCRIPTION

rtGeometryGroupGetContext queries a geometry group for its associated context. geometrygroup
specifies the geometry group to query, and must be a value returned by rtGeometryGroupCreate. After
the call, *context shall be set to the context associated with geometrygroup.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGroupGetContext was introduced in OptiX 1.0.

SEE ALSO

rtContextCreate, rtGeometryGroupCreate

1.2. GEOMETRY GROUP 71

1.2.7 rtGeometryGroupSetAcceleration

NAME

rtGeometryGroupSetAcceleration - Set the acceleration structure for a group.

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGroupSetAcceleration(RTgeometrygroup geometrygroup,

RTacceleration acceleration)

PARAMETERS

geometrygroup

The geometry group handle.

acceleration

The acceleration structure to attach to the geometry group.

DESCRIPTION

rtGeometryGroupSetAcceleration attaches an acceleration structure to a geometry group. The accel-
eration structure must have been previously created using rtAccelerationCreate. Every geometry group
is required to have an acceleration structure assigned in order to pass validation. The acceleration structure
will be built over the primitives contained in all children of the geometry group. This enables a single
acceleration structure to be built over primitives of multiple geometry instances. Note that it is legal to
attach a single RTacceleration object to multiple geometry groups, as long as the underlying geometry of all
children is the same. This corresponds to attaching an acceleration structure to multiple groups at higher
graph levels using rtGroupSetAcceleration.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtGeometryGroupSetAcceleration was introduced in OptiX 1.0.

72 CHAPTER 1. API REFERENCE

SEE ALSO

rtGeometryGroupGetAcceleration, rtAccelerationCreate, rtGroupSetAcceleration

1.2. GEOMETRY GROUP 73

1.2.8 rtGeometryGroupSetChildCount

NAME

rtGeometryGroupSetChildCount - Sets the number of child nodes to be attached to the group.

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGroupSetChildCount(RTgeometrygroup geometrygroup,

unsigned int count)

PARAMETERS

geometrygroup

The parent geometry group handle.

count

Number of child slots to allocate for the geometry group.

DESCRIPTION

rtGeometryGroupSetChildCount specifies the number of child slots in this geometry group. Potentially
existing links to children at indices greater than count-1 are removed. If the call increases the number of
slots, the newly created slots are empty and need to be filled using rtGeometryGroupSetChild before
validation.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGroupSetChildCount was introduced in OptiX 1.0.

74 CHAPTER 1. API REFERENCE

SEE ALSO

rtGeometryGroupGetChild, rtGeometryGroupGetChildCount, rtGeometryGroupGetChildType, rtGeometry-
GroupSetChild

1.2. GEOMETRY GROUP 75

1.2.9 rtGeometryGroupSetChild

NAME

rtGeometryGroupSetChild - Attaches a child node to a geometry group.

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGroupSetChild(RTgroup geometrygroup,

unsigned int index,

RTgeometryinstance geometryinstance)

PARAMETERS

geometrygroup

The parent geometry group handle.

index

The index in the parent’s child slot array.

geometryinstance

The child node to be attached.

DESCRIPTION

rtGeometryGroupSetChild attaches a new child node geometryinstance to the parent node geome-
trygroup. index specifies the number of the slot where the child node gets attached. The index value must
be lower than the number previously set by rtGeometryGroupSetChildCount.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGroupSetChild was introduced in OptiX 1.0.

76 CHAPTER 1. API REFERENCE

SEE ALSO

rtGeometryGroupSetChildCount, rtGeometryGroupGetChildCount, rtGeometryGroupGetChild, rtGeometry-
GroupGetChildType

1.2. GEOMETRY GROUP 77

1.2.10 rtGeometryGroupValidate

NAME

rtGeometryGroupValidate - Validates the state of the geometry group.

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGroupValidate(RTgeometrygroup geometrygroup)

PARAMETERS

geometrygroup

Specifies the geometry group to be validated.

DESCRIPTION

rtGeometryGroupValidate checks geometrygroup for completeness. If geometrygroup or any of the
objects attached to geometrygroup are not valid, the call will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGroupValidate was introduced in OptiX 1.0.

SEE ALSO

rtGeometryGroupCreate

78 CHAPTER 1. API REFERENCE

1.3 Group Node

NAME

Group Node

DESCRIPTION

This section describes the API functions for creation and handling of Group nodes.

rtGroupCreate

rtGroupDestroy

rtGroupGetAcceleration

rtGroupGetChildCount

rtGroupGetChild

rtGroupGetChildType

rtGroupGetContext

rtGroupSetAcceleration

rtGroupSetChildCount

rtGroupSetChild

rtGroupValidate

HISTORY

Group nodes were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Selector Node, Transform Node, Acceleration Structure, Geometry Instance, Geometry,
Material, Program, Buffer, Texture Sampler, Variables, Context-Free Functions

1.3. GROUP NODE 79

1.3.1 rtGroupCreate

NAME

rtGroupCreate - Creates a new group.

SYNOPSIS

#include <optix.h>

RTresult rtGroupCreate(RTcontext context,

RTgroup* group)

PARAMETERS

context

Specifies a context within which to create a new group.

group

Returns a newly created group.

DESCRIPTION

rtGroupCreate creates a new group within a context. context specifies the target context, and should be
a value returned by rtContextCreate. After the call, *group shall be set to the handle of a newly created
group within context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtGroupCreate was introduced in OptiX 1.0.

SEE ALSO

rtGroupDestroy, rtContextCreate

80 CHAPTER 1. API REFERENCE

1.3.2 rtGroupDestroy

NAME

rtGroupDestroy - Destroys a group node

SYNOPSIS

#include <optix.h>

RTresult rtGroupDestroy(RTgroup group)

PARAMETERS

group

Handle of the group node to destroy.

DESCRIPTION

rtGroupDestroy removes group from its context and deletes it. group should be a value returned by
rtGroupCreate. No child graph nodes are destroyed. After the call, group is no longer a valid handle.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtGroupDestroy was introduced in OptiX 1.0.

SEE ALSO

rtGroupCreate

1.3. GROUP NODE 81

1.3.3 rtGroupGetAcceleration

NAME

rtGroupGetAcceleration - Returns the acceleration structure attached to a group.

SYNOPSIS

#include <optix.h>

RTresult rtGroupGetAcceleration(RTgroup group,

RTacceleration* acceleration)

PARAMETERS

group

The group handle.

acceleration

The returned acceleration structure object.

DESCRIPTION

rtGroupGetAcceleration returns the acceleration structure attached to a group using rtGroupSetAc-
celeration. If no acceleration structure has previously been set, *acceleration is not written to, and
RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtGroupGetAcceleration was introduced in OptiX 1.0.

SEE ALSO

rtGroupSetAcceleration, rtAccelerationCreate

82 CHAPTER 1. API REFERENCE

1.3.4 rtGroupGetChildCount

NAME

rtGroupGetChildCount - Returns the number of child slots for a group.

SYNOPSIS

#include <optix.h>

RTresult rtGroupGetChildCount(RTgroup group,

unsigned int* count)

PARAMETERS

group

The parent group handle.

count

Returned number of child slots.

DESCRIPTION

rtGroupGetChildCount returns the number of child slots allocated using rtGroupSetChildCount.
This includes empty slots which may not yet have actual children assigned by rtGroupSetChild.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtGroupGetChildCount was introduced in OptiX 1.0.

SEE ALSO

rtGroupSetChild, rtGroupGetChild, rtGroupSetChildCount, rtGroupGetChildType

1.3. GROUP NODE 83

1.3.5 rtGroupGetChild

NAME

rtGroupGetChild - Returns a child node of a group.

SYNOPSIS

#include <optix.h>

RTresult rtGroupGetChild(RTgroup group,

unsigned int index,

RTobject* child)

PARAMETERS

group

The parent group handle.

index

The index of the child slot to query.

child

The returned child object.

DESCRIPTION

rtGroupGetChild returns the child object at slot index of the parent group. If no child has been assigned
to the given slot, *child is not written to and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtGroupGetChild was introduced in OptiX 1.0.

SEE ALSO

rtGroupSetChild, rtGroupSetChildCount, rtGroupGetChildCount, rtGroupGetChildType

84 CHAPTER 1. API REFERENCE

1.3.6 rtGroupGetChildType

NAME

rtGroupGetChildType - Get the type of a group child.

SYNOPSIS

#include <optix.h>

RTresult rtGroupGetChildType(RTgroup group,

unsigned int index,

RTobjecttype* type)

PARAMETERS

group

The parent group handle.

index

The index of the child slot to query.

type

The returned child type.

DESCRIPTION

rtGroupGetChildType returns the type of the group child at slot index. If no child is associated with
the given index, type is not written to and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtGroupGetChildType was introduced in OptiX 1.0.

SEE ALSO

rtGroupSetChild, rtGroupGetChild, rtGroupSetChildCount, rtGroupGetChildCount

1.3. GROUP NODE 85

1.3.7 rtGroupGetContext

NAME

rtGroupGetContext - Returns the context associated with a group.

SYNOPSIS

#include <optix.h>

RTresult rtGroupGetContext(RTgroup group,

RTcontext* context)

PARAMETERS

group

Specifies the group to query.

context

Returns the context associated with the group.

DESCRIPTION

rtGroupGetContext queries a group for its associated context. group specifies the group to query, and
must be a value returned by rtGroupCreate. After the call, *context shall be set to the context associated
with group.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtGroupGetContext was introduced in OptiX 1.0.

SEE ALSO

rtContextCreate, rtGroupCreate

86 CHAPTER 1. API REFERENCE

1.3.8 rtGroupSetAcceleration

NAME

rtGroupSetAcceleration - Set the acceleration structure for a group.

SYNOPSIS

#include <optix.h>

RTresult rtGroupSetAcceleration(RTgroup group,

RTacceleration acceleration)

PARAMETERS

group

The group handle.

acceleration

The acceleration structure to attach to the group.

DESCRIPTION

rtGroupSetAcceleration attaches an acceleration structure to a group. The acceleration structure must
have been previously created using rtAccelerationCreate. Every group is required to have an acceleration
structure assigned in order to pass validation. The acceleration structure will be built over the children of
the group. For example, if an acceleration structure is attached to a group that has a selector, a geometry
group, and a transform child, the acceleration structure will be built over the bounding volumes of these
three objects.

Note that it is legal to attach a single RTacceleration object to multiple groups, as long as the underlying
bounds of the children are the same. For example, if another group has three children which are known to
have the same bounding volumes as the ones in the example above, the two groups can share an acceleration
structure, thus saving build time. This is true even if the details of the children, such as the actual type of
a node or its geometry content, differ from the first set of group children. All that is required is for a child
node at a given index to have the same bounds as the other group’s child node at the same index.

Sharing an acceleration structure this way corresponds to attaching an acceleration structure to multiple
geometry groups at lower graph levels using rtGeometryGroupSetAcceleration.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

1.3. GROUP NODE 87

HISTORY

rtGroupSetAcceleration was introduced in OptiX 1.0.

SEE ALSO

rtGroupGetAcceleration, rtAccelerationCreate, rtGeometryGroupSetAcceleration

88 CHAPTER 1. API REFERENCE

1.3.9 rtGroupSetChildCount

NAME

rtGroupSetChildCount - Sets the number of child nodes to be attached to the group.

SYNOPSIS

#include <optix.h>

RTresult rtGroupSetChildCount(RTgroup group,

unsigned int count)

PARAMETERS

group

The parent group handle.

count

Number of child slots to allocate for the group.

DESCRIPTION

rtGroupSetChildCount specifies the number of child slots in this group. Potentially existing links to
children at indices greater than count-1 are removed. If the call increases the number of slots, the newly
created slots are empty and need to be filled using rtGroupSetChild before validation.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtGroupSetChildCount was introduced in OptiX 1.0.

SEE ALSO

rtGroupGetChild, rtGroupGetChildCount, rtGroupGetChildType, rtGroupSetChild

1.3. GROUP NODE 89

1.3.10 rtGroupSetChild

NAME

rtGroupSetChild - Attaches a child node to a group.

SYNOPSIS

#include <optix.h>

RTresult rtGroupSetChild(RTgroup group,

unsigned int index,

RTobject child)

PARAMETERS

group

The parent group handle.

index

The index in the parent’s child slot array.

child

The child node to be attached. Can be of type {RTgroup, RTselector, RTgeometrygroup, RT-
transform}.

DESCRIPTION

Attaches a new child node child to the parent node group. index specifies the number of the slot where the
child node gets attached. A sufficient number of slots must be allocated using rtGroupSetChildCount.
Legal child node types are RTgroup, RTselector, RTgeometrygroup, and RTtransform.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtGroupSetChild was introduced in OptiX 1.0.

90 CHAPTER 1. API REFERENCE

SEE ALSO

rtGroupSetChildCount, rtGroupGetChildCount, rtGroupGetChild, rtGroupGetChildType

1.3. GROUP NODE 91

1.3.11 rtGroupValidate

NAME

rtGroupValidate - Verifies the state of the group.

SYNOPSIS

#include <optix.h>

RTresult rtGroupValidate(RTgroup group)

PARAMETERS

group

Specifies the group to be validated.

DESCRIPTION

rtGroupValidate checks group for completeness. If group or any of the objects attached to group are
not valid, the call will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtGroupValidate was introduced in OptiX 1.0.

SEE ALSO

rtGroupCreate

92 CHAPTER 1. API REFERENCE

1.4 Selector Node

NAME

Selector Node

DESCRIPTION

This section describes the API functions for creation and handling of Selector nodes. Selector nodes are used
to dynamically switch between model sub-trees in the scene during ray taversal. This can, e.g., be used to
implement level-of-detail rendering.

rtSelectorCreate

rtSelectorDeclareVariable

rtSelectorDestroy

rtSelectorGetChildCount

rtSelectorGetChild

rtSelectorGetChildType

rtSelectorGetContext

rtSelectorGetVariableCount

rtSelectorGetVariable

rtSelectorGetVisitProgram

rtSelectorQueryVariable

rtSelectorRemoveVariable

rtSelectorSetChildCount

rtSelectorSetChild

rtSelectorSetVisitProgram

rtSelectorValidate

HISTORY

Selector nodes were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Transform Node, Acceleration Structure, Geometry Instance, Geometry,
Material, Program, Buffer, Texture Sampler, Variables, Context-Free Functions

1.4. SELECTOR NODE 93

1.4.1 rtSelectorCreate

NAME

rtSelectorCreate - creates a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorCreate(RTcontext context,

RTselector* selector)

PARAMETERS

context

Specifies the rendering context of the Selector node.

selector

New Selector node handle.

DESCRIPTION

Creates a new Selector node within the given context. After calling rtSelectorCreate() the new node
is in a ”raw” state. For the node to be functional, a visit program has to be assigned using rtSelec-
torSetVisitProgram(). Furthermore, a number of (zero or more) children can be attached by using
rtSelectorSetChildCount() and rtSelectorSetChild().

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorCreate was introduced in OptiX 1.0.

SEE ALSO

rtSelectorDestroy, rtSelectorValidate, rtSelectorGetContext, rtSelectorSetVisitProgram, rtSelectorSetChild-
Count, rtSelectorSetChild

94 CHAPTER 1. API REFERENCE

1.4.2 rtSelectorDeclareVariable

NAME

rtSelectorDeclareVariable - declares a variable associated with a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorDeclareVariable(RTselector selector,

const char* name,

RTvariable* v)

PARAMETERS

selector

Selector node handle.

name

Variable identifier.

v

New variable handle.

DESCRIPTION

Declares a new variable identified by name, and associates it with the Selector node selector. The new
variable handle is returned in v. After declaration, a variable does not have a type until its value is set
by an rtVariableSet{...}() function. Once a variable type has been set, it cannot be changed, i.e., only
rtVariableSet{...}() functions of the same type can be used to change the value of the variable.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE REDECLARED

RT ERROR ILLEGAL SYMBOL

1.4. SELECTOR NODE 95

HISTORY

rtSelectorDeclareVariable was introduced in OptiX 1.0.

SEE ALSO

rtSelectorQueryVariable, rtSelectorRemoveVariable, rtSelectorGetVariableCount, rtSelectorGetVariable, rt-
VariableSet{...}

96 CHAPTER 1. API REFERENCE

1.4.3 rtSelectorDestroy

NAME

rtSelectorDestroy - Destroys a selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorDestroy(RTselector selector)

PARAMETERS

selector

Handle of the selector node to destroy

DESCRIPTION

rtSelectorDestroy removes selector from its context and deletes it. selector should be a value returned
by rtSelectorCreate. Associated variables declared via rtSelectorDeclareVariable are destroyed, but
no child graph nodes are destroyed. After the call, selector is no longer a valid handle.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorDestroy was introduced in OptiX 1.0.

SEE ALSO

rtSelectorCreate, rtSelectorValidate, rtSelectorGetContext

1.4. SELECTOR NODE 97

1.4.4 rtSelectorGetChildCount

NAME

rtSelectorGetChildCount - returns the number of child node slots of a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorGetChildCount(RTselector selector,

unsigned int* count)

PARAMETERS

selector

Selector node handle.

count

Number of child node slots reserved for selector.

DESCRIPTION

rtSelectorGetChildCount() returns in count the number of child node slots that have been previously
reserved for the Selector node selector by rtSelectorSetChildCount(). The value of count does not
reflect the actual number of child nodes that have so far been attached to the Selector node using rtSelec-
torSetChild().

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorGetChildCount was introduced in OptiX 1.0.

SEE ALSO

rtSelectorSetChildCount, rtSelectorSetChild, rtSelectorGetChild, rtSelectorGetChildType

98 CHAPTER 1. API REFERENCE

1.4.5 rtSelectorGetChild

NAME

rtSelectorGetChild - returns a child node that is attached to a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorGetChild(RTselector selector,

unsigned int index,

RTobject* child)

PARAMETERS

selector

Selector node handle.

index

Child node index.

child

Child node handle. Can be {RTgroup, RTselector, RTgeometrygroup, RTtransform}.

DESCRIPTION

rtSelectorGetChild() returns in child a handle of the child node currently attached to selector at slot in-
dex. The index value must be lower than the number previously set by rtSelectorSetChildCount(), thus
it has to be in the range from 0 to rtSelectorGetChildCount()-1. The returned pointer is of generic type
RTobject and needs to be cast to the actual child type, which can be RTgroup, RTselector, RTgeome-
trygroup, or RTtransform. The actual type of child can be queried using rtSelectorGetChildType();

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorGetChild was introduced in OptiX 1.0.

1.4. SELECTOR NODE 99

SEE ALSO

rtSelectorSetChildCount, rtSelectorGetChildCount, rtSelectorSetChild, rtSelectorGetChildType

100 CHAPTER 1. API REFERENCE

1.4.6 rtSelectorGetChildType

NAME

rtSelectorGetChildType - returns type information about a Selector child node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorGetChildType(RTselector selector,

unsigned int index,

RTobjecttype* type)

PARAMETERS

selector

Selector node handle.

index

Child node index.

type

Type of the child node.

DESCRIPTION

rtSelectorGetChildType() queries the type of the child node attached to selector at slot index. The
index value has to be in the range from 0 to rtSelectorGetChildCount()-1. The returned type is one of:

RT_OBJECTTYPE_GROUP

RT_OBJECTTYPE_GEOMETRY_GROUP

RT_OBJECTTYPE_TRANSFORM

RT_OBJECTTYPE_SELECTOR

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

1.4. SELECTOR NODE 101

HISTORY

rtSelectorGetChildType was introduced in OptiX 1.0.

SEE ALSO

rtSelectorSetChildCount, rtSelectorGetChildCount, rtSelectorSetChild, rtSelectorGetChild

102 CHAPTER 1. API REFERENCE

1.4.7 rtSelectorGetContext

NAME

rtSelectorGetContext - returns the context of a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorGetContext(RTselector selector,

RTcontext* context)

PARAMETERS

selector

Selector node handle.

context

The context, selector belongs to.

DESCRIPTION

rtSelectorGetContext() returns in context the rendering context in which the Selector node selector
has been created.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorGetContext was introduced in OptiX 1.0.

SEE ALSO

rtSelectorCreate, rtSelectorDestroy, rtSelectorValidate

1.4. SELECTOR NODE 103

1.4.8 rtSelectorGetVariableCount

NAME

rtSelectorGetVariableCount - returns the number of variables attached to a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorGetVariableCount(RTselector selector,

unsigned int* count)

PARAMETERS

selector

Selector node handle.

count

Number of variables associated with selector.

DESCRIPTION

rtSelectorGetVariableCount() returns in count the number of variables that are currently attached to
the Selector node selector.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorGetVariableCount was introduced in OptiX 1.0.

SEE ALSO

rtSelectorDeclareVariable, rtSelectorQueryVariable, rtSelectorRemoveVariable, rtSelectorGetVariable

104 CHAPTER 1. API REFERENCE

1.4.9 rtSelectorGetVariable

NAME

rtSelectorGetVariable - returns a variable associated with a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorGetVariable(RTselector selector,

unsigned int index,

RTvariable* v)

PARAMETERS

selector

Selector node handle.

index

Variable index.

v

Variable handle.

DESCRIPTION

Returns in v a handle to the variable located at position index in the Selectors’s variable array. index is a
sequential number depending on the order of variable declarations. The index has to be in the range from
0 to rtSelectorGetVariableCount()-1. The current value of a variable can be retrieved from its handle
by using an appropriate rtVariableGet{...}() function matching the variable’s type.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorGetVariable was introduced in OptiX 1.0.

1.4. SELECTOR NODE 105

SEE ALSO

rtSelectorDeclareVariable, rtSelectorQueryVariable, rtSelectorRemoveVariable, rtSelectorGetVariableCount,
rtVariableGet{...}

106 CHAPTER 1. API REFERENCE

1.4.10 rtSelectorGetVisitProgram

NAME

rtSelectorGetVisitProgram - returns the currently assigned visit program

SYNOPSIS

#include <optix.h>

RTresult rtSelectorGetVisitProgram(RTselector selector,

RTprogram* program)

PARAMETERS

selector

Selector node handle.

program

Current visit progam assigned to selector.

DESCRIPTION

rtSelectorGetVisitProgram() returns in program a handle of the visit program curently bound to
selector.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorGetVisitProgram was introduced in OptiX 1.0.

SEE ALSO

rtSelectorSetVisitProgram

1.4. SELECTOR NODE 107

1.4.11 rtSelectorQueryVariable

NAME

rtSelectorQueryVariable - returns a variable associated with a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorQueryVariable(RTselector selector,

const char* name,

RTvariable* v)

PARAMETERS

selector

Selector node handle.

name

Variable identifier.

v

Variable handle.

DESCRIPTION

Returns in v a handle to the variable identified by name, which is associated with the Selector node
selector. The current value of a variable can be retrieved from its handle by using an appropriate rtVari-
ableGet{...}() function matching the variable’s type.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorQueryVariable was introduced in OptiX 1.0.

108 CHAPTER 1. API REFERENCE

SEE ALSO

rtSelectorDeclareVariable, rtSelectorRemoveVariable, rtSelectorGetVariableCount, rtSelectorGetVariable, rt-
VariableGet{...}

1.4. SELECTOR NODE 109

1.4.12 rtSelectorRemoveVariable

NAME

rtSelectorRemoveVariable - removes a variable from a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorRemoveVariable(RTselector selector,

RTvariable v)

PARAMETERS

selector

Selector node handle.

v

Variable handle.

DESCRIPTION

rtSelectorRemoveVariable() removes the variable v from the Selector node selector and deletes it. The
handle v must be considered invalid afterwards.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE NOT FOUND

HISTORY

rtSelectorRemoveVariable was introduced in OptiX 1.0.

SEE ALSO

rtSelectorDeclareVariable, rtSelectorQueryVariable, rtSelectorGetVariableCount, rtSelectorGetVariable

110 CHAPTER 1. API REFERENCE

1.4.13 rtSelectorSetChildCount

NAME

rtSelectorSetChildCount - specifies the number of child nodes to be attached to a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorSetChildCount(RTselector selector,

unsigned int count)

PARAMETERS

selector

Selector node handle.

count

Number of child nodes to be attached to selector.

DESCRIPTION

rtSelectorSetChildCount() allocates a number of children slots, i.e., it pre-defines the exact number of
child nodes the parent Selector node selector will have. Child nodes have to be attached to the Selector
node using rtSelectorSetChild(). Empty slots will cause a validation error.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorSetChildCount was introduced in OptiX 1.0.

SEE ALSO

rtSelectorValidate, rtSelectorGetChildCount, rtSelectorSetChild, rtSelectorGetChild, rtSelectorGetChildType

1.4. SELECTOR NODE 111

1.4.14 rtSelectorSetChild

NAME

rtSelectorSetChild - attaches a child node to a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorSetChild(RTselector selector,

unsigned int index,

RTobject child)

PARAMETERS

selector

Selector node handle.

index

Index of the parent slot the node child gets attached to.

child

Child node to be attached. Can be {RTgroup, RTselector, RTgeometrygroup, RTtransform}.

DESCRIPTION

Attaches a new child node child to the parent node selector. index specifies the number of the slot
where the child node gets attached. The index value must be lower than the number previously set by
rtSelectorSetChildCount(), thus it has to be in the range from 0 to rtSelectorGetChildCount()-1.
Legal child node types are RTgroup, RTselector, RTgeometrygroup, and RTtransform.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorSetChild was introduced in OptiX 1.0.

112 CHAPTER 1. API REFERENCE

SEE ALSO

rtSelectorSetChildCount, rtSelectorGetChildCount, rtSelectorGetChild, rtSelectorGetChildType

1.4. SELECTOR NODE 113

1.4.15 rtSelectorSetVisitProgram

NAME

rtSelectorSetVisitProgram - assigns a visit program to a Selector node

SYNOPSIS

#include <optix.h>

RTresult rtSelectorSetVisitProgram(RTselector selector,

RTprogram program)

PARAMETERS

selector

Selector node handle.

program

Progam handle associated with a visit program.

DESCRIPTION

rtSelectorSetVisitProgram() specifies a visit program that is executed when the Selector node selector
gets visited by a ray during traversal of the model graph. A visit program steers how traversal of the Selec-
tors’s children is performed. It usually chooses only a single child to continue traversal, but is also allowed
to process zero or multiple children. Programs can be created from PTX files using rtProgramCreate-
FromPTXFile().

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR TYPE MISMATCH

HISTORY

rtSelectorSetVisitProgram was introduced in OptiX 1.0.

114 CHAPTER 1. API REFERENCE

SEE ALSO

rtSelectorGetVisitProgram, rtProgramCreateFromPTXFile

1.4. SELECTOR NODE 115

1.4.16 rtSelectorValidate

NAME

rtSelectorValidate - checks a Selector node for internal consistency

SYNOPSIS

#include <optix.h>

RTresult rtSelectorValidate(RTselector selector)

PARAMETERS

selector

Selector root node of a model sub-tree to be validated.

DESCRIPTION

rtSelectorValidate() recursively checks consistency of the Selector node selector and its children, i.e.,
it tries to validate the whole model sub-tree with selector as root. For a Selector node to be valid, it
must be assigned a visit program, and the number of its children must match the number specified by
rtSelectorSetChildCount().

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtSelectorValidate was introduced in OptiX 1.0.

SEE ALSO

rtSelectorCreate, rtSelectorDestroy, rtSelectorGetContext, rtSelectorSetVisitProgram, rtSelectorSetChild-
Count, rtSelectorSetChild

116 CHAPTER 1. API REFERENCE

1.5 Transform Node

NAME

Transform Node

DESCRIPTION

This section describes the API functions for creation and handling of Transform nodes. Transform nodes
are used to perform affine geometrical transformations on sub-trees of the scene.

rtTransformCreate

rtTransformDestroy

rtTransformGetChild

rtTransformGetChildType

rtTransformGetContext

rtTransformGetMatrix

rtTransformSetChild

rtTransformSetMatrix

rtTransformValidate

HISTORY

Transform nodes were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Selector Node, Acceleration Structure, Geometry Instance, Geometry,
Material, Program, Buffer, Texture Sampler, Variables, Context-Free Functions

1.5. TRANSFORM NODE 117

1.5.1 rtTransformCreate

NAME

rtTransformCreate - creates a new Transform node

SYNOPSIS

#include <optix.h>

RTresult rtTransformCreate(RTcontext context,

RTtransform* transform)

PARAMETERS

context

Specifies the rendering context of the Transform node.

selector

New Transform node handle.

DESCRIPTION

Creates a new Transform node within the given context. For the node to be functional, a child node has to
be attached using rtTransformSetChild(). A transformation matrix can be associated with the transform
node with rtTransformSetMatrix().

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTransformCreate was introduced in OptiX 1.0.

SEE ALSO

rtTransformDestroy, rtTransformValidate, rtTransformGetContext, rtTransformSetMatrix, rtTransformGet-
Matrix, rtTransformSetChild, rtTransformGetChild, rtTransformGetChildTypeChild

118 CHAPTER 1. API REFERENCE

1.5.2 rtTransformDestroy

NAME

rtTransformDestroy - Destroys a transform node

SYNOPSIS

#include <optix.h>

RTresult rtTransformDestroy(RTtransform transform)

PARAMETERS

transform

Handle of the transform node to destroy

DESCRIPTION

rtTransformDestroy removes transform from its context and deletes it. transform should be a value
returned by rtTransformCreate. No child graph nodes are destroyed. After the call, transform is no
longer a valid handle.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTransformDestroy was introduced in OptiX 1.0.

SEE ALSO

rtTransformCreate, rtTransformValidate, rtTransformGetContext

1.5. TRANSFORM NODE 119

1.5.3 rtTransformGetChild

NAME

rtTransformGetChild - returns the child node that is attached to a Transform node

SYNOPSIS

#include <optix.h>

RTresult rtTransformGetChild(RTtransform transform,

RTobject* child)

PARAMETERS

transform

Transform node handle.

child

Child node handle. Can be {RTgroup, RTselector, RTgeometrygroup, RTtransform}.

DESCRIPTION

rtTransformGetChild() returns in child a handle of the child node currently attached to transform.
The returned pointer is of generic type RTobject and needs to be cast to the actual child type, which
can be RTgroup, RTselector, RTgeometrygroup, or RTtransform. The actual type of child can be
queried using rtTransformGetChildType().

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTransformGetChild was introduced in OptiX 1.0.

SEE ALSO

rtTransformSetChild, rtTransformGetChildType

120 CHAPTER 1. API REFERENCE

1.5.4 rtTransformGetChildType

NAME

rtTransformGetChildType - returns type information about a Transform child node

SYNOPSIS

#include <optix.h>

RTresult rtTransformGetChildType(RTtransform transform,

RTobjecttype* type)

PARAMETERS

transform

Transform node handle.

type

Type of the child node.

DESCRIPTION

rtTransformGetChildType() queries the type of the child node attached to selector. The returned type
is one of:

RT_OBJECTTYPE_GROUP

RT_OBJECTTYPE_GEOMETRY_GROUP

RT_OBJECTTYPE_TRANSFORM

RT_OBJECTTYPE_SELECTOR

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTransformGetChildType was introduced in OptiX 1.0.

1.5. TRANSFORM NODE 121

SEE ALSO

rtTransformSetChild, rtTransformGetChild

122 CHAPTER 1. API REFERENCE

1.5.5 rtTransformGetContext

NAME

rtTransformGetContext - returns the context of a Transform node

SYNOPSIS

#include <optix.h>

RTresult rtTransformGetContext(RTtransform transform,

RTcontext* context)

PARAMETERS

transform

Transform node handle.

context

The context associated with transform.

DESCRIPTION

rtTransformGetContext queries a transform node for its associated context. transform specifies the
transform node to query, and should be a value returned by rtTransformCreate. After the call, *context
shall be set to the context associated with transform.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTransformGetContext was introduced in OptiX 1.0.

SEE ALSO

rtTransformCreate, rtTransformDestroy, rtTransformValidate

1.5. TRANSFORM NODE 123

1.5.6 rtTransformGetMatrix

NAME

rtTransformGetMatrix - returns the affine matrix and its inverse associated with a Transform node

SYNOPSIS

#include <optix.h>

RTresult rtTransformGetMatrix(RTtransform transform,

int transpose, float* matrix,

float* inverse_matrix)

PARAMETERS

transform

Transform node handle.

transpose

Flag indicating whether matrix and inverse matrix should be transposed.

matrix

Affine matrix (4x4 float array).

inverse matrix

Inverted form of matrix.

DESCRIPTION

rtTransformGetMatrix() returns in matrix the affine matrix that is currently used to perform a trans-
formation of the geometry contained in the sub-tree with transform as root. The corresponding inverse
matrix will be retured in inverse matrix. One or both pointers are allowed to be NULL. If transpose is
0, matrices are returned in row-major format, i.e., matrix rows are contiguously laid out in memory. If
transpose is non-zero, matrices are returned in column-major format. If non-NULL, matrix pointers must
point to a float array of at least 16 elements.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

124 CHAPTER 1. API REFERENCE

HISTORY

rtTransformGetMatrix was introduced in OptiX 1.0.

SEE ALSO

rtTransformSetMatrix

1.5. TRANSFORM NODE 125

1.5.7 rtTransformSetChild

NAME

rtTransformSetChild - attaches a child node to a Transform node

SYNOPSIS

#include <optix.h>

RTresult rtTransformSetChild(RTtransform transform,

RTobject child)

PARAMETERS

transform

Transform node handle.

child

Child node to be attached. Can be {RTgroup, RTselector, RTgeometrygroup, RTtransform}.

DESCRIPTION

Attaches a child node child to the parent node transform. Legal child node types are RTgroup, RT-
selector, RTgeometrygroup, and RTtransform. A transform node must have exactly one child. If a
tranformation matrix has been attached to transform with rtTransformSetMatrix(), it is effective on
the model sub-tree with child as root node.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTransformSetChild was introduced in OptiX 1.0.

SEE ALSO

rtTransformSetMatrix, rtTransformGetChild, rtTransformGetChildType

126 CHAPTER 1. API REFERENCE

1.5.8 rtTransformSetMatrix

NAME

rtTransformSetMatrix - associates an affine transformation matrix with a Transform node

SYNOPSIS

#include <optix.h>

RTresult rtTransformSetMatrix(RTtransform transform,

int transpose,

const float* matrix,

const float* inverse_matrix)

PARAMETERS

transform

Transform node handle.

transpose

Flag indicating whether matrix and inverse matrix should be transposed.

matrix

Affine matrix (4x4 float array).

inverse matrix

Inverted form of matrix.

DESCRIPTION

rtTransformSetMatrix() associates a 4x4 matrix with the Transform node transform. The provided
transformation matrix results in a corresponding affine transformation of all geometry contained in the sub-
tree with transform as root. At least one of the pointers matrix and inverse matrix must be non-NULL.
If exactly one pointer is valid, the other matrix will be computed. If both are valid, the matrices will be
used as-is. If transpose is 0, source matrices are expected to be in row-major format, i.e., matrix rows are
contiguously laid out in memory:

float matrix[4*4] = { a11, a12, a13, a14,

a21, a22, a23, a24,

a31, a32, a33, a34,

a41, a42, a43, a44 };

Here, the translational elements a14, a24, and a34 are at the 4th, 8th, and 12th position the matrix array.
If the supplied matrices are in column-major format, a non-0 transpose flag can be used to trigger an
automatic transpose of the input matrices.

1.5. TRANSFORM NODE 127

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

ItTransformSetMatrix was introduced in OptiX 1.0.

SEE ALSO

rtTransformGetMatrix

128 CHAPTER 1. API REFERENCE

1.5.9 rtTransformValidate

NAME

rtTransformValidate - checks a Transform node for internal consistency

SYNOPSIS

#include <optix.h>

RTresult rtTransformValidate(RTtransform transform)

PARAMETERS

transform

Transform root node of a model sub-tree to be validated.

DESCRIPTION

rtTransformValidate() recursively checks consistency of the Transform node transform and its child,
i.e., it tries to validate the whole model sub-tree with transform as root. For a Transform node to be valid,
it must have a child node attached. It is, however, not required to explicitly set a transformation matrix.
Without a specified transformation matrix, the identity matrix is applied.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTransformValidate was introduced in OptiX 1.0.

SEE ALSO

rtTransformCreate, rtTransformDestroy, rtTransformGetContext, rtTransformSetMatrix, rtTransform-
SetChild

1.6. ACCELERATION STRUCTURE 129

1.6 Acceleration Structure

NAME

Acceleration Structure

DESCRIPTION

This section describes the API functions for creation and handling of Acceleration structure objects.

rtAccelerationCreate

rtAccelerationDestroy

rtAccelerationGetBuilder

rtAccelerationGetContext

rtAccelerationGetData

rtAccelerationGetDataSize

rtAccelerationGetProperty

rtAccelerationGetTraverser

rtAccelerationIsDirty

rtAccelerationMarkDirty

rtAccelerationSetBuilder

rtAccelerationSetData

rtAccelerationSetProperty

rtAccelerationSetTraverser

rtAccelerationValidate

HISTORY

Acceleration structure objects were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Selector Node, Transform Node, Geometry Instance, Geometry, Material,
Program, Buffer, Texture Sampler, Variables, Context-Free Functions

130 CHAPTER 1. API REFERENCE

1.6.1 rtAccelerationCreate

NAME

rtAccelerationCreate - Creates a new acceleration structure.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationCreate(RTcontext context,

RTacceleration* acceleration)

PARAMETERS

context

Specifies a context within which to create a new acceleration structure.

acceleration

Returns the newly created acceleration structure.

DESCRIPTION

rtAccelerationCreate creates a new ray tracing acceleration structure within a context. An acceleration
structure is used by attaching it to a group or geometry group by calling rtGroupSetAcceleration or
rtGeometryGroupSetAcceleration. Note that an acceleration structure can be shared by attaching it
to multiple groups or geometry groups if the underlying geometric structures are the same, see rtGroupSe-
tAcceleration and rtGeometryGroupSetAcceleration for more details. A newly created acceleration
structure is initially in dirty state.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtAccelerationCreate was introduced in OptiX 1.0.

1.6. ACCELERATION STRUCTURE 131

SEE ALSO

rtAccelerationDestroy, rtContextCreate, rtAccelerationMarkDirty, rtAccelerationIsDirty, rtGroupSetAcceler-
ation, rtGeometryGroupSetAcceleration

132 CHAPTER 1. API REFERENCE

1.6.2 rtAccelerationDestroy

NAME

rtAccelerationDestroy - Destroys an acceleration structure object

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationDestroy(RTacceleration acceleration)

PARAMETERS

acceleration

Handle of the acceleration structure to destroy

DESCRIPTION

rtAccelerationDestroy removes acceleration from its context and deletes it. acceleration should be a
value returned by rtAccelerationCreate. After the call, acceleration is no longer a valid handle.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtAccelerationDestroy was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationCreate

1.6. ACCELERATION STRUCTURE 133

1.6.3 rtAccelerationGetBuilder

NAME

rtAccelerationGetBuilder - Query the current builder from an acceleration structure.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationGetBuilder(RTacceleration acceleration,

char** return_string)

PARAMETERS

acceleration

The acceleration structure handle.

return string

Return string buffer.

DESCRIPTION

rtAccelerationGetBuilder returns the name of the builder currently used in the acceleration structure
acceleration. If no builder has been set for acceleration, an empty string is returned. return string will
be set to point to the returned string. The memory return string points to will be valid until the next
API call that returns a string.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationGetBuilder was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationSetBuilder

134 CHAPTER 1. API REFERENCE

1.6.4 rtAccelerationGetContext

NAME

rtAccelerationGetContext - Returns the context associated with an acceleration structure.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationGetContext(RTacceleration acceleration,

RTcontext* context)

PARAMETERS

acceleration

The acceleration structure handle.

context

Returns the context associated with the acceleration structure.

DESCRIPTION

rtAccelerationGetContext queries an acceleration structure for its associated context. The context han-
dle is returned in the location pointed to by context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationGetContext was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationCreate

1.6. ACCELERATION STRUCTURE 135

1.6.5 rtAccelerationGetData

NAME

rtAccelerationGetData - Retrieves acceleration structure data.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationGetData(RTacceleration acceleration,

void* data)

PARAMETERS

acceleration

The acceleration structure handle.

data

Pointer to a memory region to be filled with the state of acceleration.

DESCRIPTION

rtAccelerationGetData retrieves the full state of the acceleration object, and copies it to the memory
region pointed to by data. Sufficient memory must be available starting at that location to hold the entire
state. To query the required memory size, rtAccelerationGetDataSize should be used.

The returned data from this call is valid input data for rtAccelerationSetData.

If acceleration is marked dirty, this call is invalid and will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationGetData was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationSetData, rtAccelerationGetDataSize

136 CHAPTER 1. API REFERENCE

1.6.6 rtAccelerationGetDataSize

NAME

rtAccelerationGetDataSize - Returns the size of the data to be retrieved from an acceleration structure.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationGetDataSize(RTacceleration acceleration,

RTsize* size)

PARAMETERS

acceleration

The acceleration structure handle.

size

The returned size of the data in bytes.

DESCRIPTION

rtAccelerationGetDataSize queries the size of the data that will be returned on a subsequent call to
rtAccelerationGetData. The size in bytes will be written to the location pointed to by size. The
returned value is guaranteed to be valid only if no other function using the handle acceleration is made
before rtAccelerationGetData.

If acceleration is marked dirty, this call is invalid and will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationGetDataSize was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationGetData, rtAccelerationSetData

1.6. ACCELERATION STRUCTURE 137

1.6.7 rtAccelerationGetProperty

NAME

rtAccelerationGetProperty - Queries an acceleration structure property.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationGetProperty(RTacceleration acceleration,

const char* name,

char** return_string)

PARAMETERS

acceleration

The acceleration structure handle.

name

The name of the property to be queried.

return string

Return string buffer.

DESCRIPTION

rtAccelerationGetProperty returns the value of the acceleration structure property name. See rtAc-
celerationSetProperty for a list of supported properties. If the property name is not found, an empty
string is returned. return string will be set to point to the returned string. The memory return string
points to will be valid until the next API call that returns a string.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationGetProperty was introduced in OptiX 1.0.

138 CHAPTER 1. API REFERENCE

SEE ALSO

rtAccelerationSetProperty, rtAccelerationSetBuilder, rtAccelerationSetTraverser

1.6. ACCELERATION STRUCTURE 139

1.6.8 rtAccelerationGetTraverser

NAME

rtAccelerationGetTraverser - Query the current traverser from an acceleration structure.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationGetTraverser(RTacceleration acceleration,

char** return_string)

PARAMETERS

acceleration

The acceleration structure handle.

return string

Return string buffer.

DESCRIPTION

rtAccelerationGetTraverser returns the name of the traverser currently used in the acceleration structure
acceleration. If no traverser has been set for acceleration, an empty string is returned. return string
will be set to point to the returned string. The memory return string points to will be valid until the next
API call that returns a string.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationGetTraverser was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationSetTraverser

140 CHAPTER 1. API REFERENCE

1.6.9 rtAccelerationIsDirty

NAME

rtAccelerationIsDirty - Returns the dirty flag of an acceleration structure.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationIsDirty(RTacceleration acceleration,

int* dirty)

PARAMETERS

acceleration

The acceleration structure handle.

dirty

Returned dirty flag.

DESCRIPTION

rtAccelerationIsDirty returns whether the acceleration structure is currently marked dirty. If the flag is
set, a nonzero value will be returned in the location pointed to by dirty. Otherwise, zero is returned.

Any acceleration structure which is marked dirty will be rebuilt on a call to one of the rtContextLaunch
functions, and its dirty flag will be reset. The dirty flag will also be reset on a sucessful call to rtAccelera-
tionSetData.

An acceleration structure which is not marked dirty will never be rebuilt, even if associated groups, geometry,
properties, or any other values have changed.

Initially after creation, acceleration structures are marked dirty.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationIsDirty was introduced in OptiX 1.0.

1.6. ACCELERATION STRUCTURE 141

SEE ALSO

rtAccelerationMarkDirty, rtAccelerationSetData, rtContextLaunch

142 CHAPTER 1. API REFERENCE

1.6.10 rtAccelerationMarkDirty

NAME

rtAccelerationMarkDirty - Marks an acceleration structure as dirty.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationMarkDirty(RTacceleration acceleration)

PARAMETERS

acceleration

The acceleration structure handle.

DESCRIPTION

rtAccelerationMarkDirty sets the dirty flag for acceleration.

Any acceleration structure which is marked dirty will be rebuilt on a call to one of the rtContextLaunch
functions, and its dirty flag will be reset. The dirty flag will also be reset on a sucessful call to rtAccelera-
tionSetData.

An acceleration structure which is not marked dirty will never be rebuilt, even if associated groups, geometry,
properties, or any other values have changed.

Initially after creation, acceleration structures are marked dirty.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationMarkDirty was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationIsDirty, rtAccelerationSetData, rtContextLaunch

1.6. ACCELERATION STRUCTURE 143

1.6.11 rtAccelerationSetBuilder

NAME

rtAccelerationSetBuilder - Specifies the builder to be used for an acceleration structure.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationSetBuilder(RTacceleration acceleration,

const char* builder)

PARAMETERS

acceleration

The acceleration structure handle.

builder

String value specifying the builder type.

DESCRIPTION

rtAccelerationSetBuilder specifies the method used to construct the ray tracing acceleration structure
represented by acceleration. A builder has to be set for the acceleration structure to pass validation. The
current builder can be changed at any time, including after a call to rtContextLaunch. In this case, data
previously computed for the acceleration structure is invalidated and the acceleration will be marked dirty.

An acceleration structure is only valid with a correct pair of builder and traverser. The traverser type is
specified using rtAccelerationSetTraverser. For a list of valid combinations of builders and traversers,
see below. For a description of the individual traversers, see rtAccelerationSetTraverser.

builder can take one of the following values:

”NoAccel”: Specifies that no acceleration structure is explicitly built. Traversal linearly loops through the
list of primitives to intersect. This can be useful e.g. for higher level groups with only few children, where
managing a more complex structure introduces unnecessary overhead. Valid traverser types: ”NoAccel”.

”Bvh”: A standard bounding volume hierarchy, useful for most types of graph levels and geometry. Medium
build speed, good ray tracing performance. Valid traverser types: ”Bvh”.

”Sbvh”: A high quality BVH variant for maximum ray tracing performance. Slower build speed and slightly
higher memory footprint than ”Bvh”. Valid traverser types: ”Bvh”.

”MedianBvh”: A medium quality bounding volume hierarchy with quick build performance. Useful for
dynamic and semi-dynamic content. Valid traverser types: ”Bvh”.

”Lbvh”: A simple bounding volume hierarchy with very fast build performance. Useful for dynamic content.
Valid traverser types: ”Bvh”.

144 CHAPTER 1. API REFERENCE

”TriangleKdTree”: A high quality kd-tree builder, for triangle geometry only. This may provide better ray
tracing performance than the BVH builders for some scenarios. Valid traverser types: ”KdTree”.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationSetBuilder was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationGetBuilder, rtAccelerationSetTraverser, rtAccelerationSetProperty

1.6. ACCELERATION STRUCTURE 145

1.6.12 rtAccelerationSetData

NAME

rtAccelerationSetData - Sets the state of an acceleration structure.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationSetData(RTacceleration acceleration,

const void* data,

RTsize size)

PARAMETERS

acceleration

The acceleration structure handle.

data

Pointer to data containing the serialized state.

size

The size in bytes of the buffer pointed to by data.

DESCRIPTION

rtAccelerationSetData sets the full state of the acceleration object, including builder and traverser
type as well as properties, as defined by data. The memory pointed to by data must be unaltered values
previously retrieved from a (potentially different) acceleration structure handle. This mechanism is useful
for implementing caching mechanisms, especially when using high quality structures which are expensive to
build.

Note that no check is performed on whether the contents of data match the actual underlying geometry on
which the acceleration structure is used. If the children of associated groups or geometry groups differ in
number of children, layout of bounding boxes, or geometry, then behavior after this call is undefined.

This call returns RT ERROR VERSION MISMATCH if the specified data was retrieved from a different, incompat-
ible version of OptiX. In this case, the state of acceleration is not changed.

If the call is successful, the dirty flag of acceleration will be cleared.

RETURN VALUES

Relevant return values:

RT SUCCESS

146 CHAPTER 1. API REFERENCE

RT ERROR INVALID VALUE

RT ERROR VERSION MISMATCH

HISTORY

rtAccelerationSetData was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationGetData, rtAccelerationGetDataSize

1.6. ACCELERATION STRUCTURE 147

1.6.13 rtAccelerationSetProperty

NAME

rtAccelerationSetProperty - Sets an acceleration structure property.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationSetProperty(RTacceleration acceleration,

const char* name,

const char* value)

PARAMETERS

acceleration

The acceleration structure handle.

name

String value specifying the name of the property.

value

String value specifying the value of the property.

DESCRIPTION

rtAccelerationSetProperty sets a named property value for an acceleration structure. Properties can
be used to fine tune the way an acceleration structure is built, in order to achieve faster build times or
better ray tracing performance. Properties are evaluated and applied by the acceleration structure during
build time, and different builders recognize different properties. Setting a property will never fail as long
as acceleration is a valid handle. Properties that are not recognized by an acceleration structure will be
ignored.

The following is a list of the properties used by the individual builders:

”NoAccel”: No properties are available for this builder.

”Bvh”: refit is an integer value specifying whether the BVH should be refitted or rebuilt from scratch when a
valid BVH over similar geometry is already existent. The value indicates how many frames are to pass before
forcing a rebuild, the exception being a value of 1, which will always refit (never rebuild if possible). A value
of 0 will never refit (always rebuild). Regardless of the refit value, if the number of primitives changes from
the last frame, a rebuild is forced. Refitting is much faster than a full rebuild, and usually yields good ray
tracing performance if deformations to the underlying geometry are not too large. The default is 0. refit is
only supported on SM 20 (Fermi) class GPUs and later. Older devices will simply ignore the refit property,
effectively rebuilding any time the structure is marked dirty. refine can be used in combination with refit,
and will apply tree rotations to the existing BVH to attempt to improve the quality for faster traversal.
Like refit, tree rotations are much faster than a full rebuild. The value indicates how many rotation passes

148 CHAPTER 1. API REFERENCE

over the tree to perform per frame. With refine on, the quality of the tree degrades much less rapidly than
with just refit, and can increase the number of frames between rebuilds before traversal performance suffers.
In some cases, it can eliminate the need for rebuilds entirely. The default is 0. refine is only supported on
SM 20 (Fermi) class GPUs and later.

”Sbvh”: The SBVH can be used for any type of geometry, but especially efficient structures can be built
for triangles. For this case, the following properties are used in order to provide the necessary geometry
information to the acceleration object: vertex buffer name specifies the name of the vertex buffer variable for
underlying geometry, containing float3 vertices. vertex buffer stride is used to define the offset between two
vertices in the buffer, given in bytes. The default stride is zero, which assumes that the vertices are tightly
packed. index buffer name specifies the name of the index buffer variable for underlying geometry (if any).
The entries in this buffer are indices of type int, where each index refers to one entry in the vertex buffer. A
sequence of three indices represent one triangle. index buffer stride can be used analog to vertex buffer stride
to describe interleaved arrays.

”MedianBvh”: refit (see refit flag for ”Bvh” above). refine, (see refine flag for ”Bvh” above).

”Lbvh”: refit (see refit flag for ”Bvh” above). refine, (see refine flag for ”Bvh” above), with one important
difference: for ”Lbvh”, refine can be used alone, and does not require refit. If used without refit, tree rotations
will be applied after the Lbvh build. The default is 0.

”TriangleKdTree”: Since the kd-tree can build its acceleration structure over triangles only, the geometry
data and its format must be made available to the acceleration object. See Sbvh for a description of the
relevant properties (vertex buffer name, index buffer name, vertex buffer stride, and index buffer stride).

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationSetProperty was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationGetProperty, rtAccelerationSetBuilder, rtAccelerationSetTraverser

1.6. ACCELERATION STRUCTURE 149

1.6.14 rtAccelerationSetTraverser

NAME

rtAccelerationSetTraverser - Specifies the traverser to be used for an acceleration structure.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationSetTraverser(RTacceleration acceleration,

const char* traverser)

PARAMETERS

acceleration

The acceleration structure handle.

traverser

String value specifying the traverser type.

DESCRIPTION

rtAccelerationSetTraverser specifies the method used to traverse the ray tracing acceleration structure
represented by acceleration. A traverser has to be set for the acceleration structure to pass validation. The
current active traverser can be changed at any time.

An acceleration structure is only valid with a correct pair of builder and traverser. The builder type is
specified using rtAccelerationSetBuilder. For a list of valid combinations of builders and traversers, see
below. For a description of the individual builders, see rtAccelerationSetBuilder.

traverser can take one of the following values:

”NoAccel”: Linearly loops through the list of primitives to intersect. This is highly inefficient in all but the
most trivial scenarios (but there it can provide good performance due to very little overhead). Valid builder
types: ”NoAccel”.

”Bvh”: Optimized traversal of generic bounding volume hierarchies. Valid builder types: ”Sbvh”, ”Bvh”,
”MedianBvh”, ”Lbvh”.

”BvhCompact”: Optimized traversal of bounding volume hierarchies for large datasets when virtual memory
is turned on. It compresses the BVH data in 4 times before uploading to the device. And decompress
the BVH data in real-time during traversal of a bounding volume hierarchy. Valid builder types: ”Bvh”,
”MedianBvh”, ”Lbvh”.

”KdTree”: Standard traversal for kd-trees. Valid builder types: ”TriangleKdTree”.

150 CHAPTER 1. API REFERENCE

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationSetTraverser was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationGetTraverser, rtAccelerationSetBuilder, rtAccelerationSetProperty

1.6. ACCELERATION STRUCTURE 151

1.6.15 rtAccelerationValidate

NAME

rtAccelerationValidate - Validates the state of an acceleration structure.

SYNOPSIS

#include <optix.h>

RTresult rtAccelerationValidate(RTacceleration acceleration)

PARAMETERS

acceleration

The acceleration structure handle.

DESCRIPTION

rtAccelerationValidate checks acceleration for completeness. If acceleration is not valid, the call will
return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtAccelerationValidate was introduced in OptiX 1.0.

SEE ALSO

rtAccelerationCreate

152 CHAPTER 1. API REFERENCE

1.7 Geometry Instance

NAME

Geometry Instance

DESCRIPTION

This section describes the API functions for creation and handling of Geometry instances.

rtGeometryInstanceCreate

rtGeometryInstanceDeclareVariable

rtGeometryInstanceDestroy

rtGeometryInstanceGetContext

rtGeometryInstanceGetGeometry

rtGeometryInstanceGetMaterialCount

rtGeometryInstanceGetMaterial

rtGeometryInstanceGetVariableCount

rtGeometryInstanceGetVariable

rtGeometryInstanceQueryVariable

rtGeometryInstanceRemoveVariable

rtGeometryInstanceSetGeometry

rtGeometryInstanceSetMaterialCount

rtGeometryInstanceSetMaterial

rtGeometryInstanceValidate

HISTORY

Geometry instances were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Selector Node, Transform Node, Acceleration Structure, Geometry,
Material, Program, Buffer, Texture Sampler, Variables, Context-Free Functions

1.7. GEOMETRY INSTANCE 153

1.7.1 rtGeometryInstanceCreate

NAME

rtGeometryInstanceCreate - creates a new geometry instance node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceCreate(RTcontext context,

RTgeometryinstance* geometryinstance)

PARAMETERS

context

Specifies the rendering context of the GeometryInstance node.

geometryinstance

New GeometryInstance node handle.

DESCRIPTION

rtGeometryInstanceCreate creates a new geometry instance node within a context. context specifies the
target context, and should be a value returned by rtContextCreate. After the call, *geometryinstance
shall be set to the handle of a newly created geometry instance node within context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryInstanceCreate was introduced in OptiX 1.0.

SEE ALSO

rtGeometryInstanceDestroy, rtGeometryInstanceDestroy, rtGeometryInstanceGetContext

154 CHAPTER 1. API REFERENCE

1.7.2 rtGeometryInstanceDeclareVariable

NAME

rtGeometryInstanceDeclareVariable - declares a new named variable associated with a geometry node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceDeclareVariable(RTgeometryinstance geometryinstance,

const char* name,

RTvariable* v)

PARAMETERS

geometryinstance

Specifies the associated GeometryInstance node.

name

The name that identifies the variable.

v

Returns a handle to a newly declared variable.

DESCRIPTION

rtGeometryInstanceDeclareVariable declares a new variable associated with a geometry instance node.
geometryinstance specifies the target geometry node, and should be a value returned by rtGeometryIn-
stanceCreate. name specifies the name of the variable, and should be a NULL-terminated string. If there
is currently no variable associated with geometryinstance named name, a new variable named name
will be created and associated with geometryinstance. After the call, *v will be set to the handle of the
newly-created variable. Otherwise, *v will be set to NULL. After declaration, the variable can be queried
with rtGeometryInstanceQueryVariable or rtGeometryInstanceGetVariable. A declared variable
does not have a type until its value is set with one of the rtVariableSet functions. Once a variable is set,
its type cannot be changed anymore.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

1.7. GEOMETRY INSTANCE 155

RT ERROR VARIABLE REDECLARED

RT ERROR ILLEGAL SYMBOL

HISTORY

rtGeometryInstanceDeclareVariable was introduced in OptiX 1.0.

SEE ALSO

Variables, rtGeometryInstanceQueryVariable, rtGeometryInstanceGetVariable, rtGeometryInstanceRemove-
Variable

156 CHAPTER 1. API REFERENCE

1.7.3 rtGeometryInstanceDestroy

NAME

rtGeometryInstanceDestroy - Destroys a geometry instance node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceDestroy(RTgeometryinstance geometryinstance)

PARAMETERS

geometryinstance

Handle of the geometry instance node to destroy

DESCRIPTION

rtGeometryInstanceDestroy removes geometryinstance from its context and deletes it. geometryin-
stance should be a value returned by rtGeometryInstanceCreate. Associated variables declared via
rtGeometryInstanceDeclareVariable are destroyed, but no child graph nodes are destroyed. After the
call, geometryinstance is no longer a valid handle.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryInstanceDestroy was introduced in OptiX 1.0.

SEE ALSO

rtGeometryInstanceCreate

1.7. GEOMETRY INSTANCE 157

1.7.4 rtGeometryInstanceGetContext

NAME

rtGeometryInstanceGetContext - returns the context associated with a geometry instance node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceGetContext(RTgeometryinstance geometryinstance,

RTcontext* context)

PARAMETERS

geometryinstance

Specifies the geometry instance.

context

Handle for queried context.

DESCRIPTION

rtGeometryInstanceGetContext queries a geometry instance node for its associated context. geome-
tryinstance specifies the geometry node to query, and should be a value returned by rtMGeometryIn-
stanceCreate. After the call, *context shall be set to the context associated with geometryinstance.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryInstanceGetContext was introduced in OptiX 1.0.

SEE ALSO

rtGeometryInstanceGetContext

158 CHAPTER 1. API REFERENCE

1.7.5 rtGeometryInstanceGetGeometry

NAME

rtGeometryInstanceGetGeometry - returns the attached Geometry node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceGetGeometry(RTgeometryinstance geometryinstance,

RTgeometry* geometry)

PARAMETERS

geometryinstance

GeometryInstance node handle to query geometry.

geometry

Handle to attached Geometry node.

DESCRIPTION

rtGeometryInstanceGetGeometry sets geometry to the handle of the attached Geometry node. If no
Geometry node is attached, RT ERROR INVALID VALUE is returned, else RT SUCCESS.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryInstanceGetGeometry was introduced in OptiX 1.0.

SEE ALSO

rtGeometryInstanceCreate, rtGeometryInstanceDestory, rtGeometryInstanceValidate, rtGeometryInstance-
SetGeometry

1.7. GEOMETRY INSTANCE 159

1.7.6 rtGeometryInstanceGetMaterialCount

NAME

rtGeometryInstanceGetMaterialCount - returns the number of attached materials

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceGetMaterialCount(RTgeometryinstance geometryinstance,

unsigned int* count)

PARAMETERS

geometryinstance

GeometryInstance node to query from the number of materials.

count

Number of attached materials.

DESCRIPTION

rtGeometryInstanceGetMaterialCount returns for geometryinstance the number of attached Mate-
rial nodes count. The number of materies can be set with rtGeometryInstanceSetMaterialCount.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtGeometryInstanceGetMaterialCount was introduced in OptiX 1.0.

SEE ALSO

rtGeometryInstanceSetMaterialCount

160 CHAPTER 1. API REFERENCE

1.7.7 rtGeometryInstanceGetMaterial

NAME

rtGeometryInstanceGetMaterial - returns a material handle

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceGetMaterial(RTgeometryinstance geometryinstance,

unsigned int idx,

RTmaterial* material)

PARAMETERS

geometryinstance

GeometryInstance node handle to query material.

idx

Index of material.

material

Handle to material.

DESCRIPTION

rtGeometryInstanceGetMaterial returns handle material for the Material node at position
idx in the material list of geometryinstance. idx must be in the range of 0 to
rtGeometryInstanceGetMaterialCount()-1.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryInstanceGetMaterial was introduced in OptiX 1.0.

1.7. GEOMETRY INSTANCE 161

SEE ALSO

rtGeometryInstanceGetMaterialCount, rtGeometryInstanceSetMaterial

162 CHAPTER 1. API REFERENCE

1.7.8 rtGeometryInstanceGetVariableCount

NAME

rtGeometryInstanceGetVariableCount - returns the number of attached variables

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceGetVariableCount(RTgeometryinstance geometryinstance,

unsigned int* count)

PARAMETERS

geometryinstance

The GeometryInstance node to query from the number of attached variables.

count

Returns the number of attached variables.

DESCRIPTION

rtGeometryInstanceGetVariableCount queries the number of variables attached to a geometry instance.
geometryinstance specifies the geometry instance, and should be a value returned by rtGeometryIn-
stanceCreate. After the call, the number of variables attached to geometryinstance is returned to
*count.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryInstanceGetVariableCount was introduced in OptiX 1.0.

1.7. GEOMETRY INSTANCE 163

SEE ALSO

rtGeometryInstanceSetVariableCount, rtGeometryInstanceDeclareVariable, rtGeometryInstanceRemoveVari-
able

164 CHAPTER 1. API REFERENCE

1.7.9 rtGeometryInstanceGetVariable

NAME

rtGeometryInstanceGetVariable - returns a handle to an indexed variable of a geometry instance node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceGetVariable(RTgeometryinstance geometryinstance,

unsigned int index,

RTvariable* v)

PARAMETERS

geometryinstance

The GeometryInstance node from which to query a variable.

index

The index that identifies the variable to be queried.

v

Returns handle to indexed variable.

DESCRIPTION

rtGeometryInstanceGetVariable queries the handle of a geometry instance’s indexed variable. geom-
etryinstance specifies the target geometry instance and should be a value returned by rtGeometryIn-
stanceCreate. index specifies the index of the variable, and should be a value less than rtGeometryIn-
stanceGetVariableCount. If index is the index of a variable attached to geometryinstance, *v will
be a handle to that variable after the call. Otherwise, *v will be NULL after the call. *v has to be declared
first with rtGeometryinstanceDeclareVariable before it can be queried.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE NOT FOUND

1.7. GEOMETRY INSTANCE 165

HISTORY

rtGeometryInstanceGetVariable was introduced in OptiX 1.0.

SEE ALSO

rtGeometryDeclareVariable, rtGeometryGetVariableCount, rtGeometryRemoveVariable, rtGeometryQuery-
Variable

166 CHAPTER 1. API REFERENCE

1.7.10 rtGeometryInstanceQueryVariable

NAME

rtGeometryInstanceQueryVariable - returns a handle to a named variable of a geometry node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceQueryVariable(RTgeometryinstance geometryinstance,

const char* name,

RTvariable* v)

PARAMETERS

geometryinstance

The GeometryInstance node to query from a variable.

name

The name that identifies the variable to be queried.

v

Returns the named variable.

DESCRIPTION

rtGeometryInstanceQueryVariable queries the handle of a geometry instance node’s named variable.
geometryinstance specifies the target geometry node and should be a value returned by rtGeometryIn-
stanceCreate. name specifies the name of the variable, and should be a NULL-terminated string. If name
is the name of a variable attached to geometryinstance, *v will be a handle to that variable after the
call. Otherwise, *v will be NULL after the call. Geometry instance variables have to be declared with
rtGeometryInstanceDeclareVariable before they can be queried.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

1.7. GEOMETRY INSTANCE 167

HISTORY

rtGeometryInstanceQueryVariable was introduced in OptiX 1.0.

SEE ALSO

rtGeometryInstanceDeclareVariable, rtGeometryInstanceRemoveVariable, rtGeometryInstanceGetVariable-
Count, rtGeometryInstanceGetVariable

168 CHAPTER 1. API REFERENCE

1.7.11 rtGeometryInstanceRemoveVariable

NAME

rtGeometryInstanceRemoveVariable - removes a named variable from a geometry instance node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceRemoveVariable(RTgeometryinstance geometryinstance,

RTvariable v)

PARAMETERS

geometryinstance

The GeometryInstance node from which to remove a variable.

v

The variable to be removed.

DESCRIPTION

rtGeometryInstanceRemoveVariable removes a named variable from a geometry instance. The target
geometry instance is specified by geometryinstance, which should be a value returned by rtGeome-
tryInstanceCreate. The variable to be removed is specified by v, which should be a value returned by
rtGeometryInstanceDeclareVariable. Once a variable has been removed from this geometry instance,
another variable with the same name as the removed variable may be declared.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE NOT FOUND

HISTORY

rtGeometryInstanceRemoveVariable was introduced in OptiX 1.0.

1.7. GEOMETRY INSTANCE 169

SEE ALSO

rtContextRemoveVariable, rtGeometryInstanceDeclareVariable

170 CHAPTER 1. API REFERENCE

1.7.12 rtGeometryInstanceSetGeometry

NAME

rtGeometryInstanceSetGeometry - attaches a Geometry node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceSetGeometry(RTgeometryinstance geometryinstance,

RTgeometry geometry)

PARAMETERS

geometryinstance

GeometryInstance node handle to attach geometry.

geometry

Geometry handle to attach to geometryinstance.

DESCRIPTION

rtGeometryInstanceSetGeometry attaches a Geometry node to a GeometryInstance. Only one Geom-
etry node can be attached to a GeometryInstance. However, it is at any time possible to attach a different
Geometry node.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryInstanceSetGeometry was introduced in OptiX 1.0.

SEE ALSO

rtGeometryInstanceGetGeometry

1.7. GEOMETRY INSTANCE 171

1.7.13 rtGeometryInstanceSetMaterialCount

NAME

rtGeometryInstanceSetMaterialCount - sets the number of materials

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceSetMaterialCount(RTgeometryinstance geometryinstance,

unsigned int count)

PARAMETERS

geometryinstance

GeometryInstance node to set number of materials.

count

Number of materials to be set.

DESCRIPTION

rtGeometryInstanceSetMaterialCount sets the number of materials count that will be attached to
geometryinstance. The number of attached materials can be changed at any time. Increasing the number
of materials will not modify already assigned materials. Decreasing the number of materials will not modify
the remaining already assigned materials.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryInstanceSetMaterialCount was introduced in OptiX 1.0.

172 CHAPTER 1. API REFERENCE

SEE ALSO

rtGeometryInstanceGetMaterialCount

1.7. GEOMETRY INSTANCE 173

1.7.14 rtGeometryInstanceSetMaterial

NAME

rtGeometryInstanceSetMaterial - sets a material

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceSetMaterial(RTgeometryinstance geometryinstance,

unsigned int idx,

RTmaterial material)

PARAMETERS

geometryinstance

GeometryInstance node for which to set a material.

idx

Index into the material list.

material

Material handle to attach to geometryinstance.

DESCRIPTION

rtGeometryInstanceSetMaterial attaches material to geometryinstance at position idx in its internal
Material node list. idx has to be in the range 0 to rtGeometryInstanceGetMaterialCount()-1.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryInstanceSetMaterial was introduced in OptiX 1.0.

174 CHAPTER 1. API REFERENCE

SEE ALSO

rtGeometryInstanceGetMaterialCount, rtGeometryInstanceSetMaterialCount

1.7. GEOMETRY INSTANCE 175

1.7.15 rtGeometryInstanceValidate

NAME

rtGeometryInstanceValidate - checks a GeometryInstance node for internal consistency

SYNOPSIS

#include <optix.h>

RTresult rtGeometryInstanceValidate(RTgeometryinstance geometryinstance)

PARAMETERS

geometryinstance

GeometryInstance node of a model sub-tree to be validated.

DESCRIPTION

rtGeometryInstanceValidate checks geometryinstance for completeness. If geomertryin-
stance or any of the objects attached to geometry are not valid, the call will return
RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryInstanceValidate was introduced in OptiX 1.0.

SEE ALSO

rtGeometryInstanceCreate

176 CHAPTER 1. API REFERENCE

1.8 Geometry

NAME

Geometry

DESCRIPTION

This section describes the API functions for creation and handling of Geometry objects.

rtGeometryCreate

rtGeometryDeclareVariable

rtGeometryDestroy

rtGeometryGetBoundingBoxProgram

rtGeometryGetContext

rtGeometryGetIntersectionProgram

rtGeometryGetPrimitiveCount

rtGeometryGetVariableCount

rtGeometryGetVariable

rtGeometryIsDirty

rtGeometryMarkDirty

rtGeometryQueryVariable

rtGeometryRemoveVariable

rtGeometrySetBoundingBoxProgram

rtGeometrySetIntersectionProgram

rtGeometrySetPrimitiveCount

rtGeometryValidate

HISTORY

Geometry objects were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Selector Node, Transform Node, Acceleration Structure, Geometry In-
stance, Material, Program, Buffer, Texture Sampler, Variables, Context-Free Functions

1.8. GEOMETRY 177

1.8.1 rtGeometryCreate

NAME

rtGeometryCreate - creates a new geometry node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryCreate(RTcontext context,

RTgeometry* geometry)

PARAMETERS

context

Specifies the rendering context of the Geometry node.

geometry

New Geometry node handle.

DESCRIPTION

rtGeometryCreate creates a new geometry node within a context. context specifies the target context,
and should be a value returned by rtContextCreate. After the call, *geometry shall be set to the handle
of a newly created geometry node within context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryCreate was introduced in OptiX 1.0.

SEE ALSO

rtGeometryDestroy, rtGeometrySetBoundingBoxProgram, rtGeometrySetIntersectionProgram

178 CHAPTER 1. API REFERENCE

1.8.2 rtGeometryDeclareVariable

NAME

rtGeometryDeclareVariable - declares a new named variable associated with a geometry instance

SYNOPSIS

#include <optix.h>

RTresult rtGeometryDeclareVariable(RTgeometry geometry,

const char* name,

RTvariable* v)

PARAMETERS

geometry

Specifies the associated Geometry node.

name

The name that identifies the variable.

v

Returns a handle to a newly declared variable.

DESCRIPTION

rtGeometryDeclareVariable declares a new variable associated with a geometry node. geometry speci-
fies the target geometry node, and should be a value returned by rtGeometryCreate. name specifies the
name of the variable, and should be a NULL-terminated string. If there is currently no variable associated with
geometry named name, a new variable named name will be created and associated with geometry. After
the call, *v will be set to the handle of the newly-created variable. Otherwise, *v will be set to NULL. After
declaration, the variable can be queried with rtGeometryQueryVariable or rtGeometryGetVariable.
A declared variable does not have a type until its value is set with one of the rtVariableSet functions. Once
a variable is set, its type cannot be changed anymore.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

1.8. GEOMETRY 179

RT ERROR VARIABLE REDECLARED

RT ERROR ILLEGAL SYMBOL

HISTORY

rtGeometryDeclareVariable was introduced in OptiX 1.0.

SEE ALSO

Variables, rtGeometryQueryVariable, rtGeometryGetVariable, rtGeometryRemoveVariable

180 CHAPTER 1. API REFERENCE

1.8.3 rtGeometryDestroy

NAME

rtGeometryDestroy - Destroys a geometry node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryDestroy(RTgeometry geometry)

PARAMETERS

geometry

Handle of the geometry node to destroy

DESCRIPTION

rtGeometryDestroy removes geometry from its context and deletes it. geometry should be a value
returned by rtGeometryCreate. Associated variables declared via rtGeometryDeclareVariable are
destroyed, but no child graph nodes are destroyed. After the call, geometry is no longer a valid handle.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryDestroy was introduced in OptiX 1.0.

SEE ALSO

rtGeometryCreate, rtGeometrySetPrimitiveCount, rtGeometryGetPrimitiveCount

1.8. GEOMETRY 181

1.8.4 rtGeometryGetBoundingBoxProgram

NAME

rtGeometryGetBoundingBoxProgram - returns the attached bounding box program

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGetBoundingBoxProgram(RTgeometry geometry,

RTprogram* program)

PARAMETERS

geometry

Geometry node handle from which to query program.

program

Handle to attached bounding box program.

DESCRIPTION

rtGeometryGetBoundingBoxProgram returns the handle program for the attached bounding box
program of geometry.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGetBoundingBoxProgram was introduced in OptiX 1.0.

SEE ALSO

rtGeometrySetBoundingBoxProgram

182 CHAPTER 1. API REFERENCE

1.8.5 rtGeometryGetContext

NAME

rtGeometryGetContext - returns the context associated with a geometry node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGetContext(RTgeometry geometry,

RTcontext* context)

PARAMETERS

geometry

Specifies the geometry to query.

context

The context associated with geometry.

DESCRIPTION

rtGeometryGetContext queries a geometry node for its associated context. geometry specifies the
geometry node to query, and should be a value returned by rtMGeometryCreate. After the call, *context
shall be set to the context associated with geometry.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGetContext was introduced in OptiX 1.0.

SEE ALSO

rtGeometryCreate

1.8. GEOMETRY 183

1.8.6 rtGeometryGetIntersectionProgram

NAME

rtGeometryGetIntersectionProgram - returns the attached intersection program

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGetIntersectionProgram(RTgeometry geometry,

RTprogram* program)

PARAMETERS

geometry

Geometry node handle to query program.

program

Handle to attached intersection program.

DESCRIPTION

rtGeometryGetIntersectionProgram returns in program a handle of the attached intersection program.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGetIntersectionProgram was introduced in OptiX 1.0.

SEE ALSO

rtGeometrySetIntersectionProgram, rtProgramCreateFromPTXFile, rtProgramCreateFromPTXString

184 CHAPTER 1. API REFERENCE

1.8.7 rtGeometryGetPrimitiveCount

NAME

rtGeometryGetPrimitiveCount - returns the number of primitives

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGetPrimitiveCount(RTgeometry geometry,

unsigned int* num_primitives)

PARAMETERS

geometry

Geometry node to query from the number of primitives.

num primitives

Number of primitives.

DESCRIPTION

rtGeometryGetPrimitiveCount returns for geometry the number of set primitives. The number of
primitvies can be set with rtGeometryGetPrimitiveCount.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGetPrimitiveCount was introduced in OptiX 1.0.

SEE ALSO

rtGeometrySetPrimitiveCount

1.8. GEOMETRY 185

1.8.8 rtGeometryGetVariableCount

NAME

rtGeometryGetVariableCount - returns the number of attached variables

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGetVariableCount(RTgeometry geometry,

unsigned int* count)

PARAMETERS

geometry

The Geometry node to query from the number of attached variables.

count

Returns the number of attached variables.

DESCRIPTION

rtGeometryGetVariableCount queries the number of variables attached to a geometry node. geometry
specifies the geometry node, and should be a value returned by rtGeometryCreate. After the call, the
number of variables attached to geometry is returned to *count.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryGetVariableCount was introduced in OptiX 1.0.

SEE ALSO

rtGeometrySetVariableCount, rtGeometryDeclareVariable, rtGeometryRemoveVariable

186 CHAPTER 1. API REFERENCE

1.8.9 rtGeometryGetVariable

NAME

rtGeometryGetVariable - returns a handle to an indexed variable of a geometry node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryGetVariable(RTgeometry geometry,

unsigned int index,

RTvariable* v)

PARAMETERS

geometry

The geometry node from which to query a variable.

index

The index that identifies the variable to be queried.

v

Returns handle to indexed variable.

DESCRIPTION

rtGeometryGetVariable queries the handle of a geometry node’s indexed variable. geometry specifies
the target geometry and should be a value returned by rtGeometryCreate. index specifies the index of
the variable, and should be a value less than rtGeometryGetVariableCount. If index is the index of a
variable attached to geometry, *v will be a handle to that variable after the call. Otherwise, *v will be
NULL after the call. *v has to be declared first with rtGeometryDeclareVariable before it can be queried.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE NOT FOUND

1.8. GEOMETRY 187

HISTORY

rtGeometryGetVariable was introduced in OptiX 1.0.

SEE ALSO

rtGeometryDeclareVariable, rtGeometryGetVariableCount, rtGeometryRemoveVariable, rtGeometryQuery-
Variable

188 CHAPTER 1. API REFERENCE

1.8.10 rtGeometryIsDirty

NAME

rtGeometryIsDirty - returns the dirty flag

SYNOPSIS

#include <optix.h>

RTresult rtGeometryIsDirty(RTgeometry geometry,

int* dirty)

PARAMETERS

geometry

The geometry node to query from the dirty flag.

dirty

Dirty flag.

DESCRIPTION

rtGeometryIsDirty returns the dirty flag of geometry. The dirty flag for geometry nodes can be set
with rtGeometryMarkDirty. By default the flag is 1 for a new geometry node, indicating dirty. After a
call to rtContextLaunch the flag is automatically set to 0. When the dirty flag is set, the geometry data
is uploaded automatically to the device while a rtContextLaunch call.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryIsDirty was introduced in OptiX 1.0.

1.8. GEOMETRY 189

SEE ALSO

rtContextLaunch, rtGeometryMarkDirty

190 CHAPTER 1. API REFERENCE

1.8.11 rtGeometryMarkDirty

NAME

rtGeometryMarkDirty - sets the dirty flag

SYNOPSIS

#include <optix.h>

RTresult rtGeometryMarkDirty(RTgeometry geometry)

PARAMETERS

geometry

The geometry node to mark as dirty.

DESCRIPTION

rtGeometryMarkDirty sets for geometry the dirty flag. By default the dirty flag is set for a new
Geometry node. After a call to rtContextLaunch the flag is automatically cleared. When the dirty flag is
set, the geometry data is uploaded automatically to the device while a rtContextLaunch call.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryMarkDirty was introduced in OptiX 1.0.

SEE ALSO

rtGeometryIsDirty

1.8. GEOMETRY 191

1.8.12 rtGeometryQueryVariable

NAME

rtGeometryQueryVariable - returns a handle to a named variable of a geometry node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryQueryVariable(RTgeometry geometry,

const char* name,

RTvariable* v)

PARAMETERS

geometry

The geometry node to query from a variable.

name

The name that identifies the variable to be queried.

v

Returns the named variable.

DESCRIPTION

rtGeometryQueryVariable queries the handle of a geometry node’s named variable. geometry specifies
the target geometry node and should be a value returned by rtGeometryCreate. name specifies the
name of the variable, and should be a NULL-terminated string. If name is the name of a variable attached
to geometry, *v will be a handle to that variable after the call. Otherwise, *v will be NULL after the call.
Geometry variables have to be declared with rtGeometryDeclareVariable before they can be queried.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE NOT FOUND

192 CHAPTER 1. API REFERENCE

HISTORY

rtGeometryQueryVariable was introduced in OptiX 1.0.

SEE ALSO

rtGeometryDeclareVariable, rtGeometryRemoveVariable, rtGeometryGetVariableCount, rtGeometryGetVari-
able

1.8. GEOMETRY 193

1.8.13 rtGeometryRemoveVariable

NAME

rtGeometryRemoveVariable - removes a named variable from a geometry node

SYNOPSIS

#include <optix.h>

RTresult rtGeometryRemoveVariable(RTgeometry geometry,

RTvariable v)

PARAMETERS

geometry

The geometry node from which to remove a variable.

v

The variable to be removed.

DESCRIPTION

rtGeometryRemoveVariable removes a named variable from a geometry node. The target geometry is
specified by geometry, which should be a value returned by rtGeometryCreate. The variable to remove
is specified by v, which should be a value returned by rtGeometryDeclareVariable. Once a variable has
been removed from this geometry node, another variable with the same name as the removed variable may
be declared.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE NOT FOUND

HISTORY

rtGeometryRemoveVariable was introduced in OptiX 1.0.

194 CHAPTER 1. API REFERENCE

SEE ALSO

rtContextRemoveVariable

1.8. GEOMETRY 195

1.8.14 rtGeometrySetBoundingBoxProgram

NAME

rtGeometrySetBoundingBoxProgram - sets the bounding box program

SYNOPSIS

#include <optix.h>

RTresult rtGeometrySetBoundingBoxProgram(RTgeometry geometry,

RTprogram program)

geometry

The geometry node for which to set the bounding box program.

program

Handle to the bounding box program.

DESCRIPTION

rtGeometrySetBoundingBoxProgram sets for geometry the program that computes an axis aligned
bounding box for each attached primitive to geometry. RTprogram’s can be either generated with rt-
ProgramCreateFromPTXFile or rtProgramCreateFromPTXString. A bounding box program is
mandatory for every geometry node.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR TYPE MISMATCH

HISTORY

rtGeometrySetBoundingBoxProgram was introduced in OptiX 1.0.

SEE ALSO

rtGeometryGetBoundingBoxProgram, rtProgramCreateFromPTXFile, rtProgramCreateFromPTXString

196 CHAPTER 1. API REFERENCE

1.8.15 rtGeometrySetIntersectionProgram

NAME

rtGeometrySetIntersectionProgram - sets the intersection program

SYNOPSIS

#include <optix.h>

RTresult rtGeometrySetIntersectionProgram(RTgeometry geometry,

RTprogram program)

PARAMETERS

geometry

The geometry node for which to set the intersection program.

program

A handle to the ray primitive intersection program.

DESCRIPTION

rtGeometrySetIntersectionProgram sets for geometry the program that performs ray primitive in-
tersections. RTprogram’s can be either generated with rtProgramCreateFromPTXFile or rtProgram-
CreateFromPTXString. An intersection program is mandatory for every geometry node.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR TYPE MISMATCH

HISTORY

rtGeometrySetIntersectionProgram was introduced in OptiX 1.0.

1.8. GEOMETRY 197

SEE ALSO

rtGeometryGetIntersectionProgram, rtProgramCreateFromPTXFile, rtProgramCreateFromPTXString

198 CHAPTER 1. API REFERENCE

1.8.16 rtGeometrySetPrimitiveCount

NAME

rtGeometrySetPrimitiveCount - sets the number of primitives

SYNOPSIS

#include <optix.h>

RTresult rtGeometrySetPrimitiveCount(RTgeometry geometry,

unsigned int num_primitives)

PARAMETERS

geometry

The geometry node for which to set the number of primitives.

num primitives

The number of primitives.

DESCRIPTION

rtGeometrySetPrimitiveCount sets the number of primitives num primitives in geometry.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometrySetPrimitiveCount was introduced in OptiX 1.0.

SEE ALSO

rtGeometryGetPrimitiveCount

1.8. GEOMETRY 199

1.8.17 rtGeometryValidate

NAME

rtGeometryValidate - validates the geometry nodes integrity

SYNOPSIS

#include <optix.h>

RTresult rtGeometryValidate(RTgeometry geometry)

PARAMETERS

geometry

The geometry node to be validated.

DESCRIPTION

rtGeometryValidate checks geometry for completeness. If geomertry or any of the objects attached
to geometry are not valid, the call will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtGeometryValidate was introduced in OptiX 1.0.

SEE ALSO

rtContextValidate

200 CHAPTER 1. API REFERENCE

1.9 Material

NAME

Material

DESCRIPTION

This section describes the API functions for creation and handling of Material objects.

rtMaterialCreate

rtMaterialDeclareVariable

rtMaterialDestroy

rtMaterialGetAnyHitProgram

rtMaterialGetClosestHitProgram

rtMaterialGetContext

rtMaterialGetVariableCount

rtMaterialGetVariable

rtMaterialQueryVariable

rtMaterialRemoveVariable

rtMaterialSetAnyHitProgram

rtMaterialSetClosestHitProgram

rtMaterialValidate

HISTORY

Material objects were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Selector Node, Transform Node, Acceleration Structure, Geometry In-
stance, Geometry, Program, Buffer, Texture Sampler, Variables, Context-Free Functions

1.9. MATERIAL 201

1.9.1 rtMaterialCreate

NAME

rtMaterialCreate - Creates a new material.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialCreate(RTcontext context,

RTmaterial* material)

PARAMETERS

context

Specifies a context within which to create a new material.

material

Returns a newly created material.

DESCRIPTION

rtMaterialCreate creates a new material within a context. context specifies the target context, and
should be a value returned by rtContextCreate. After the call, if material is not NULL, *material shall
be set to the handle of a newly created material within context. Otherwise, this call has no effect and
returns RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtMaterialCreate was introduced in OptiX 1.0.

202 CHAPTER 1. API REFERENCE

SEE ALSO

rtMaterialDestroy, rtContextCreate

1.9. MATERIAL 203

1.9.2 rtMaterialDeclareVariable

NAME

rtMaterialDeclareVariable - Declares a new named variable to be associated with a material.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialDeclareVariable(RTmaterial material,

const char* name,

RTvariable* variable)

PARAMETERS

material

Specifies the material to modify.

name

Specifies the name of the variable.

variable

Returns a handle to a newly declared variable.

DESCRIPTION

rtMaterialDeclareVariable declares a new variable to be associated with a material. material specifies
the target material, and should be a value returned by rtMaterialCreate. name specifies the name of the
variable, and should be a NULL-terminated string. If there is currently no variable associated with material
named name, and variable is not NULL, a new variable named name will be created and associated with
material. After the call, *variable shall be set to the handle of the newly-created variable. Otherwise, this
call has no effect and shall return either RT ERROR INVALID VALUE if either name or variable is
equal to NULL or RT ERROR VARIABLE REDECLARED if name is the name of an existing variable
associated with the material.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

204 CHAPTER 1. API REFERENCE

RT ERROR VARIABLE REDECLARED

RT ERROR ILLEGAL SYMBOL

HISTORY

rtMaterialDeclareVariable was introduced in OptiX 1.0.

SEE ALSO

rtMaterialGetVariable, rtMaterialQueryVariable, rtMaterialCreate

1.9. MATERIAL 205

1.9.3 rtMaterialDestroy

NAME

rtMaterialDestroy - Destroys a material object

SYNOPSIS

#include <optix.h>

RTresult rtMaterialDestroy(RTmaterial material)

PARAMETERS

material

Handle of the material node to destroy

DESCRIPTION

rtMaterialDestroy removes material from its context and deletes it. material should be a value returned
by rtMaterialCreate. Associated variables declared via rtMaterialDeclareVariable are destroyed, but
no child graph nodes are destroyed. After the call, material is no longer a valid handle.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtMaterialDestroy was introduced in OptiX 1.0.

SEE ALSO

rtMaterialCreate

206 CHAPTER 1. API REFERENCE

1.9.4 rtMaterialGetAnyHitProgram

NAME

rtMaterialGetAnyHitProgram - Returns the any hit program associated with a (material, ray type)
tuple.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialGetAnyHitProgram(RTmaterial material,

unsigned int ray_type_index,

RTprogram* program)

PARAMETERS

material

Specifies the material of the (material, ray type) tuple to query.

ray type index

Specifies the type of ray of the (material, ray type) tuple to query.

program

Returns the any hit program associated with the (material, ray type) tuple.

DESCRIPTION

rtMaterialGetAnyHitProgram queries the any hit program associated with a (material, ray type) tu-
ple. material specifies the material of interest and should be a value returned by rtMaterialCreate.
ray type index specifies the target ray type and should be a value less than the value returned by rtCon-
textGetRayTypeCount. After the call, if all parameters are valid, *program shall be set to the handle
of the any hit program associated with the tuple (material, ray type index). Otherwise, the call has no
effect and returns RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtMaterialGetAnyHitProgram was introduced in OptiX 1.0.

1.9. MATERIAL 207

SEE ALSO

rtMaterialSetAnyHitProgram, rtMaterialCreate, rtContextGetRayTypeCount

208 CHAPTER 1. API REFERENCE

1.9.5 rtMaterialGetClosestHitProgram

NAME

rtMaterialGetClosestHitProgram - Returns the closest hit program associated with a (material, ray
type) tuple.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialGetClosestHitProgram(RTmaterial material,

unsigned int ray_type_index,

RTprogram* program)

PARAMETERS

material

Specifies the material of the (material, ray type) tuple to query.

ray type index

Specifies the type of ray of the (material, ray type) tuple to query.

program

Returns the closest hit program associated with the (material, ray type) tuple.

DESCRIPTION

rtMaterialGetClosestHitProgram queries the closest hit program associated with a (material, ray type)
tuple. material specifies the material of interest and should be a value returned by rtMaterialCreate.
ray type index specifies the target ray type and should be a value less than the value returned by rtCon-
textGetRayTypeCount. After the call, if all parameters are valid, *program shall be set to the handle
of the any hit program associated with the tuple (material, ray type index). Otherwise, the call has no
effect and returns RT ERROR INVALID VALUE.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtMaterialGetClosestHitProgram was introduced in OptiX 1.0.

1.9. MATERIAL 209

SEE ALSO

rtMaterialSetClosestHitProgram, rtMaterialCreate, rtContextGetRayTypeCount

210 CHAPTER 1. API REFERENCE

1.9.6 rtMaterialGetContext

NAME

rtMaterialGetContext - Returns the context associated with a material.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialGetContext(RTmaterial material,

RTcontext* context)

PARAMETERS

material

Specifies the material to query.

context

Returns the context associated with the material.

DESCRIPTION

rtMaterialGetContext queries a material for its associated context. material specifies the material to
query, and should be a value returned by rtMaterialCreate. After the call, if both parameters are valid,
*context shall be set to the context associated with material. Otherwise, the call has no effect and returns
RT ERROR INVALID VALUE.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtMaterialGetContext was introduced in OptiX 1.0.

SEE ALSO

rtMaterialCreate

1.9. MATERIAL 211

1.9.7 rtMaterialGetVariableCount

NAME

rtMaterialGetVariableCount - Returns the number of variables attached to a material.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialGetVariableCount(RTmaterial material,

unsigned int* count)

PARAMETERS

material

Specifies the material to query.

count

Returns the number of variables.

DESCRIPTION

rtMaterialGetVariableCount queries the number of variables attached to a material. material specifies
the material, and should be a value returned by rtMaterialCreate. After the call, if both parameters are
valid, the number of variables attached to material is returned to *count. Otherwise, the call has no effect
and returns RT ERROR INVALID VALUE.

RETURN VALUES

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtMaterialGetVariableCount was introduced in OptiX 1.0.

SEE ALSO

rtMaterialCreate

212 CHAPTER 1. API REFERENCE

1.9.8 rtMaterialGetVariable

NAME

rtMaterialGetVariable - Returns a handle to an indexed variable of a material.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialGetVariable(RTmaterial material,

unsigned int index,

RTvariable *variable)

PARAMETERS

material

Specifies the material to query.

index

Specifies the index of the variable to query.

variable

Returns the indexed variable.

DESCRIPTION

rtMaterialGetVariable queries the handle of a material’s indexed variable. material specifies the target
material and should be a value returned by rtMaterialCreate. index specifies the index of the variable,
and should be a value less than rtMaterialGetVariableCount. If material is a valid material and
index is the index of a variable attached to material, *variable shall be set to a handle to that variable
after the call. Otherwise, *variable shall be set to NULL and either RT ERROR INVALID VALUE or
RT ERROR VARIABLE NOT FOUND shall be returned depending on the validity of material, or
index, respectively.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

RT ERROR VARIABLE NOT FOUND

1.9. MATERIAL 213

HISTORY

rtMaterialGetVariable was introduced in OptiX 1.0.

SEE ALSO

rtMaterialQueryVariable, rtMaterialGetVariableCount, rtMaterialCreate

214 CHAPTER 1. API REFERENCE

1.9.9 rtMaterialQueryVariable

NAME

rtMaterialQueryVariable - Queries for the existence of a named variable of a material.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialQueryVariable(RTmaterial material,

const char* name,

RTvariable* variable)

PARAMETERS

material

Specifies the material to query.

name

Specifies the name of the variable to query.

variable

Returns a the named variable, if it exists.

DESCRIPTION

rtMaterialQueryVariable queries for the existence of a material’s named variable. material specifies the
target material and should be a value returned by rtMaterialCreate. name specifies the name of the
variable, and should be a NULL-terminated string. If material is a valid material and name is the name of a
variable attached to material, *variable shall be set to a handle to that variable after the call. Otherwise,
*variable shall be set to NULL. If material is not a valid material, RT ERROR INVALID VALUE
shall be returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtMaterialQueryVariable was introduced in OptiX 1.0.

1.9. MATERIAL 215

SEE ALSO

rtMaterialGetVariable, rtMaterialCreate

216 CHAPTER 1. API REFERENCE

1.9.10 rtMaterialRemoveVariable

NAME

rtMaterialRemoveVariable - Removes a variable from a material.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialRemoveVariable(RTmaterial material,

RTvariable variable)

PARAMETERS

material

Specifies the material to modify.

variable

Specifies the variable to remove.

DESCRIPTION

rtMaterialRemoveVariable removes a variable from a material. The material of interest is specified by
material, which should be a value returned by rtMaterialCreate. The variable to remove is specified by
variable, which should be a value returned by rtMaterialDeclareVariable. Once a variable has been
removed from this material, another variable with the same name as the removed variable may be declared.
If material does not refer to a valid material, this call has no effect and returns RT ERROR INVALID VALUE.
If variable is not a valid variable or does not belong to material, this call has no effect and returns
RT ERROR INVALID VALUE or RT ERROR VARIABLE NOT FOUND, respectively.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE NOT FOUND

HISTORY

rtMaterialRemoveVariable was introduced in OptiX 1.0.

1.9. MATERIAL 217

SEE ALSO

rtMaterialDeclareVariable, rtMaterialCreate

218 CHAPTER 1. API REFERENCE

1.9.11 rtMaterialSetAnyHitProgram

NAME

rtMaterialSetAnyHitProgram - Sets the any hit program associated with a (material, ray type) tuple.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialSetAnyHitProgram(RTmaterial material,

unsigned int ray_type_index,

RTprogram program)

PARAMETERS

material

Specifies the material of the (material, ray type) tuple to modify.

ray type index

Specifies the type of ray of the (material, ray type) tuple to modify.

program

Specifies the any hit program to associate with the (material, ray type) tuple.

DESCRIPTION

rtMaterialSetAnyHitProgram specifies an any hit program to associate with a (material, ray type)
tuple. material specifies the target material and should be a value returned by rtMaterialCreate.
ray type index specifies the type of ray to which the program applies and should be a value less than
the value returned by rtContextGetRayTypeCount. program specifies the target any hit program
which shall apply to the tuple (material, ray type index) and should be a value returned by either rt-
ProgramCreateFromPTXString or rtProgramCreateFromPTXFile.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR TYPE MISMATCH

1.9. MATERIAL 219

HISTORY

rtMaterialSetAnyHitProgram was introduced in OptiX 1.0.

SEE ALSO

rtMaterialGetAnyHitProgram, rtMaterialCreate, rtContextGetRayTypeCount, rtProgramCreateFromP-
TXString, rtProgramCreateFromPTXFile

220 CHAPTER 1. API REFERENCE

1.9.12 rtMaterialSetClosestHitProgram

NAME

rtMaterialSetClosestHitProgram - Sets the closest hit program associated with a (material, ray type)
tuple.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialSetClosestHitProgram(RTmaterial material,

unsigned int ray_type_index,

RTprogram program)

PARAMETERS

material

Specifies the material of the (material, ray type) tuple to modify.

ray type index

Specifies the ray type of the (material, ray type) tuple to modify.

program

Specifies the closest hit program to associate with the (material, ray type) tuple.

DESCRIPTION

rtMaterialSetClosestHitProgram specifies a closest hit program to associate with a (material, ray type)
tuple. material specifies the material of interest and should be a value returned by rtMaterialCreate.
ray type index specifies the type of ray to which the program applies and should be a value less than
the value returned by rtContextGetRayTypeCount. program specifies the target closest hit program
which shall apply to the tuple (material, ray type index) and should be a value returned by either
rtProgramCreateFromPTXString or rtProgramCreateFromPTXFile.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR TYPE MISMATCH

1.9. MATERIAL 221

HISTORY

rtMaterialSetClosestHitProgram was introduced in OptiX 1.0.

SEE ALSO

rtMaterialGetClosetHitProgram, rtMaterialCreate, rtContextGetRayTypeCount, rtProgramCreateFromP-
TXString, rtProgramCreateFromPTXFile

222 CHAPTER 1. API REFERENCE

1.9.13 rtMaterialValidate

NAME

rtMaterialValidate - Verifies the state of a material.

SYNOPSIS

#include <optix.h>

RTresult rtMaterialValidate(RTmaterial material)

PARAMETERS

material

Specifies the material to be validated.

DESCRIPTION

rtMaterialValidate checks material for completeness. If material or any of the objects attached to
material are not valid, the call will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtMaterialValidate was introduced in OptiX 1.0.

SEE ALSO

rtMaterialCreate

1.10. PROGRAM 223

1.10 Program

NAME

Program

DESCRIPTION

This section describes the API functions for creation and handling of program objects.

rtProgramCreateFromPTXFile

rtProgramCreateFromPTXString

rtProgramDeclareVariable

rtProgramDestroy

rtProgramGetContext

rtProgramGetVariableCount

rtProgramGetVariable

rtProgramQueryVariable

rtProgramRemoveVariable

rtProgramValidate

HISTORY

Program objects were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Selector Node, Transform Node, Acceleration Structure, Geometry In-
stance, Geometry, Material, Buffer, Texture Sampler, Variables, Context-Free Functions

224 CHAPTER 1. API REFERENCE

1.10.1 rtProgramCreateFromPTXFile

NAME

rtProgramCreateFromPTXFile - Creates a new program object.

SYNOPSIS

#include <optix.h>

RTresult rtProgramCreateFromPTXFile(RTcontext context,

const char* filename,

const char* program_name,

RTprogram* program)

PARAMETERS

context

The context to create the program in.

filename

Path to the file containing the PTX code.

program name

The name of the PTX function to create the program from.

program

Handle to the program to be created.

DESCRIPTION

rtProgramCreateFromPTXFile allocates and returns a handle to a new program object. The program
is created from PTX code held in filename from function program name.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR INVALID SOURCE

RT ERROR FILE NOT FOUND

1.10. PROGRAM 225

HISTORY

rtProgramCreateFromPTXFile was introduced in OptiX 1.0.

SEE ALSO

RT PROGRAM, rtProgramCreateFromPTXString, rtProgramDestroy

226 CHAPTER 1. API REFERENCE

1.10.2 rtProgramCreateFromPTXString

NAME

rtProgramCreateFromPTXString - Creates a new program object.

SYNOPSIS

#include <optix.h>

RTresult rtProgramCreateFromPTXString(RTcontext context,

const char* ptx,

const char* program_name,

RTprogram* program)

PARAMETERS

context

The context to create the program in.

ptx

The string containing the PTX code.

program name

The name of the PTX function to create the program from.

program

Handle to the program to be created.

DESCRIPTION

rtProgramCreateFromPTXString allocates and returns a handle to a new program object. The program
is created from PTX code held in the NULL-terminated string ptx from function program name.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR INVALID SOURCE

1.10. PROGRAM 227

HISTORY

rtProgramCreateFromPTXString was introduced in OptiX 1.0.

SEE ALSO

RT PROGRAM, rtProgramCreateFromPTXFile, rtProgramDestroy

228 CHAPTER 1. API REFERENCE

1.10.3 rtProgramDeclareVariable

NAME

rtProgramDeclareVariable - Declares a new named variable associated with a program.

SYNOPSIS

#include <optix.h>

RTresult rtProgramDeclareVariable(RTprogram program,

const char* name,

RTvariable* v)

PARAMETERS

program

The program the declared variable will be attached to.

name

The name of the variable to be created.

v

Return handle to the variable to be created.

DESCRIPTION

rtProgramDeclareVariable declares a new variable, name, and associates it with the program. A variable
can only be declared with the same name once on the program; any attempt to declare multiple variables
with the same name will cause the call to fail and return RT ERROR VARIABLE REDECLARED.
If v is NULL the call will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE REDECLARED

RT ERROR ILLEGAL SYMBOL

1.10. PROGRAM 229

HISTORY

rtProgramDeclareVariable was introduced in OptiX 1.0.

SEE ALSO

rtProgramRemoveVariable, rtProgramGetVariable, rtProgramGetVariableCount, rtProgramQueryVariable

230 CHAPTER 1. API REFERENCE

1.10.4 rtProgramDestroy

NAME

rtProgramDestroy - Destroys a program object

SYNOPSIS

#include <optix.h>

RTresult rtProgramDestroy(RTprogram program)

PARAMETERS

program

Handle of the program to destroy

DESCRIPTION

rtProgramDestroy removes program from its context and deletes it. program should be a value returned
by rtProgramCreate. Associated variables declared via rtProgramDeclareVariable are destroyed. Af-
ter the call, program is no longer a valid handle.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtProgramDestroy was introduced in OptiX 1.0.

SEE ALSO

rtProgramCreateFromPTXFile, rtProgramCreateFromPTXString

1.10. PROGRAM 231

1.10.5 rtProgramGetContext

NAME

rtProgramGetContext - Gets the context object that created a program.

SYNOPSIS

#include <optix.h>

RTresult rtProgramGetContext(RTprogram program,

RTcontext* context)

PARAMETERS

program

The program to be queried for its context object.

context

The return handle for the requested context object.

DESCRIPTION

rtProgramGetContext returns a handle to the context object that was used to create program. If
context is NULL, the call will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtProgramGetContext was introduced in OptiX 1.0.

SEE ALSO

rtContextCreate

232 CHAPTER 1. API REFERENCE

1.10.6 rtProgramGetVariableCount

NAME

rtProgramGetVariableCount - Returns the number of variables attached to a program.

SYNOPSIS

#include <optix.h>

RTresult rtProgramGetVariableCount(RTprogram program,

unsigned int* count)

PARAMETERS

program

The program to be queried for its variable count.

context

The return handle for the number of variables attached to this program.

DESCRIPTION

rtProgramGetVariableCount returns, in *count, the number of variable objects that have been attached
to program.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtProgramGetVariableCount was introduced in OptiX 1.0.

SEE ALSO

rtProgramDeclareVariable, rtProgramRemoveVariable, rtProgramGetVariable, rtProgramQueryVariable

1.10. PROGRAM 233

1.10.7 rtProgramGetVariable

NAME

rtProgramGetVariable - Returns a handle to a variable attached to a program by index.

SYNOPSIS

#include <optix.h>

RTresult rtProgramGetVariable(RTprogram program,

unsigned int index,

RTvariable* v)

PARAMETERS

program

The program to be queried for the indexed variable object.

index

The index of the variable to return.

v

Return handle to the variable object specified by the index.

DESCRIPTION

rtProgramGetVariable returns a handle to a variable in *v attached to program with rtProgramDe-
clareVariable by index. index must be between 0 and one less than the value returned by rtPro-
gramGetVariableCount. The order in which variables are enumerated is not constant and may change
as variables are attached and removed from the program object.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE NOT FOUND

234 CHAPTER 1. API REFERENCE

HISTORY

rtProgramGetVariable was introduced in OptiX 1.0.

SEE ALSO

rtProgramDeclareVariable, rtProgramRemoveVariable, rtProgramGetVariableCount, rtProgramQueryVari-
able

1.10. PROGRAM 235

1.10.8 rtProgramQueryVariable

NAME

rtProgramQueryVariable - Returns a handle to the named variable attached to a program.

SYNOPSIS

#include <optix.h>

RTresult rtProgramQueryVariable(RTprogram program,

const char* name,

RTvariable* v)

PARAMETERS

program

The program to be queried for the named variable.

name

The name of the program to be queried for.

v

The return handle to the variable object.

program

Handle to the program to be created.

DESCRIPTION

rtProgramQueryVariable returns a handle to a variable object, in *v, attached to program referenced
by the NULL-terminated string name. If name is not the name of a variable attached to program, *v will
be NULL after the call.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

236 CHAPTER 1. API REFERENCE

HISTORY

rtProgramQueryVariable was introduced in OptiX 1.0.

SEE ALSO

rtProgramDeclareVariable, rtProgramRemoveVariable, rtProgramGetVariable, rtProgramGetVariableCount

1.10. PROGRAM 237

1.10.9 rtProgramRemoveVariable

NAME

rtProgramRemoveVariable - Removes the named variable from a program.

SYNOPSIS

#include <optix.h>

RTresult rtProgramRemoveVariable(RTprogram program,

RTvariable v)

PARAMETERS

program

The program to remove the variable from.

v

The variable to remove.

DESCRIPTION

rtProgramRemoveVariable removes variable v from the program object. Once a variable has been
removed from this program, another variable with the same name as the removed variable may be declared.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR VARIABLE NOT FOUND

HISTORY

rtProgramRemoveVariable was introduced in OptiX 1.0.

SEE ALSO

rtProgramDeclareVariable, rtProgramGetVariable, rtProgramGetVariableCount, rtProgramQueryVariable

238 CHAPTER 1. API REFERENCE

1.10.10 rtProgramValidate

NAME

rtProgramValidate - Validates the state of a program.

SYNOPSIS

#include <optix.h>

RTresult rtProgramValidate(RTprogram program)

PARAMETERS

program

The program to be validated.

DESCRIPTION

rtProgramValidate checks program for completeness. If program or any of the objects attached to
program are not valid, the call will return RT ERROR INVALID CONTEXT.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtProgramValidate was introduced in OptiX 1.0.

SEE ALSO

rtProgramCreateFromPTXFile, rtProgramCreateFromPTXString

1.11. BUFFER 239

1.11 Buffer

NAME

Buffer

DESCRIPTION

This section describes the API functions for creation and handling of Buffer objects.

rtBufferCreate

rtBufferCreateForCUDA

rtBufferCreateFromD3D9Resource

rtBufferCreateFromD3D10Resource

rtBufferCreateFromD3D11Resource

rtBufferCreateFromGLBO

rtBufferD3D9Unregister

rtBufferD3D10Unregister

rtBufferD3D11Unregister

rtBufferD3D9Register

rtBufferD3D10Register

rtBufferD3D11Register

rtBufferDestroy

rtBufferGetContext

rtBufferGetD3D9Resource

rtBufferGetD3D10Resource

rtBufferGetD3D11Resource

rtBufferGetDimensionality

rtBufferGetElementSize

rtBufferGetFormat

rtBufferGetGLBOId

rtBufferGetSize1D

rtBufferGetSize2D

rtBufferGetSize3D

rtBufferGetSizev

240 CHAPTER 1. API REFERENCE

rtBufferGLUnregister

rtBufferGLRegister

rtBufferMap

rtBufferSetElementSize

rtBufferSetSize1D

rtBufferSetSize2D

rtBufferSetSize3D

rtBufferSetSizev

rtBufferUnmap

rtBufferValidate

HISTORY

Buffer objects were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Selector Node, Transform Node, Acceleration Structure, Geometry In-
stance, Geometry, Material, Program, Texture Sampler, Variables, Context-Free Functions

1.11. BUFFER 241

1.11.1 rtBufferCreate

NAME

rtBufferCreate - Creates a new buffer object.

SYNOPSIS

#include <optix.h>

RTresult rtBufferCreate(RTcontext context,

unsigned int bufferdesc,

RTbuffer* buffer)

PARAMETERS

context

The context to create the buffer in.

bufferdesc

Bitwise or combination of the type and flags of the new buffer.

buffer

The return handle for the buffer object.

DESCRIPTION

rtBufferCreate allocates and returns a new handle to a new buffer object in *buffer associated with
context. The backing storage of the buffer is managed by OptiX. A buffer is specified by a bitwise or

combination of a type and flags in bufferdesc. The supported types are:

RT_BUFFER_INPUT

RT_BUFFER_OUTPUT

RT_BUFFER_INPUT_OUTPUT

The supported flags are:

RT_BUFFER_GPU_LOCAL

The type values are used to specify the direction of data flow from the host to the OptiX devices.
RT BUFFER INPUT specifies that the host may only write to the buffer and the device may only
read from the buffer. RT BUFFER OUTPUT specifies the opposite, read only access on the host
and write only access on the device. Devices and the host may read and write from buffers of type
RT BUFFER INPUT OUTPUT. Reading or writing to a buffer of the incorrect type (e.g., the host
writing to a buffer of type RT BUFFER OUTPUT) is undefined.

242 CHAPTER 1. API REFERENCE

Flags can be used to optimize data transfers between the host and its devices. The flag
RT BUFFER GPU LOCAL can only be used in combination with RT BUFFER INPUT OUTPUT.
RT BUFFER INPUT OUTPUT and RT BUFFER GPU LOCAL used together specify a buffer that al-
lows the host to only write, and the device to read and write data. The written data will be never visible
on the host side.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferCreate was introduced in OptiX 1.0.

RT BUFFER GPU LOCAL was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromGLBO, rtBufferDestroy

1.11. BUFFER 243

1.11.2 rtBufferCreateForCUDA

NAME

rtBufferCreateForCUDA - Creates a new buffer object that will later rely on user-side CUDA allocation.

SYNOPSIS

#include <optix.h>

RTresult rtBufferCreateForCUDA(RTcontext context,

unsigned int bufferdesc,

RTbuffer* buffer)

PARAMETERS

context

The context to create the buffer in.

bufferdesc

Bitwise or combination of the type and flags of the new buffer.

buffer

The return handle for the buffer object.

DESCRIPTION

rtBufferCreateForCUDA allocates and returns a new handle to a new buffer object in *buffer associated
with context. This buffer will function like a normal OptiX buffer created with rtBufferCreate, except
OptiX will not allocate or upload data for it.

After a buffer object has been created with rtBufferCreateForCUDA, the user needs to call rtBufferSet-
DevicePointer to provide one or more device pointers to the buffer data. In case where the user provides
a single external data pointer for a buffer prior to calling rtContextLaunch, OptiX will allocate memory
on the other devices and copy the data there. Setting pointers for more than one but fewer than all devices
is not supported.

Once OptiX has copied the data to other devices from the one where the user has specified a device pointer,
it will not do so again until rtBufferMarkDirty has been called.

The backing storage of the buffer is managed by OptiX. A buffer is specified by a bitwise or combination of
a type and flags in bufferdesc. The supported types are:

RT_BUFFER_INPUT

RT_BUFFER_OUTPUT

RT_BUFFER_INPUT_OUTPUT

244 CHAPTER 1. API REFERENCE

The type values are used to specify the direction of data flow from the host to the OptiX devices.
RT BUFFER INPUT specifies that the host may only write to the buffer and the device may only
read from the buffer. RT BUFFER OUTPUT specifies the opposite, read only access on the host
and write only access on the device. Devices and the host may read and write from buffers of type
RT BUFFER INPUT OUTPUT. Reading or writing to a buffer of the incorrect type (e.g., the host
writing to a buffer of type RT BUFFER OUTPUT) is undefined.

The supported flags are:

RT_BUFFER_GPU_LOCAL

Flags can be used to optimize data transfers between the host and its devices. The flag
RT BUFFER GPU LOCAL can only be used in combination with RT BUFFER INPUT OUTPUT.
RT BUFFER INPUT OUTPUT and RT BUFFER GPU LOCAL used together specify a buffer that al-
lows the host to only write, and the device to read and write data. The written data will be never visible
on the host side.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferCreateForCUDA was introduced in OptiX 3.0.

SEE ALSO

rtBufferCreate, rtBufferSetDevicePointer, rtBufferMarkDirty, rtBufferDestroy

1.11. BUFFER 245

1.11.3 rtBufferCreateFromGLBO

NAME

rtBufferCreateFromGLBO - Creates a new buffer object from an OpenGL buffer object.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtBufferCreateFromGLBO(RTcontext context,

unsigned int bufferdesc,

unsigned int gl_id,

RTbuffer* buffer)

PARAMETERS

context

The context to create the buffer in.

bufferdesc

Bitwise or combination of the type and flags of the new buffer.

gl id

The OpenGL image object resoure handle for use in OptiX.

buffer

The return handle for the buffer object.

DESCRIPTION

rtBufferCreateFromGLBO allocates and returns a handle to a new buffer object in *buffer associated
with context. Supported OpenGL buffer types are:

Pixel Buffer Objects

Vertex Buffer Objects

These buffers can be used to share data with OpenGL; changes of the content in buffer, either done by
OpenGL or OptiX, will be reflected automatically in both APIs. If the size, or format, of an OpenGL buffer
is changed, appropriate OptiX calls have to be used to update buffer accordingly. OptiX keeps only a
reference to OpenGL data, when buffer is destroyed, the state of the gl id object is unaltered.

The type of this buffer is specified by one of the following values in bufferdesc:

RT_BUFFER_INPUT

RT_BUFFER_OUTPUT

RT_BUFFER_INPUT_OUTPUT

246 CHAPTER 1. API REFERENCE

The type values are used to specify the direction of data flow from the host to the OptiX devices.
RT BUFFER INPUT specifies that the host may only write to the buffer and the device may only
read from the buffer. RT BUFFER OUTPUT specifies the opposite, read only access on the host
and write only access on the device. Devices and the host may read and write from buffers of type
RT BUFFER INPUT OUTPUT. Reading or writing to a buffer of the incorrect type (e.g., the host
writing to a buffer of type RT BUFFER OUTPUT) is undefined.

Flags can be used to optimize data transfers between the host and it’s devices. Currently no flags are
supported for interop buffers.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferCreateFromGLBO was introduced in OptiX 1.0.

SEE ALSO

rtBufferCreate, rtBufferDestroy

1.11. BUFFER 247

1.11.4 rtBufferCreateFromD3D9Resource

NAME

rtBufferCreateFromD3D9Resource - Creates a new buffer object from a D3D9 resource.

SYNOPSIS

#include <optix_d3d9_interop.h>

RTresult RTAPI rtBufferCreateFromD3D9Resource(RTcontext context,

unsigned int bufferdesc,

IDirect3DResource9* resource,

RTbuffer* buffer);

PARAMETERS

context

The context to create the buffer in.

bufferdesc

Bitwise or combination of the type and flags of the new buffer.

resource

The D3D9 resoure handle for use in OptiX.

buffer

The return handle for the buffer object.

DESCRIPTION

rtBufferCreateFromD3D9Resource allocates and returns a handle to a new buffer object
in *buffer associated with context. If the allocated size of the D3D resource is 0,
RT ERROR MEMORY ALLOCATION FAILED will be returned. Supported D3D9 buffer types are:

IDirect3DVertexBuffer9 IDirect3DIndexBuffer9

These buffers can be used to share data with D3D9; changes of the content in buffer, either done by D3D9
or OptiX, will be reflected automatically in both APIs. If the size, or format, of a D3D9 buffer is changed,
appropriate OptiX calls have to be used to update buffer accordingly. OptiX keeps only a reference to
D3D9 data, when buffer is destroyed, the state of resource is unaltered.

The type of this buffer is specified by one of the following values in bufferdesc:

RT_BUFFER_INPUT

RT_BUFFER_OUTPUT

RT_BUFFER_INPUT_OUTPUT

248 CHAPTER 1. API REFERENCE

The type values are used to specify the direction of data flow from the host to the OptiX devices.
RT BUFFER INPUT specifies that the host may only write to the buffer and the device may only
read from the buffer. RT BUFFER OUTPUT specifies the opposite, read only access on the host
and write only access on the device. Devices and the host may read and write from buffers of type
RT BUFFER INPUT OUTPUT. Reading or writing to a buffer of the incorrect type (e.g., the host
writing to a buffer of type RT BUFFER OUTPUT) is undefined.

Flags can be used to optimize data transfers between the host and it’s devices. Currently no flags are
supported for interop buffers.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferCreateFromD3D9Resource was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreate, rtBufferDestroy

1.11. BUFFER 249

1.11.5 rtBufferCreateFromD3D10Resource

NAME

rtBufferCreateFromD3D10Resource - Creates a new buffer object from a D3D10 resource.

SYNOPSIS

#include <optix_d3d10_interop.h>

RTresult RTAPI rtBufferCreateFromD3D10Resource(RTcontext context,

unsigned int bufferdesc,

ID3D10Resource* resource,

RTbuffer* buffer);

PARAMETERS

context

The context to create the buffer in.

bufferdesc

Bitwise or combination of the type and flags of the new buffer.

resource

The D3D10 resoure handle for use in OptiX.

buffer

The return handle for the buffer object.

DESCRIPTION

rtBufferCreateFromD3D10Resource allocates and returns a handle to a new buffer ob-
ject in *buffer associated with context. If the allocated size of the D3D resource is 0,
RT ERROR MEMORY ALLOCATION FAILED will be returned. Supported D3D10 buffer types are:

ID3D10Buffer

These buffers can be used to share data with D3D10; changes of the content in buffer, either done by D3D10
or OptiX, will be reflected automatically in both APIs. If the size, or format, of a D3D10 buffer is changed,
appropriate OptiX calls have to be used to update buffer accordingly. OptiX keeps only a reference to
D3D10 data, when buffer is destroyed, the state of resource is unaltered.

The type of this buffer is specified by one of the following values in bufferdesc:

RT_BUFFER_INPUT

RT_BUFFER_OUTPUT

RT_BUFFER_INPUT_OUTPUT

250 CHAPTER 1. API REFERENCE

The type values are used to specify the direction of data flow from the host to the OptiX devices.
RT BUFFER INPUT specifies that the host may only write to the buffer and the device may only
read from the buffer. RT BUFFER OUTPUT specifies the opposite, read only access on the host
and write only access on the device. Devices and the host may read and write from buffers of type
RT BUFFER INPUT OUTPUT. Reading or writing to a buffer of the incorrect type (e.g., the host
writing to a buffer of type RT BUFFER OUTPUT) is undefined.

Flags can be used to optimize data transfers between the host and it’s devices. Currently no flags are
supported for interop buffers.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferCreateFromD3D10Resource was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreate, rtBufferDestroy

1.11. BUFFER 251

1.11.6 rtBufferCreateFromD3D11Resource

NAME

rtBufferCreateFromD3D11Resource - Creates a new buffer object from a D3D11 resource.

SYNOPSIS

#include <optix_d3d11_interop.h>

RTresult RTAPI rtBufferCreateFromD3D11Resource(RTcontext context,

unsigned int bufferdesc,

ID3D11Resource* resource,

RTbuffer* buffer);

PARAMETERS

context

The context to create the buffer in.

bufferdesc

Bitwise or combination of the type and flags of the new buffer.

resource

The D3D11 resoure handle for use in OptiX.

buffer

The return handle for the buffer object.

DESCRIPTION

rtBufferCreateFromD3D11Resource allocates and returns a handle to a new buffer ob-
ject in *buffer associated with context. If the allocated size of the D3D resource is 0,
RT ERROR MEMORY ALLOCATION FAILED will be returned. Supported D3D11 buffer types are:

ID3D11Buffer

These buffers can be used to share data with D3D11; changes of the content in buffer, either done by D3D11
or OptiX, will be reflected automatically in both APIs. If the size, or format, of a D3D11 buffer is changed,
appropriate OptiX calls have to be used to update buffer accordingly. OptiX keeps only a reference to
D3D11 data, when buffer is destroyed, the state of resource is unaltered.

The type of this buffer is specified by one of the following values in bufferdesc:

RT_BUFFER_INPUT

RT_BUFFER_OUTPUT

RT_BUFFER_INPUT_OUTPUT

252 CHAPTER 1. API REFERENCE

The type values are used to specify the direction of data flow from the host to the OptiX devices.
RT BUFFER INPUT specifies that the host may only write to the buffer and the device may only
read from the buffer. RT BUFFER OUTPUT specifies the opposite, read only access on the host
and write only access on the device. Devices and the host may read and write from buffers of type
RT BUFFER INPUT OUTPUT. Reading or writing to a buffer of the incorrect type (e.g., the host
writing to a buffer of type RT BUFFER OUTPUT) is undefined.

Flags can be used to optimize data transfers between the host and it’s devices. Currently no flags are
supported for interop buffers.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferCreateFromD3D11Resource was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreate, rtBufferDestroy

1.11. BUFFER 253

1.11.7 rtBufferD3D9Unregister

NAME

rtBufferD3D9Unregister - Declares a D3D9 buffer as mutable and inaccessible by OptiX.

SYNOPSIS

#include <optix_D3D9_interop.h>

RTresult rtBufferD3D9Unregister(RTbuffer buffer)

PARAMETERS

buffer

The handle for the buffer object.

DESCRIPTION

An OptiX buffer in a registered state can be unregistered via rtBufferD3D9Register. Once
unregistered, properties like the size of the original D3D9 resource can be changed. As
long as a resource is unregistered, OptiX will not be able to access the data and will fail
with RT ERROR INVALID HANDLE. When a buffer is already in an unregistered state rt-
BufferD3D9Unregister will return RT ERROR RESOURCE NOT REGISTERED.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE NOT REGISTERED

HISTORY

rtBufferD3D9Unregister was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D9Resource

254 CHAPTER 1. API REFERENCE

1.11.8 rtBufferD3D10Unregister

NAME

rtBufferD3D10Unregister - Declares a D3D10 buffer as mutable and inaccessible by OptiX.

SYNOPSIS

#include <optix_D3D10_interop.h>

RTresult rtBufferD3D10Unregister(RTbuffer buffer)

PARAMETERS

buffer

The handle for the buffer object.

DESCRIPTION

An OptiX buffer in a registered state can be unregistered via rtBufferD3D10Register. Once
unregistered, properties like the size of the original D3D10 resource can be changed. As
long as a resource is unregistered, OptiX will not be able to access the data and will fail
with RT ERROR INVALID HANDLE. When a buffer is already in an unregistered state rt-
BufferD3D10Unregister will return RT ERROR RESOURCE NOT REGISTERED.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE NOT REGISTERED

HISTORY

rtBufferD3D10Unregister was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D10Resource

1.11. BUFFER 255

1.11.9 rtBufferD3D11Unregister

NAME

rtBufferD3D11Unregister - Declares a D3D11 buffer as mutable and inaccessible by OptiX.

SYNOPSIS

#include <optix_D3D11_interop.h>

RTresult rtBufferD3D11Unregister(RTbuffer buffer)

PARAMETERS

buffer

The handle for the buffer object.

DESCRIPTION

An OptiX buffer in a registered state can be unregistered via rtBufferD3D11Register. Once
unregistered, properties like the size of the original D3D11 resource can be changed. As
long as a resource is unregistered, OptiX will not be able to access the data and will fail
with RT ERROR INVALID HANDLE. When a buffer is already in an unregistered state rt-
BufferD3D11Unregister will return RT ERROR RESOURCE NOT REGISTERED.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE NOT REGISTERED

HISTORY

rtBufferD3D11Unregister was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D11Resource

256 CHAPTER 1. API REFERENCE

1.11.10 rtBufferD3D9Register

NAME

rtBufferD3D9Register - Declares a D3D9 buffer as immutable and accessible by OptiX.

SYNOPSIS

#include <optix_D3D9_interop.h>

RTresult rtBufferD3D9Register(RTbuffer buffer)

PARAMETERS

buffer

The handle for the buffer object.

DESCRIPTION

An OptiX buffer in an unregistered state can be registered to OptiX again via rtBufferD3D9Register.
Once registered, properties like the size of the original D3D9 resource cannot be modified anymore. Calls to
the corresponding D3D9 functions will return with an error code. However, the data of the D3D9 resource
can still be read and written by the appropriate D3D9 commands. When a buffer is already in a registered
state rtBufferD3D9Register will return RT ERROR RESOURCE AREADY REGISTERED.
A resource must be registered in order to be used by OptiX. If a resource is not registered
RT ERROR INVALID HANDLE will be returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE AREADY REGISTERED

HISTORY

rtBufferD3D9Register was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D9Resource

1.11. BUFFER 257

1.11.11 rtBufferD3D10Register

NAME

rtBufferD3D10Register - Declares a D3D10 buffer as immutable and accessible by OptiX.

SYNOPSIS

#include <optix_D3D10_interop.h>

RTresult rtBufferD3D10Register(RTbuffer buffer)

PARAMETERS

buffer

The handle for the buffer object.

DESCRIPTION

An OptiX buffer in an unregistered state can be registered to OptiX again via rtBufferD3D10Register.
Once registered, properties like the size of the original D3D10 resource cannot be modified anymore. Calls to
the corresponding D3D10 functions will return with an error code. However, the data of the D3D10 resource
can still be read and written by the appropriate D3D10 commands. When a buffer is already in a registered
state rtBufferD3D10Register will return RT ERROR RESOURCE AREADY REGISTERED.
A resource must be registered in order to be used by OptiX. If a resource is not registered
RT ERROR INVALID HANDLE will be returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE AREADY REGISTERED

HISTORY

rtBufferD3D10Register was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D10Resource

258 CHAPTER 1. API REFERENCE

1.11.12 rtBufferD3D11Register

NAME

rtBufferD3D11Register - Declares a D3D11 buffer as immutable and accessible by OptiX.

SYNOPSIS

#include <optix_D3D11_interop.h>

RTresult rtBufferD3D11Register(RTbuffer buffer)

PARAMETERS

buffer

The handle for the buffer object.

DESCRIPTION

An OptiX buffer in an unregistered state can be registered to OptiX again via rtBufferD3D11Register.
Once registered, properties like the size of the original D3D11 resource cannot be modified anymore. Calls to
the corresponding D3D11 functions will return with an error code. However, the data of the D3D11 resource
can still be read and written by the appropriate D3D11 commands. When a buffer is already in a registered
state rtBufferD3D11Register will return RT ERROR RESOURCE AREADY REGISTERED.
A resource must be registered in order to be used by OptiX. If a resource is not registered
RT ERROR INVALID HANDLE will be returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE AREADY REGISTERED

HISTORY

rtBufferD3D11Register was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D11Resource

1.11. BUFFER 259

1.11.13 rtBufferDestroy

NAME

rtBufferDestroy - Destroys a buffer object

SYNOPSIS

#include <optix.h>

RTresult rtBufferDestroy(RTbuffer buffer)

PARAMETERS

buffer

Handle of the buffer to destroy

DESCRIPTION

rtBufferDestroy removes buffer from its context and deletes it. buffer should be a value returned by
rtBufferCreate. After the call, buffer is no longer a valid handle. Any API object that referenced buffer
will have its reference invalidated.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferDestroy was introduced in OptiX 1.0.

SEE ALSO

rtBufferCreate, rtBufferCreateFromGLBO

260 CHAPTER 1. API REFERENCE

1.11.14 rtBufferGetContext

NAME

rtBufferGetContext - Returns the context object that created this buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferGetContext(RTbuffer buffer,

RTcontext* context)

PARAMETERS

buffer

The buffer to be queried for its context.

context

The return handle for the buffer’s context.

DESCRIPTION

rtBufferGetContext returns a handle to the context that created buffer in *context. If *context is
NULL, the call will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferGetContext was introduced in OptiX 1.0.

SEE ALSO

rtContextCreate

1.11. BUFFER 261

1.11.15 rtBufferGetDevicePointer

NAME

rtBufferGetDevicePointer - Gets the pointer to the buffer’s data on the given device.

SYNOPSIS

#include <optix.h>

RTresult rtBufferGetDevicePointer(RTbuffer buffer,

unsigned int optix_device_number,

void** device_pointer)

PARAMETERS

buffer

The buffer to be queried for its device pointer.

optix device number

The number of OptiX device.

device pointer

The return handle to the buffer’s device pointer.

DESCRIPTION

rtBufferGetDevicePointer returns the pointer to the data of buffer on device optix device number
in **device pointer.

Note that if rtBufferGetDevicePointer has been called for a single device for a given buffer, the user can
change the buffer’s content and then notify OptiX about it by calling rtBufferMarkDirty: then OptiX
will broadcast the buffer’s contents from the requested device onto the other devices that the buffer exists
on.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtBufferGetDevicePointer was introduced in OptiX 3.0.

262 CHAPTER 1. API REFERENCE

SEE ALSO

rtBufferMarkDirty, rtBufferSetDevicePointer

1.11. BUFFER 263

1.11.16 rtBufferGetDimensionality

NAME

rtBufferGetDimensionality - Gets the dimensionality of this buffer object.

SYNOPSIS

#include <optix.h>

RTresult rtBufferGetDimensionality(RTbuffer buffer,

unsigned int* dimensionality)

PARAMETERS

buffer

The buffer to be queried for its dimensionality.

dimensionality

The return handle for the buffer’s dimensionality.

DESCRIPTION

rtBufferGetDimensionality returns the dimensionality of buffer in *dimensionality. The value re-
turned will be one of 1, 2 or 3, corresponding to 1D, 2D and 3D buffers, respectively.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferGetDimensionality was introduced in OptiX 1.0.

SEE ALSO

rtBufferSetDimensionality

264 CHAPTER 1. API REFERENCE

1.11.17 rtBufferGetElementSize

NAME

rtBufferGetElementSize - Returns the size of a buffer’s individual elements.

SYNOPSIS

#include <optix.h>

RTresult rtBufferGetElementSize(RTbuffer buffer,

unsigned int* element_size_return)

PARAMETERS

buffer

Specifies the buffer to be queried.

element size return

Returns the size of the buffer’s individual elements.

DESCRIPTION

rtBufferGetElementSize queries the size of a buffer’s elements. The target buffer is specified by buffer,
which should be a value returned by rtBufferCreate. After the call, the size, in bytes, of the buffer’s
individual elements shall be returned in *element size return, if it is not NULL. Otherwise, this call has
no effect.

RETURN VALUES

Relevant return values:

RT_SUCCESS

RT_ERROR_INVALID_CONTEXT

RT_ERROR_UNKNOWN

HISTORY

rtBufferGetElementSize was introduced in OptiX 1.0.

SEE ALSO

rtBufferSetElementSize, rtBufferCreate

1.11. BUFFER 265

1.11.18 rtBufferGetFormat

NAME

rtBufferGetFormat - Gets the format of this buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferGetFormat(RTbuffer buffer,

RTformat* format)

PARAMETERS

buffer

The buffer to be queried for its format.

format

The return handle for the buffer’s format.

DESCRIPTION

rtBufferGetFormat returns, in *format, the format of buffer. See rtBufferSetFormat for a listing of
RTbuffer values.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferGetFormat was introduced in OptiX 1.0.

SEE ALSO

rtBufferSetFormat, rtBufferSetFormatUser, rtBufferGetFormatUser

266 CHAPTER 1. API REFERENCE

1.11.19 rtBufferGetD3D9Resource

NAME

rtBufferGetD3D9Resource - Gets the D3D9 resource associated with this buffer.

SYNOPSIS

#include <optix_d3d9_interop.h>

RTresult rtContextSetD3D9Device(RTbuffer buffer,

IDirect3DResource9 **resource);

PARAMETERS

buffer

The buffer to be queried for its D3D9 resource.

resource

The return handle for the resource.

DESCRIPTION

rtBufferGetD3D9Resource stores the D3D9 resource pointer in **resource if buffer was created with
rtBufferCreateFromD3D9Resource. If buffer was not created from an D3D9 resource **resource will
be 0 after the call and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtBufferGetD3D9Resource was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D9Resource

1.11. BUFFER 267

1.11.20 rtBufferGetD3D10Resource

NAME

rtBufferGetD3D10Resource - Gets the D3D10 resource associated with this buffer.

SYNOPSIS

#include <optix_d3d10_interop.h>

RTresult rtContextSetD3D10Device(RTbuffer buffer,

ID3D10Resource **resource);

PARAMETERS

buffer

The buffer to be queried for its D3D10 resource.

resource

The return handle for the resource.

DESCRIPTION

rtBufferGetD3D10Resource stores the D3D10 resource pointer in **resource if buffer was created with
rtBufferCreateFromD3D10Resource. If buffer was not created from an D3D10 resource **resource
will be 0 after the call and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtBufferGetD3D10Resource was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D10Resource

268 CHAPTER 1. API REFERENCE

1.11.21 rtBufferGetD3D11Resource

NAME

rtBufferGetD3D11Resource - Gets the D3D11 resource associated with this buffer.

SYNOPSIS

#include <optix_d3d11_interop.h>

RTresult rtContextSetD3D11Device(RTbuffer buffer,

ID3D11Resource **resource);

PARAMETERS

buffer

The buffer to be queried for its D3D11 resource.

resource

The return handle for the resource.

DESCRIPTION

rtBufferGetD3D11Resource stores the D3D11 resource pointer in **resource if buffer was created with
rtBufferCreateFromD3D11Resource. If buffer was not created from an D3D11 resource **resource
will be 0 after the call and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtBufferGetD3D11Resource was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D11Resource

1.11. BUFFER 269

1.11.22 rtBufferGetGLBOId

NAME

rtBufferGetGLBOId - Gets the OpenGL Buffer Object ID associated with this buffer.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtBufferGetGLBOId(RTbuffer buffer,

unsigned int *gl_id)

PARAMETERS

buffer

The buffer to be queried for its OpenGL buffer object id.

gl id

The return handle for the id.

DESCRIPTION

rtBufferGetGLBOId stores the OpenGL buffer object id in *gl id if buffer was created with rtBuffer-
CreateFromGLBO. If buffer was not created from an OpenGL Buffer Object *gl id will be 0 after the
call and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferGetGLBOId was introduced in OptiX 1.0.

SEE ALSO

rtBufferCreateFromGLBO

270 CHAPTER 1. API REFERENCE

1.11.23 rtBufferGetSize1D

NAME

rtBufferGetSize1D - Get the width of this buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferGetSize1D(RTbuffer buffer,

RTsize* width)

PARAMETERS

buffer

The buffer to be queried for its dimensions.

width

The return handle for the buffer’s width.

DESCRIPTION

rtBufferGetSize1D stores the width of buffer in *width.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferGetSize1D was introduced in OptiX 1.0.

SEE ALSO

rtBufferSetSize1D, rtBufferSetSize2D, rtBufferSetSize3D, rtBuffetSetSizev, rtBufferGetSize2D, rtBufferGet-
Size3D, rtBuffetGetSizev

1.11. BUFFER 271

1.11.24 rtBufferGetSize2D

NAME

rtBufferGetSize2D - Gets the width and height of this buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferGetSize2D(RTbuffer buffer,

RTsize* width,

RTsize* height)

PARAMETERS

buffer

The buffer to be queried for its dimensions.

width

The return handle for the buffer’s width.

height

The return handle for the buffer’s height.

DESCRIPTION

rtBufferGetSize2D stores the width and height of buffer in *width and *height, respectively.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferGetSize2D was introduced in OptiX 1.0.

272 CHAPTER 1. API REFERENCE

SEE ALSO

rtBufferSetSize1D, rtBufferSetSize2D, rtBufferSetSize3D, rtBuffetSetSizev, rtBufferGetSize1D, rtBufferGet-
Size3D, rtBuffetGetSizev

1.11. BUFFER 273

1.11.25 rtBufferGetSize3D

NAME

rtBufferGetSize3D - Gets the width, height and depth of this buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferGetSize3D(RTbuffer buffer,

RTsize* width,

RTsize* height,

RTsize* depth)

PARAMETERS

buffer

The buffer to be queried for its dimensions.

width

The return handle for the buffer’s width.

height

The return handle for the buffer’s height.

depth

The return handle for the buffer’s depth.

DESCRIPTION

rtBufferGetSize3D stores the width, height and depth of buffer in *width, *height and *depth, re-
spectively.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

274 CHAPTER 1. API REFERENCE

HISTORY

rtBufferGetSize3D was introduced in OptiX 1.0.

SEE ALSO

rtBufferSetSize1D, rtBufferSetSize2D, rtBufferSetSize3D, rtBuffetSetSizev, rtBufferGetSize1D, rtBufferGet-
Size2D, rtBuffetGetSizev

1.11. BUFFER 275

1.11.26 rtBufferGetSizev

NAME

rtBufferGetSizev - Gets the dimensions of this buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferGetSizev(RTbuffer buffer,

unsigned int dimensionality,

RTsize* dims)

PARAMETERS

buffer

The buffer to be queried for its dimensions.

dimensionality

The number of requested dimensions.

dims

The array of dimensions the call will store to.

DESCRIPTION

rtBufferGetSizev stores the dimensions of buffer in *dims. The number of dimensions returned is
specified by dimensionality. The storage at dims must be large enough to hold the number of requested
buffer dimensions.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferGetSizev was introduced in OptiX 1.0.

276 CHAPTER 1. API REFERENCE

SEE ALSO

rtBufferGetDimensionality

1.11. BUFFER 277

1.11.27 rtBufferGLUnregister

NAME

rtBufferGLUnregister - Declares an OpenGL buffer as mutable and inaccessible by OptiX.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtBufferGLUnregister(RTbuffer buffer)

PARAMETERS

buffer

The handle for the buffer object.

DESCRIPTION

An OptiX buffer in a registered state can be unregistered via rtBufferGLRegister. Once
unregistered, properties like the size of the original GL resource can be changed. As long
as a resource is unregistered, OptiX will not be able to access the data and will fail with
RT ERROR INVALID HANDLE. When a buffer is already in an unregistered state rtBufferGLUn-
register will return RT ERROR RESOURCE NOT REGISTERED.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE NOT REGISTERED

HISTORY

rtBufferGLUnregister was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromGLBO

278 CHAPTER 1. API REFERENCE

1.11.28 rtBufferGLRegister

NAME

rtBufferGLRegister - Declares an OpenGL buffer as immutable and accessible by OptiX.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtBufferGLRegister(RTbuffer buffer)

PARAMETERS

buffer

The handle for the buffer object.

DESCRIPTION

An OptiX buffer in an unregistered state can be registered to OptiX again via rtBufferGLRegister. Once
registered, properties like the size of the original GL resource cannot be modified anymore. Calls to the
corresponding GL functions will return with an error code. However, the data of the GL resource can
still be read and written by the appropriate GL commands. When a buffer is already in a registered state
rtBufferGLRegister will return RT ERROR RESOURCE AREADY REGISTERED. A resource
must be registered in order to be used by OptiX. If a resource is not registered RT ERROR INVALID HANDLE

will be returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE AREADY REGISTERED

HISTORY

rtBufferGLRegister was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromGLBO

1.11. BUFFER 279

1.11.29 rtBufferMap

NAME

rtBufferMap - Maps a buffer object to the host.

SYNOPSIS

#include <optix.h>

RTresult rtBufferMap(RTbuffer buffer,

void** user_pointer)

PARAMETERS

buffer

The buffer to be mapped.

user pointer

Return handle to a user pointer where the buffer will be mapped to.

DESCRIPTION

rtBufferMap returns a pointer, accessible by the host, in *user pointer that contains a mapped copy of
the contents of buffer. The memory pointed to by *user pointer can be written to or read from, depending
on the type of buffer. For example, this code snippet demonstrates creating and filling an input buffer with
floats.

RTbuffer buffer;

float* data;

rtBufferCreate(context, RT_BUFFER_INPUT, &buffer);

rtBufferSetFormat(buffer, RT_FORMAT_FLOAT);

rtBufferSetSize1D(buffer, 10);

rtBufferMap(buffer, (void*)&data);

for(int i = 0; i < 10; ++i)

data[i] = 4.f * i;

rtBufferUnmap(buffer);

If buffer has already been mapped, the call will return RT ERROR ALREADY MAPPED.

RETURN VALUES

Relevant return values:

RT SUCCESS

280 CHAPTER 1. API REFERENCE

RT ERROR ALREADY MAPPED

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferMap was introduced in OptiX 1.0.

SEE ALSO

rtBufferUnmap

1.11. BUFFER 281

1.11.30 rtBufferMarkDirty

NAME

rtBufferMarkDirty - Sets the pointer to the buffer’s data on the given device.

SYNOPSIS

#include <optix.h>

RTresult rtBufferMarkDirty(RTbuffer buffer)

PARAMETERS

buffer

The buffer to be marked dirty.

DESCRIPTION

If rtBufferSetDevicePointer or rtBufferGetDevicePointer have been called for a single device for a
given buffer, the user can change the buffer’s content and then notify OptiX about it by calling rtBuffer-
MarkDirty: then OptiX will broadcast the buffer’s contents from the requested device onto the other
devices that the buffer exists on.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtBufferMarkDirty was introduced in OptiX 3.0.

SEE ALSO

rtBufferGetDevicePointer, rtBufferSetDevicePointer

282 CHAPTER 1. API REFERENCE

1.11.31 rtBufferSetDevicePointer

NAME

rtBufferSetDevicePointer - Sets the pointer to the buffer’s data on the given device.

SYNOPSIS

#include <optix.h>

RTresult rtBufferSetDevicePointer(RTbuffer buffer,

unsigned int optix_device_number,

CUdeviceptr device_pointer)

PARAMETERS

buffer

The buffer for which the device pointer is to be set.

optix device number

The number of OptiX device.

device pointer

The pointer to the data on the specified device.

DESCRIPTION

rtBufferSetDevicePointer sets the pointer to the data of buffer on device optix device number to
device pointer.

The buffer needs to be allocated with rtBufferCreateForCUDA in order for the call to rtBufferSetDe-
vicePointer to be valid.

Note that if rtBufferSetDevicePointer has been called for a single device for a given buffer, the user can
change the buffer’s content and then notify OptiX about it by calling rtBufferMarkDirty: then OptiX
will broadcast the buffer’s contents from the requested device onto the other devices that the buffer exists
on.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

1.11. BUFFER 283

HISTORY

rtBufferSetDevicePointer was introduced in OptiX 3.0.

SEE ALSO

rtBufferMarkDirty, rtBufferGetDevicePointer

284 CHAPTER 1. API REFERENCE

1.11.32 rtBufferSetElementSize

NAME

rtBufferSetElementSize - Modifies the size in bytes of a buffer’s individual elements.

SYNOPSIS

#include <optix.h>

RTresult rtBufferSetElementSize(RTbuffer buffer,

unsigned int element_size)

PARAMETERS

buffer

Specifies the buffer to be modified.

element size

Specifies the new size in bytes of the buffer’s individual elements.

DESCRIPTION

rtBufferSetElementSize modifies the size in bytes of a buffer’s user-formatted elements. The target
buffer is specified by buffer, which should be a value returned by rtBufferCreate and should have format
RT FORMAT USER. The new size of the buffer’s individual elements is specified by element size and
should be a value not equal to 0. If the buffer has format RT FORMAT USER, and element size is
not equal to 0, then after the call, the buffer’s individual elements shall have size equal to element size
and all storage associated with the buffer shall be reset. Otherwise, this call has no effect and re-
turns either RT TYPE MISMATCH if the buffer does not have format RT FORMAT USER or
RT INVALID VALUE if the buffer has format RT FORMAT USER but element size is equal to
0.

RETURN VALUES

Relevant return values:

RT_SUCCESS

RT_ERROR_TYPE_MISMATCH

RT_ERROR_INVALID_VALUE

RT_ERROR_INVALID_CONTEXT

1.11. BUFFER 285

HISTORY

rtBufferSetElementSize was introduced in OptiX 1.0.

SEE ALSO

rtBufferGetElementSize, rtBufferCreate

286 CHAPTER 1. API REFERENCE

1.11.33 rtBufferSetSize1D

NAME

rtBufferSetSize1D - Sets the width and dimensionality of this buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferSetSize1D(RTbuffer buffer,

RTsize width)

PARAMETERS

buffer

The buffer to be resized.

width

The width of the resized buffer.

DESCRIPTION

rtBufferSetSize1D sets the dimensionality of buffer to 1 as well as setting its width to width.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferSetSize1D was introduced in OptiX 1.0.

SEE ALSO

rtBufferSetSize2D, rtBufferSetSize3D, rtBufferSetSizev, rtBufferGetSize1D, rtBufferGetSize2D, rtBufferGet-
Size3D, rtBufferGetSizev

1.11. BUFFER 287

1.11.34 rtBufferSetSize2D

NAME

rtBufferSetSize2D - Sets the width, height and dimensionality of this buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferSetSize2D(RTbuffer buffer,

RTsize width,

RTsize height)

PARAMETERS

buffer

The buffer to be resized.

width

The width of the resized buffer.

height

The height of the resized buffer.

DESCRIPTION

rtBufferSetSize2D sets the dimensionality of buffer to 2 as well as setting its width and height to width
and height, respectively.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferSetSize2D was introduced in OptiX 1.0.

288 CHAPTER 1. API REFERENCE

SEE ALSO

rtBufferSetSize1D, rtBufferSetSize3D, rtBufferSetSizev, rtBufferGetSize1D, rtBufferGetSize2D, rtBufferGet-
Size3D, rtBufferGetSizev

1.11. BUFFER 289

1.11.35 rtBufferSetSize3D

NAME

rtBufferSetSize3D - Sets the width, height, depth and dimensionality of a buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferSetSize3D(RTbuffer buffer,

RTsize width,

RTsize height,

RTsize depth)

PARAMETERS

buffer

The buffer to be resized.

width

The width of the resized buffer.

height

The height of the resized buffer.

depth

The depth of the resized buffer.

DESCRIPTION

rtBufferSetSize3D sets the dimensionality of buffer to 3 as well as setting its width, height and depth to
width, height and depth, respectively.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

290 CHAPTER 1. API REFERENCE

HISTORY

rtBufferSetSize3D was introduced in OptiX 1.0.

SEE ALSO

rtBufferSetSize2D, rtBufferSetSize3D, rtBufferSetSizev, rtBufferGetSize1D, rtBufferGetSize2D, rtBufferGet-
Size3D, rtBufferGetSizev

1.11. BUFFER 291

1.11.36 rtBufferSetSizev

NAME

rtBufferSetSizev - Sets the dimensionality and dimensions of a buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferSetSizev(RTbuffer buffer,

unsigned int dimensionality,

const RTsize* dims)

PARAMETERS

buffer

The buffer to be resized.

dimensionality

The dimensionality the buffer will be resized to.

dims

The array of sizes for the dimension of the resize.

DESCRIPTION

rtBufferSetSizev sets the dimensionality of buffer to dimensionality as well as setting the dimensions of
the buffer to the values stored at *dims, which must contain a number of values equal to dimensionality.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferSetSizev was introduced in OptiX 1.0.

292 CHAPTER 1. API REFERENCE

SEE ALSO

rtBufferSetSize1D, rtBufferSetSize2D, rtBufferSetSize3D, rtBufferGetSize1D, rtBufferGetSize2D, rtBuffer-
GetSize3D, rtBufferGetSizev

1.11. BUFFER 293

1.11.37 rtBufferUnmap

NAME

rtBufferUnmap - Unmaps a buffer’s storage from the host.

SYNOPSIS

#include <optix.h>

RTresult rtBufferUnmap(RTbuffer buffer)

PARAMETERS

buffer

The buffer to unmap.

DESCRIPTION

rtBufferUnmap unmaps a buffer from the host after a call to rtBufferMap. rtContextLaunch* cannot
be called while buffers are still mapped to the host. A call to rtBufferUnmap that does not follow a
matching rtBufferMap call will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferUnmap was introduced in OptiX 1.0.

SEE ALSO

rtBufferMap

294 CHAPTER 1. API REFERENCE

1.11.38 rtBufferValidate

NAME

rtBufferValidate - Validates the state of a buffer.

SYNOPSIS

#include <optix.h>

RTresult rtBufferValidate(RTbuffer buffer)

PARAMETERS

buffer

The buffer to validate.

DESCRIPTION

rtBufferValidate checks buffer for completeness. If buffer has not had its dimensionality, size or format
set, this call will return RT ERROR INVALID CONTEXT.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtBufferValidate was introduced in OptiX 1.0.

SEE ALSO

rtBufferCreate, rtBufferCreateFromGLBO rtContextValidate

1.12. TEXTURE SAMPLER 295

1.12 Texture Sampler

NAME

Texture Sampler

DESCRIPTION

This section describes the API functions for creation and handling of TextureSampler objects.

rtTextureSamplerCreate

rtTextureSamplerCreateFromD3D9Resource

rtTextureSamplerCreateFromD3D10Resource

rtTextureSamplerCreateFromD3D11Resource

rtTextureSamplerD3D9Unregister

rtTextureSamplerD3D10Unregister

rtTextureSamplerD3D11Unregister

rtTextureSamplerD3D9Register

rtTextureSamplerD3D10Register

rtTextureSamplerD3D11Register

rtTextureSamplerDestroy

rtTextureSamplerGetArraySize

rtTextureSamplerGetBuffer

rtTextureSamplerGetContext

rtTextureSamplerGetD3D9Resource

rtTextureSamplerGetD3D10Resource

rtTextureSamplerGetD3D11Resource

rtTextureSamplerGetFilteringModes

rtTextureSamplerGetGLImageId

rtTextureSamplerGetIndexingMode

rtTextureSamplerGetMaxAnisotropy

rtTextureSamplerGetMipLevelCount

rtTextureSamplerGetReadMode

rtTextureSamplerGetWrapMode

rtTextureSamplerGLUnregister

296 CHAPTER 1. API REFERENCE

rtTextureSamplerGLRegister

rtTextureSamplerSetArraySize

rtTextureSamplerSetBuffer

rtTextureSamplerSetFilteringModes

rtTextureSamplerSetIndexingMode

rtTextureSamplerSetMaxAnisotropy

rtTextureSamplerSetMipLevelCount

rtTextureSamplerSetReadMode

rtTextureSamplerSetWrapMode

rtTextureSamplerValidate

HISTORY

TextureSample objects were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Selector Node, Transform Node, Acceleration Structure, Geometry In-
stance, Geometry, Material, Program, Buffer, Variables, Context-Free Functions

1.12. TEXTURE SAMPLER 297

1.12.1 rtTextureSamplerCreate

NAME

rtTextureSamplerCreate - Creates a new texture sampler object.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerCreate(RTcontext context,

RTtexturesampler* texturesampler)

PARAMETERS

context

The context the texture sampler object will be created in.

texturesampler

The return handle to the new texture sampler object.

DESCRIPTION

rtTextureSamplerCreate allocates and returns a new handle to a texture sampler object, in *texture-
sampler, and associates it with context.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerCreate was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerDestroy

298 CHAPTER 1. API REFERENCE

1.12.2 rtTextureSamplerCreateFromGLImage

NAME

rtTextureSamplerCreateFromGLImage - Creates a new texture sampler object from an OpenGL image.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtTextureSamplerCreateFromGLImage(RTcontext context,

unsigned int gl_id,

RTgltarget target,

RTtexturesampler* texturesampler)

PARAMETERS

context

The context to create the buffer in.

gl id

The OpenGL image object resoure handle for use in OptiX.

target

The OpenGL target.

texturesampler

The return handle for the texture sampler object.

DESCRIPTION

rtTextureSamplerCreateFromGLImage allocates and returns a handle to a new texture sampler
object in *texturesampler associated with context. If the allocated size of the GL texture is 0,
RT ERROR MEMORY ALLOCATION FAILED will be returned. Supported OpenGL image types are:

Renderbuffers

GL TEXTURE 2D

GL TEXTURE 2D RECT

GL TEXTURE 3D

These types are reflected by target:

RT TARGET GL RENDER BUFFER

RT TARGET GL TEXTURE 2D

RT TARGET GL TEXTURE RECTANGLE

1.12. TEXTURE SAMPLER 299

RT TARGET GL TEXTURE 3D

Supported attachment points for renderbuffers are:

GL COLOR ATTACHMENT<NUM>

These texture samplers can be used to share data with OpenGL; changes of the content and size of tex-
turesampler done by OpenGL will be reflected automatically in OptiX. Currently texture sampler data
are read only in OptiX programs. OptiX keeps only a reference to OpenGL data, when texturesampler is
destroyed, the state of the gl id image is unaltered.

The array size and number of mipmap levels can’t be changed for texture samplers that encapsulate a GL
image. Furthermore no buffer objects can be queried.

Currently OptiX supports only a limited number of internal OpenGL texture formats. Texture formats with
an internal type of float, e.g. GL RGBA32F, and many integer formats are supported. Depth formats as
well as multisample buffers are also currently not supported. Please refer to the Appendix for a complete
list of supported texture formats.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerCreateFromGLImage was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreate, rtTextureSamplerDestroy

300 CHAPTER 1. API REFERENCE

1.12.3 rtTextureSamplerCreateFromD3D9Resource

NAME

rtTextureSamplerCreateFromD3D9Resource - Creates a new texture sampler object from an D3D9
resource.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtTextureSamplerCreateFromD3D9Resource(RTcontext context,

IDirect3DResource9* resource,

RTtexturesampler* texturesampler);

PARAMETERS

context

The context to create the buffer in.

resource

The D3D9 resoure handle for use in OptiX.

texturesampler

The return handle for the texture sampler object.

DESCRIPTION

rtTextureSamplerCreateFromD3D9Resource allocates and returns a handle to a new texture sam-
pler object in *texturesampler associated with context. If the allocated size of the D3D resource is 0,
RT ERROR MEMORY ALLOCATION FAILED will be returned. Supported D3D9 texture types are:

IDirect3DSurface9

(derivatives of) IDirect3DBaseTexture9

These texture samplers can be used to share data with D3D9; changes of the content and size of texture-
sampler done by D3D9 will be reflected automatically in OptiX. Currently texture sampler data are read
only in OptiX programs. OptiX keeps only a reference to D3D9 data, when texturesampler is destroyed,
the state of the resource is unaltered.

The array size and number of mipmap levels can’t be changed for texture samplers that encapsulate a D3D9
resource. Furthermore no buffer objects can be queried. Please refer to the Appendix for a complete list of
supported texture formats.

RETURN VALUES

Relevant return values:

1.12. TEXTURE SAMPLER 301

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerCreateFromD3D9Resource was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreate, rtTextureSamplerDestroy

302 CHAPTER 1. API REFERENCE

1.12.4 rtTextureSamplerCreateFromD3D10Resource

NAME

rtTextureSamplerCreateFromD3D10Resource - Creates a new texture sampler object from an D3D10
resource.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtTextureSamplerCreateFromD3D10Resource(RTcontext context,

ID3D10Resource* resource,

RTtexturesampler* texturesampler);

PARAMETERS

context

The context to create the buffer in.

resource

The D3D10 resoure handle for use in OptiX.

texturesampler

The return handle for the texture sampler object.

DESCRIPTION

rtTextureSamplerCreateFromD3D10Resource allocates and returns a handle to a new texture sam-
pler object in *texturesampler associated with context. If the allocated size of the D3D resource is 0,
RT ERROR MEMORY ALLOCATION FAILED will be returned. Supported D3D10 texture types are:

ID3D10Texture1D

ID3D10Texture2D

ID3D10Texture3D

These texture samplers can be used to share data with D3D10; changes of the content and size of texture-
sampler done by D3D10 will be reflected automatically in OptiX. Currently texture sampler data are read
only in OptiX programs. OptiX keeps only a reference to D3D10 data, when texturesampler is destroyed,
the state of the resource is unaltered.

The array size and number of mipmap levels can’t be changed for texture samplers that encapsulate a D3D10
resource. Furthermore no buffer objects can be queried. Please refer to the Appendix for a complete list of
supported texture formats.

1.12. TEXTURE SAMPLER 303

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerCreateFromD3D10Resource was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreate, rtTextureSamplerDestroy

304 CHAPTER 1. API REFERENCE

1.12.5 rtTextureSamplerCreateFromD3D11Resource

NAME

rtTextureSamplerCreateFromD3D11Resource - Creates a new texture sampler object from an D3D11
resource.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtTextureSamplerCreateFromD3D11Resource(RTcontext context,

ID3D11Resource* resource,

RTtexturesampler* texturesampler);

PARAMETERS

context

The context to create the buffer in.

resource

The D3D11 resoure handle for use in OptiX.

texturesampler

The return handle for the texture sampler object.

DESCRIPTION

rtTextureSamplerCreateFromD3D11Resource allocates and returns a handle to a new texture sam-
pler object in *texturesampler associated with context. If the allocated size of the D3D resource is 0,
RT ERROR MEMORY ALLOCATION FAILED will be returned. Supported D3D11 texture types are:

ID3D11Texture1D

ID3D11Texture2D

ID3D11Texture3D

These texture samplers can be used to share data with D3D11; changes of the content and size of texture-
sampler done by D3D11 will be reflected automatically in OptiX. Currently texture sampler data are read
only in OptiX programs. OptiX keeps only a reference to D3D11 data, when texturesampler is destroyed,
the state of the resource is unaltered.

The array size and number of mipmap levels can’t be changed for texture samplers that encapsulate a D3D11
resource. Furthermore no buffer objects can be queried. Please refer to the Appendix for a complete list of
supported texture formats.

1.12. TEXTURE SAMPLER 305

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerCreateFromD3D11Resource was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreate, rtTextureSamplerDestroy

306 CHAPTER 1. API REFERENCE

1.12.6 rtTextureSamplerD3D9Unregister

NAME

rtTextureSamplerD3D9Unregister - Declares a D3D9 texture as mutable and inaccessible by OptiX.

SYNOPSIS

#include <optix_D3D9_interop.h>

RTresult rtTextureSamplerD3D9Unregister(RTtexturesampler sampler)

PARAMETERS

sampler

The handle for the texture sampler object.

DESCRIPTION

An OptiX texture sampler in a registered state can be unregistered via rtTextureSam-
plerD3D9Unregister. Once unregistered, properties like the size of the original D3D9 resource can
be changed. As long as a resource is unregistered, OptiX will not be able to access the data and will
fail with RT ERROR INVALID HANDLE. When a buffer is already in an unregistered state rt-
BufferD3D9Unregister will return RT ERROR RESOURCE NOT REGISTERED.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE NOT REGISTERED

HISTORY

rtTextureSamplerD3D9Unregister was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreateFromD3D9Resource

1.12. TEXTURE SAMPLER 307

1.12.7 rtTextureSamplerD3D10Unregister

NAME

rtTextureSamplerD3D10Unregister - Declares a D3D10 texture as mutable and inaccessible by OptiX.

SYNOPSIS

#include <optix_D3D10_interop.h>

RTresult rtTextureSamplerD3D10Unregister(RTtexturesampler sampler)

PARAMETERS

sampler

The handle for the texture sampler object.

DESCRIPTION

An OptiX texture sampler in a registered state can be unregistered via rtTextureSam-
plerD3D10Unregister. Once unregistered, properties like the size of the original D3D10 resource can
be changed. As long as a resource is unregistered, OptiX will not be able to access the data and will
fail with RT ERROR INVALID HANDLE. When a buffer is already in an unregistered state rt-
BufferD3D10Unregister will return RT ERROR RESOURCE NOT REGISTERED.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE NOT REGISTERED

HISTORY

rtTextureSamplerD3D10Unregister was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreateFromD3D9Resource

308 CHAPTER 1. API REFERENCE

1.12.8 rtTextureSamplerD3D11Unregister

NAME

rtTextureSamplerD3D11Unregister - Declares a D3D11 texture as mutable and inaccessible by OptiX.

SYNOPSIS

#include <optix_D3D11_interop.h>

RTresult rtTextureSamplerD3D11Unregister(RTtexturesampler sampler)

PARAMETERS

sampler

The handle for the texture sampler object.

DESCRIPTION

An OptiX texture sampler in a registered state can be unregistered via rtTextureSam-
plerD3D11Unregister. Once unregistered, properties like the size of the original D3D11 resource can
be changed. As long as a resource is unregistered, OptiX will not be able to access the data and will
fail with RT ERROR INVALID HANDLE. When a buffer is already in an unregistered state rt-
BufferD3D11Unregister will return RT ERROR RESOURCE NOT REGISTERED.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE NOT REGISTERED

HISTORY

rtTextureSamplerD3D11Unregister was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreateFromD3D11Resource

1.12. TEXTURE SAMPLER 309

1.12.9 rtTextureSamplerD3D9Register

NAME

rtTextureSamplerD3D9Register - Declares an D3D9 texture as immutable and accessible by OptiX.

SYNOPSIS

#include <optix_D3D9_interop.h>

RTresult rtTextureSamplerD3D9Register(RTtexturesampler sampler)

PARAMETERS

sampler

The handle for the texture object.

DESCRIPTION

An OptiX texture sampler in an unregistered state can be registered to OptiX again via rtTextureSam-
plerD3D9Register. Once registered, properties like the size of the original D3D9 resource cannot be
modified anymore. Calls to the corresponding D3D9 functions will return with an error code. How-
ever, the data of the D3D9 resource can still be read and written by the appropriate D3D9 commands.
When a texture sampler is already in a registered state rtTextureSamplerD3D9Register will return
RT ERROR RESOURCE AREADY REGISTERED. A resource must be registered in order to be
used by OptiX. If a resource is not registered RT ERROR INVALID HANDLE will be returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE AREADY REGISTERED

HISTORY

rtTextureSamplerD3D9Register was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreateFromD3D9Resource

310 CHAPTER 1. API REFERENCE

1.12.10 rtTextureSamplerD3D10Register

NAME

rtTextureSamplerD3D10Register - Declares an D3D10 texture as immutable and accessible by OptiX.

SYNOPSIS

#include <optix_D3D10_interop.h>

RTresult rtTextureSamplerD3D10Register(RTtexturesampler sampler)

PARAMETERS

sampler

The handle for the texture object.

DESCRIPTION

An OptiX texture sampler in an unregistered state can be registered to OptiX again via rtTextureSam-
plerD3D10Register. Once registered, properties like the size of the original D3D10 resource cannot be
modified anymore. Calls to the corresponding D3D10 functions will return with an error code. How-
ever, the data of the D3D10 resource can still be read and written by the appropriate D3D10 commands.
When a texture sampler is already in a registered state rtTextureSamplerD3D10Register will return
RT ERROR RESOURCE AREADY REGISTERED. A resource must be registered in order to be
used by OptiX. If a resource is not registered RT ERROR INVALID HANDLE will be returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE AREADY REGISTERED

HISTORY

rtTextureSamplerD3D10Register was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreateFromD3D10Resource

1.12. TEXTURE SAMPLER 311

1.12.11 rtTextureSamplerD3D11Register

NAME

rtTextureSamplerD3D11Register - Declares an D3D11 texture as immutable and accessible by OptiX.

SYNOPSIS

#include <optix_D3D11_interop.h>

RTresult rtTextureSamplerD3D11Register(RTtexturesampler sampler)

PARAMETERS

sampler

The handle for the texture object.

DESCRIPTION

An OptiX texture sampler in an unregistered state can be registered to OptiX again via rtTextureSam-
plerD3D11Register. Once registered, properties like the size of the original D3D11 resource cannot be
modified anymore. Calls to the corresponding D3D11 functions will return with an error code. How-
ever, the data of the D3D11 resource can still be read and written by the appropriate D3D11 commands.
When a texture sampler is already in a registered state rtTextureSamplerD3D11Register will return
RT ERROR RESOURCE AREADY REGISTERED. A resource must be registered in order to be
used by OptiX. If a resource is not registered RT ERROR INVALID HANDLE will be returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE AREADY REGISTERED

HISTORY

rtTextureSamplerD3D11Register was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreateFromD3D11Resource

312 CHAPTER 1. API REFERENCE

1.12.12 rtTextureSamplerDestroy

NAME

rtTextureSamplerDestroy - Destroys a texture sampler object

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerDestroy(RTtexturesampler texturesampler)

PARAMETERS

texturesampler

Handle of the texture sampler to destroy

DESCRIPTION

rtTextureSamplerDestroy removes texturesampler from its context and deletes it. texturesampler
should be a value returned by rtTextureSamplerCreate. After the call, texturesampler is no longer a
valid handle. Any API object that referenced texturesampler will have its reference invalidated.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerDestroy was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerCreate

1.12. TEXTURE SAMPLER 313

1.12.13 rtTextureSamplerGetArraySize

NAME

rtTextureSamplerGetArraySize - Gets the number of array slices present in a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerGetArraySize(RTtexturesampler texturesampler,

unsigned int* num_textures_in_array)

PARAMETERS

texturesampler

The texture sampler object to be queried.

num textures in array

The return handle for the number of texture slices the texture sampler.

DESCRIPTION

rtTextureSamplerGetArraySize gets the number of texture array slices in texturesampler and stores
it in *num textures in array.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerGetArraySize was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerSetArraySize

314 CHAPTER 1. API REFERENCE

1.12.14 rtTextureSamplerGetBuffer

NAME

rtTextureSamplerGetBuffer - Gets a buffer object handle from a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerGetBuffer(RTtexturesampler texturesampler,

unsigned int texture_array_idx,

unsigned int mip_level,

RTbuffer* buffer)

PARAMETERS

texturesampler

The texture sampler object to be queried for the buffer.

texture array idx

The array slice index the buffer will be queried from.

mip level

The MIP level the buffer will be queried from.

buffer

The return handle to the buffer attached to the texture sampler.

DESCRIPTION

rtTextureSamplerGetBuffer gets a buffer object from texturesampler from the specified MIP level and
array slice and stores it in *buffer. mip level and texture array idx specify the MIP level and array
slice, respectively.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

1.12. TEXTURE SAMPLER 315

HISTORY

rtTextureSamplerGetBuffer was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerSetBuffer

316 CHAPTER 1. API REFERENCE

1.12.15 rtTextureSamplerGetContext

NAME

rtTextureSamplerGetContext - Gets the context object that created this texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerGetContext(RTtexturesampler texturesampler,

RTcontext* context)

PARAMETERS

texturesampler

The texture sampler object to be queried for its context.

context

The return handle for the context object of the texture sampler.

DESCRIPTION

rtTextureSamplerGetContext returns a handle to the context object that was used to create texture-
sampler. If context is NULL, the call will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerGetContext was introduced in OptiX 1.0.

SEE ALSO

rtContextCreate

1.12. TEXTURE SAMPLER 317

1.12.16 rtTextureSamplerGetD3D9Resource

NAME

rtTextureSamplerGetD3D9Resource - Gets the D3D9 resource associated with this texture sampler.

SYNOPSIS

#include <optix_d3d9_interop.h>

RTresult rtTextureSamplerGetD3D9Resource(RTtexturesampler sampler,

Direct3DResource9 **resource);

PARAMETERS

sampler

The texture sampler to be queried for its D3D9 resource.

resource

The return handle for the resource.

DESCRIPTION

rtTextureSamplerGetD3D9Resource stores the D3D9 resource pointer in **resource if sampler was
created with rtTextureSamplerGetD3D9Resource. If sampler was not created from an D3D9 resource
resource will be 0 after the call and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtTextureSamplerGetD3D9Resource was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D9Resource

318 CHAPTER 1. API REFERENCE

1.12.17 rtTextureSamplerGetD3D10Resource

NAME

rtTextureSamplerGetD3D10Resource - Gets the D3D10 resource associated with this texture sampler.

SYNOPSIS

#include <optix_d3d10_interop.h>

RTresult rtTextureSamplerGetD3D10Resource(RTtexturesampler sampler,

D3D10Resource **resource);

PARAMETERS

sampler

The texture sampler to be queried for its D3D10 resource.

resource

The return handle for the resource.

DESCRIPTION

rtTextureSamplerGetD3D10Resource stores the D3D10 resource pointer in **resource if sampler
was created with rtTextureSamplerGetD3D10Resource. If sampler was not created from an D3D10
resource resource will be 0 after the call and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtTextureSamplerGetD3D10Resource was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D10Resource

1.12. TEXTURE SAMPLER 319

1.12.18 rtTextureSamplerGetD3D11Resource

NAME

rtTextureSamplerGetD3D11Resource - Gets the D3D11 resource associated with this texture sampler.

SYNOPSIS

#include <optix_d3d11_interop.h>

RTresult rtTextureSamplerGetD3D11Resource(RTtexturesampler sampler,

D3D11Resource **resource);

PARAMETERS

sampler

The texture sampler to be queried for its D3D11 resource.

resource

The return handle for the resource.

DESCRIPTION

rtTextureSamplerGetD3D11Resource stores the D3D11 resource pointer in **resource if sampler
was created with rtTextureSamplerGetD3D11Resource. If sampler was not created from an D3D11
resource resource will be 0 after the call and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtTextureSamplerGetD3D11Resource was introduced in OptiX 2.0.

SEE ALSO

rtBufferCreateFromD3D11Resource

320 CHAPTER 1. API REFERENCE

1.12.19 rtTextureSamplerGetFilteringModes

NAME

rtTextureSamplerGetFilteringModes - Gets the filtering modes of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerGetFilteringModes(RTtexturesampler texturesampler,

RTfiltermode* minification,

RTfiltermode* magnification,

RTfiltermode* mipmapping)

PARAMETERS

texturesampler

The texture sampler object to be queried.

minification

The return handle for the minification filtering mode of the texture sampler.

magnification

The return handle for the magnification filtering mode of the texture sampler.

mipmapping

The return handle for the MIP mapping filtering mode of the texture sampler.

DESCRIPTION

rtTextureSamplerGetFilteringModes gets the minification, magnification and MIP mapping filtering
modes from texturesampler and stores them in *minification, *magnification and *mipmapping,
respectively. See rtTextureSamplerSetFilteringModes for the values RTfilermode may take.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

1.12. TEXTURE SAMPLER 321

HISTORY

rtTextureSamplerGetFilteringModes was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerSetFilteringModes

322 CHAPTER 1. API REFERENCE

1.12.20 rtTextureSamplerGetGLImageId

NAME

rtTextureSamplerGetGLImageId - Gets the OpenGL image object id associated with this texture sam-
pler.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtTextureSamplerGetGLImageId(RTtexturesampler sampler,

unsigned int *gl_id)

PARAMETERS

sampler

The texture sampler to be queried for its OpenGL image object id.

gl id

The return handle for the id.

DESCRIPTION

rtTextureSamplerGetGLImageId stores the OpenGL image object id in *gl id if sampler was created
with rtTextureSamplerGetGLImageId. If sampler was not created from an OpenGL image object
gl id will be 0 after the call and RT ERROR INVALID VALUE is returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerGetGLImageId was introduced in OptiX 2.0.

1.12. TEXTURE SAMPLER 323

SEE ALSO

rtTextureSamplerCreateFromGLImage

324 CHAPTER 1. API REFERENCE

1.12.21 rtTextureSamplerGetId

NAME

rtTextureSamplerGetId - Gets the device-side texture ID of this texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerGetId(RTtexturesampler texturesampler,

int *texture_id);

PARAMETERS

texturesampler

The texture sampler object to be queried for its ID.

texture id

The returned device-side texture ID of the texture sampler.

DESCRIPTION

rtTextureSamplerGetId returns a handle to the texture sampler texturesampler to be used in OptiX
programs on the device to reference the associated texture. The returned ID cannot be used on the host
side. If texture id is NULL, the call will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtTextureSamplerGetId was introduced in OptiX 3.0.

SEE ALSO

rtTextureSamplerCreate

1.12. TEXTURE SAMPLER 325

1.12.22 rtTextureSamplerGetIndexingMode

NAME

rtTextureSamplerGetIndexingMode - Gets the indexing mode of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerGetIndexingMode(RTtexturesampler texturesampler,

RTtextureindexmode* indexmode)

PARAMETERS

texturesampler

The texture sampler object to be queried.

indexmode

The return handle for the indexing mode of the texture sampler.

DESCRIPTION

rtTextureSamplerGetIndexingMode gets the indexing mode of texturesampler and stores it in *in-
dexmode. See rtTextureSamplerSetIndexingMode for the values RTtextureindexmode may take.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerGetIndexingMode was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerSetIndexingMode

326 CHAPTER 1. API REFERENCE

1.12.23 rtTextureSamplerGetMaxAnisotropy

NAME

rtTextureSamplerGetMaxAnisotropy - Gets the maximum anisotropy level for a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerGetMaxAnisotropy(RTtexturesampler texturesampler,

float* value)

PARAMETERS

texturesampler

The texture sampler object to be queried.

wrapmode

The return handle for the maximum anisotropy level of the texture sampler.

DESCRIPTION

rtTextureSamplerGetMaxAnisotropy gets the maximum anisotropy level for texturesampler and
stores it in *value.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerGetMaxAnisotropy was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerSetMaxAnisotropy

1.12. TEXTURE SAMPLER 327

1.12.24 rtTextureSamplerGetMipLevelCount

NAME

rtTextureSamplerGetMipLevelCount - Gets the number of MIP levels in a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerGetMipLevelCount(RTtexturesampler texturesampler,

unsigned int* num_mip_levels)

PARAMETERS

texturesampler

The texture sampler object to be queried.

num mip levels

The return handle for the number of MIP levels in the texture sampler.

DESCRIPTION

rtTextureSamplerGetMipLevelCount gets the number of MIP levels contained in texturesampler and
stores it in *num mip levels.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerGetMipLevelCount was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerSetMipLevelCount

328 CHAPTER 1. API REFERENCE

1.12.25 rtTextureSamplerGetReadMode

NAME

rtTextureSamplerGetReadMode - Gets the read mode of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerGetReadMode(RTtexturesampler texturesampler,

RTtexturereadmode* readmode)

PARAMETERS

texturesampler

The texture sampler object to be queried.

readmode

The return handle for the read mode of the texture sampler.

DESCRIPTION

rtTextureSamplerGetReadMode gets the read mode of texturesampler and stores it in *readmode.
See rtTextureSamplerSetReadMode for a list of values RTtexturereadmode can take.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerGetReadMode was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerSetReadMode

1.12. TEXTURE SAMPLER 329

1.12.26 rtTextureSamplerGetWrapMode

NAME

rtTextureSamplerGetWrapMode - Gets the wrap mode of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerGetWrapMode(RTtexturesampler texturesampler,

RTwrapmode* wrapmode)

PARAMETERS

texturesampler

The texture sampler object to be queried.

wrapmode

The return handle for the wrap mode of the texture sampler.

DESCRIPTION

rtTextureSamplerGetWrapMode gets the texture wrapping mode of texturesampler and stores it in
*wrapmode. See rtTextureSamplerSetWrapMode for a list of values RTwrapmode can take.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerGetWrapMode was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerSetWrapMode

330 CHAPTER 1. API REFERENCE

1.12.27 rtTextureSamplerGLUnregister

NAME

rtTextureSamplerGLUnregister - Declares a OpenGL texture as mutable and inaccessible by OptiX.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtTextureSamplerGLUnregister(RTtexturesampler sampler)

PARAMETERS

sampler

The handle for the texture sampler object.

DESCRIPTION

An OptiX texture sampler in a registered state can be unregistered via rtTextureSamplerGLUn-
register. Once unregistered, properties like the size of the original GL resource can be changed.
As long as a resource is unregistered, OptiX will not be able to access the data and will fail with
RT ERROR INVALID HANDLE. When a buffer is already in an unregistered state rtBufferGLUn-
register will return RT ERROR RESOURCE NOT REGISTERED.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE NOT REGISTERED

HISTORY

rtTextureSamplerGLUnregister was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreateFromGLImage

1.12. TEXTURE SAMPLER 331

1.12.28 rtTextureSamplerGLRegister

NAME

rtTextureSamplerGLRegister - Declares an OpenGL texture as immutable and accessible by OptiX.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtTextureSamplerGLRegister(RTtexturesampler sampler)

PARAMETERS

sampler

The handle for the texture object.

DESCRIPTION

An OptiX texture sampler in an unregistered state can be registered to OptiX again via rtTexture-
SamplerGLRegister. Once registered, properties like the size of the original GL resource cannot be
modified anymore. Calls to the corresponding GL functions will return with an error code. How-
ever, the data of the GL resource can still be read and written by the appropriate GL commands.
When a texture sampler is already in a registered state rtTextureSamplerGLRegister will return
RT ERROR RESOURCE AREADY REGISTERED. A resource must be registered in order to be
used by OptiX. If a resource is not registered RT ERROR INVALID HANDLE will be returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR RESOURCE AREADY REGISTERED

HISTORY

rtTextureSamplerGLRegister was introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreateFromGLImage

332 CHAPTER 1. API REFERENCE

1.12.29 rtTextureSamplerSetArraySize

NAME

rtTextureSamplerSetArraySize - Sets the array size of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerSetArraySize(RTtexturesampler texturesampler,

unsigned int num_textures_in_array)

PARAMETERS

texturesampler

The texture sampler object to be changed.

wrapmode

The new number of array slices of the texture sampler.

DESCRIPTION

rtTextureSamplerSetArraySize specifies the number of texture array slices present in texturesampler
as num textures in array. After changing the number of slices in the array, buffers must be reassociated
with texturesampler via rtTextureSamplerSetBuffer.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerSetArraySize was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerGetArraySize

1.12. TEXTURE SAMPLER 333

1.12.30 rtTextureSamplerSetBuffer

NAME

rtTextureSamplerSetBuffer - Attaches a buffer object to a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerSetBuffer(RTtexturesampler texturesampler,

unsigned int texture_array_idx,

unsigned int mip_level,

RTbuffer buffer)

PARAMETERS

texturesampler

The texture sampler object that will contain the buffer.

texture array idx

The array slice index the buffer will be attached to.

mip level

The MIP level the buffer will be attached to.

buffer

The buffer to be attached to the texture sampler.

DESCRIPTION

rtTextureSamplerSetBuffer attaches buffer to texturesampler at the specified array slice and MIP
level. The array slice and MIP level are specified by texture array idx and mip level, respectively.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

334 CHAPTER 1. API REFERENCE

HISTORY

rtTextureSamplerSetBuffer was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerGetBuffer

1.12. TEXTURE SAMPLER 335

1.12.31 rtTextureSamplerSetFilteringModes

NAME

rtTextureSamplerSetFilteringModes - Sets the filtering modes of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerSetFilteringModes(RTtexturesampler texturesampler,

RTfiltermode minification,

RTfiltermode magnification,

RTfiltermode mipmapping)

PARAMETERS

texturesampler

The texture sampler object to be changed.

minification

The new minification filter mode of the texture sampler.

magnification

The new magnification filter mode of the texture sampler.

mipmapping

The new MIP mapping filter mode of the texture sampler.

DESCRIPTION

rtTextureSamplerSetFilteringModes sets the minification, magnification and MIP mapping filter modes
for texturesampler. RTfiltermode must be one of the following values:

RT_FILTER_NEAREST

RT_FILTER_LINEAR

RT_FILTER_NONE

These filter modes specify how the texture sampler will interpolate buffer data that has been attached to it.
minification and magnification must be one of RT FILTER NEAREST or RT FILTER LINEAR.
mipmapping may be any of the three values but must be RT FILTER NONE if the texture sampler
contains only a single MIP level or one of RT FILTER NEAREST or RT FILTER LINEAR if the
texture sampler contains more than one MIP level.

336 CHAPTER 1. API REFERENCE

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerSetFilteringModes was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerGetFilteringModes

1.12. TEXTURE SAMPLER 337

1.12.32 rtTextureSamplerSetIndexingMode

NAME

rtTextureSamplerSetIndexingMode - Sets the indexing mode of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerSetIndexingMode(RTtexturesampler texturesampler,

RTtextureindexmode indexmode)

PARAMETERS

texturesampler

The texture sampler object to be changed.

indexmode

The new indexing mode of the texture sampler.

DESCRIPTION

rtTextureSamplerSetIndexingMode sets the indexing mode of texturesampler to indexmode. in-
dexmode can take on one of the following values:

RT_TEXTURE_INDEX_NORMALIZED_COORDINATES,

RT_TEXTURE_INDEX_ARRAY_INDEX

These values are used to control the interpretation of texture coordinates. If the index mode is set to
RT TEXTURE INDEX NORMALIZED COORDINATES, the texture is parameterized over [0,1].
If the index mode is set to RT TEXTURE INDEX ARRAY INDEX then texture coordinates are
interpreted as array indices into the contents of the underlying buffer objects.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

338 CHAPTER 1. API REFERENCE

HISTORY

rtTextureSamplerSetIndexingMode was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerGetIndexingMode

1.12. TEXTURE SAMPLER 339

1.12.33 rtTextureSamplerSetMaxAnisotropy

NAME

rtTextureSamplerSetMaxAnisotropy - Sets the maximum anisotropy of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerSetMaxAnisotropy(RTtexturesampler texturesampler,

float value)

PARAMETERS

texturesampler

The texture sampler object to be changed.

value

The new maximum anisotropy level of the texture sampler.

DESCRIPTION

rtTextureSamplerSetMaxAnisotropy sets the maximum anisotropy of texturesampler to value. A
float value greater than 0 will enable anisotropic filtering at the specified value.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerSetMaxAnisotropy was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerGetMaxAnisotropy

340 CHAPTER 1. API REFERENCE

1.12.34 rtTextureSamplerSetMipLevelCount

NAME

rtTextureSamplerSetMipLevelCount - Sets the number of MIP levels in a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerSetMipLevelCount(RTtexturesampler texturesampler,

unsigned int num_mip_levels)

PARAMETERS

texturesampler

The texture sampler object to be changed.

num mip levels

The new number of MIP levels of the texture sampler.

DESCRIPTION

rtTextureSamplerSetMipLevelCount sets the number of MIP levels in texturesampler to
num mip levels.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerSetMipLevelCount was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerGetMipLevelCount

1.12. TEXTURE SAMPLER 341

1.12.35 rtTextureSamplerSetReadMode

NAME

rtTextureSamplerSetReadMode - Sets the read mode of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerSetReadMode(RTtexturesampler texturesampler,

RTtexturereadmode readmode)

PARAMETERS

texturesampler

The texture sampler object to be changed.

readmode

The new read mode of the texture sampler.

DESCRIPTION

rtTextureSamplerSetReadMode sets the data read mode of texturesampler to readmode. read-
mode can take one of the following values:

RT_TEXTURE_READ_ELEMENT_TYPE

RT_TEXTURE_READ_NORMALIZED_FLOAT

readmode controls the returned value of the texture sampler when it is used to sam-
ple textures. RT TEXTURE READ ELEMENT TYPE will return data of the type of
the underlying buffer objects. RT TEXTURE READ NORMALIZED FLOAT will re-
turn floating point values normalized by the range of the underlying type. If the un-
derlying type is floating point, RT TEXTURE READ NORMALIZED FLOAT and
RT TEXTURE READ ELEMENT TYPE are equivalent, always returning the unmodified floating
point value.

For example, a texture sampler that samples a buffer of type RT FORMAT UNSIGNED BYTE with a read
mode of RT TEXTURE READ NORMALIZED FLOAT will convert integral values from the range [0,255]
to floating point values in the range [0,1] automatically as the buffer is sampled from.

RETURN VALUES

Relevant return values:

RT SUCCESS

342 CHAPTER 1. API REFERENCE

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerSetReadMode was introduced in OptiX 1.0.

SEE ALSO

rtTextureSamplerGetReadMode

1.12. TEXTURE SAMPLER 343

1.12.36 rtTextureSamplerSetWrapMode

NAME

rtTextureSamplerSetWrapMode - Sets the wrapping mode of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerSetWrapMode(RTtexturesampler texturesampler,

unsigned int dim,

RTwrapmode wrapmode)

PARAMETERS

texturesampler

The texture sampler object to be changed.

wrapmode

The new wrap mode of the texture sampler.

DESCRIPTION

rtTextureSamplerSetWrapMode sets the wrapping mode of texturesampler to wrapmode for the
texture dimension specified by dim. wrapmode can take one of the following values:

RT_WRAP_REPEAT

RT_WRAP_CLAMP_TO_EDGE

RT_WRAP_MIRROR

RT_WRAP_CLAMP_TO_BORDER

The wrapping mode controls the behavior of the texture sampler as texture coordinates wrap around the
range specified by the indexing mode. These values mirror the CUDA behavior of textures. See CUDA
programming guide for details.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

344 CHAPTER 1. API REFERENCE

HISTORY

rtTextureSamplerSetWrapMode was introduced in OptiX 1.0. RT WRAP MIRROR and
RT WRAP CLAMP TO BORDER were introduced in OptiX 3.0.

SEE ALSO

rtTextureSamplerGetWrapMode

1.12. TEXTURE SAMPLER 345

1.12.37 rtTextureSamplerValidate

NAME

rtTextureSamplerValidate - Validates the state of a texture sampler.

SYNOPSIS

#include <optix.h>

RTresult rtTextureSamplerValidate(RTtexturesampler texturesampler)

PARAMETERS

texturesampler

The texture sampler to be validated.

DESCRIPTION

rtTextureSamplerValidate checks texturesampler for completeness. If texturesampler does not have
buffers attached to all of its MIP levels and array slices or if the filtering modes are incompatible with the cur-
rent MIP level and array slice configuration then the call will return RT ERROR INVALID CONTEXT.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtTextureSamplerValidate was introduced in OptiX 1.0.

SEE ALSO

rtContextValidate

346 CHAPTER 1. API REFERENCE

1.13 Variables

NAME

Variable

DESCRIPTION

This section describes the API functions for creation and handling of Variable objects.

rtVariableGet

rtVariableGetContext

rtVariableGetName

rtVariableGetAnnotation

rtVariableGetObject

rtVariableGetType

rtVariableGetUserData

rtVariableGetSize

rtVariableSet

rtVariableSetObject

rtVariableSetUserData

HISTORY

Variable objects were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Selector Node, Transform Node, Acceleration Structure, Geometry In-
stance, Geometry, Material, Program, Buffer, Texture Sampler, Context-Free Functions

1.13. VARIABLES 347

1.13.1 rtVariableGet

NAME

rtVariableGet - Returns the value of a program variable.

SYNOPSIS

#include <optix.h>

RTresult rtVariableGet1f(RTvariable variable,

float* v1)

RTresult rtVariableGet2f(RTvariable variable,

float* v1,

float* v2)

RTresult rtVariableGet3f(RTvariable variable,

float* v1,

float* v2,

float* v3)

RTresult rtVariableGet4f(RTvariable variable,

float* v1,

float* v2,

float* v3,

float* v4)

RTresult rtVariableGet1i(RTvariable variable,

int* v1)

RTresult rtVariableGet2i(RTvariable variable,

int* v1,

int* v2)

RTresult rtVariableGet3i(RTvariable variable,

int* v1,

int* v2,

int* v3)

RTresult rtVariableGet4i(RTvariable variable,

int* v1,

int* v2,

int* v3,

int* v4)

348 CHAPTER 1. API REFERENCE

RTresult rtVariableGet1ui(RTvariable variable,

unsigned int* v1)

RTresult rtVariableGet2ui(RTvariable variable,

unsigned int* v1,

unsigned int* v2)

RTresult rtVariableGet3ui(RTvariable variable,

unsigned int* v1,

unsigned int* v2,

unsigned int* v3)

RTresult rtVariableGet4ui(RTvariable variable,

unsigned int* v1,

unsigned int* v2,

unsigned int* v3,

unsigned int* v4)

PARAMETERS

variable

Specifies the program variable to be queried.

v1, v2, v3, v4

Returns the values of the program variable’s components.

SYNOPSIS

#include <optix.h>

RTresult rtVariableGet1fv(RTvariable variable,

float* v)

RTresult rtVariableGet2fv(RTvariable variable,

float* v)

RTresult rtVariableGet3fv(RTvariable variable,

float* v)

RTresult rtVariableGet4fv(RTvariable variable,

float* v)

RTresult rtVariableGet1iv(RTvariable variable,

int* v)

RTresult rtVariableGet2iv(RTvariable variable,

int* v)

1.13. VARIABLES 349

RTresult rtVariableGet3iv(RTvariable variable,

int* v)

RTresult rtVariableGet4iv(RTvariable variable,

int* v)

RTresult rtVariableGet1uiv(RTvariable variable,

unsigned int* v)

RTresult rtVariableGet2uiv(RTvariable variable,

unsigned int* v)

RTresult rtVariableGet3uiv(RTvariable variable,

unsigned int* v)

RTresult rtVariableGet4uiv(RTvariable variable,

unsigned int* v)

PARAMETERS

variable

Specifies the program variable to be queried.

v

Returns the values of the program variable’s components.

SYNOPSIS

#include <optix.h>

RTresult rtVariableGetMatrix2x2fv(RTvariable variable,

int transpose,

float* m)

RTresult rtVariableGetMatrix2x3fv(RTvariable variable,

int transpose,

float* m)

RTresult rtVariableGetMatrix2x4fv(RTvariable variable,

int transpose,

float* m)

RTresult rtVariableGetMatrix3x2fv(RTvariable variable,

int transpose,

float* m)

350 CHAPTER 1. API REFERENCE

RTresult rtVariableGetMatrix3x3fv(RTvariable variable,

int transpose,

float* m)

RTresult rtVariableGetMatrix3x4fv(RTvariable variable,

int transpose,

float* m)

RTresult rtVariableGetMatrix4x2fv(RTvariable variable,

int transpose,

float* m)

RTresult rtVariableGetMatrix4x3fv(RTvariable variable,

int transpose,

float* m)

RTresult rtVariableGetMatrix4x4fv(RTvariable variable,

int transpose,

float* m)

PARAMETERS

variable

Specifies the program variable to be queried.

transpose

Specifies whether to transpose the matrix as the values are returned from the program variable.

m

Returns the values of the program variable’s matrix.

DESCRIPTION

rtVariableGet returns the value of a program variable or variable array. The target variable is specified
by variable.

The commands rtVariableGet{1-2-3-4}{f-i-ui}v are used to query the value of a program variable spec-
ified by variable using the pointers passed as arguments as return locations for each component of the
vector-typed variable. The number specified in the command should match the number of components in
the data type of the specified program variable (e.g., 1 for float, int, unsigned int; 2 for float2, int2, uint2,
etc.). The suffix f indicates that floating-point values are expected to be returned, the suffix i indicates
that integer values are expected, and the suffix ui indicates that unsigned integer values are expected, and
this type should also match the data type of the specified program variable. The f variants of this function
should be used to query values for program variables defined as float, float2, float3, float4, or arrays of these.
The i variants of this function should be used to query values for program variables defined as int, int2, int3,
int4, or arrays of these. The ui variants of this function should be used to query values for program variables
defined as unsigned int, uint2, uint3, uint4, or arrays of these. The v variants of this function should be

1.13. VARIABLES 351

used to return the program variable’s value to the array specified by parameter v. In this case, the array v
should be large enough to accomodate all of the program variable’s components.

The commands rtVariableGetMatrix{2-3-4}x{2-3-4}fv are used to query the value of a program vari-
able whose data type is a matrix. The numbers in the command names are interpreted as the dimensionality
of the matrix. For example, 2x4 indicates a 2 x 4 matrix with 2 columns and 4 rows (i.e., 8 values). If
transpose is 0, the matrix is returned in row major order, otherwise in column major order.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtVariableGet was introduced in OptiX 1.0.

SEE ALSO

rtVariableSet, rtVariableGetType, rtContextDeclareVariable

352 CHAPTER 1. API REFERENCE

1.13.2 rtVariableGetContext

NAME

rtVariableGetContext - Returns the context associated with a program variable.

SYNOPSIS

#include <optix.h>

RTresult rtVariableGetContext(RTvariable variable,

RTcontext* context)

PARAMETERS

variable

Specifies the program variable to be queried.

context

Returns the context associated with the program variable.

DESCRIPTION

rtVariableGetContext queries the context associated with a program variable. The target variable is
specified by variable. The context of the program variable is returned to *context if the pointer context
is not NULL. If variable is not a valid variable, *context is set to NULL and RT ERROR INVALID VALUE is
returned.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtVariableGetContext was introduced in OptiX 1.0.

SEE ALSO

rtContextDeclareVariable

1.13. VARIABLES 353

1.13.3 rtVariableGetName

NAME

rtVariableGetName - Queries the name of a program variable.

SYNOPSIS

#include <optix.h>

RTresult rtVariableGetName(RTvariable variable,

const char** name_return)

PARAMETERS

variable

Specifies the program variable to be queried.

name return

Returns the program variable’s name.

DESCRIPTION

rtVariableGetName queries a program variable’s name. The variable of interest is specified by variable,
which should be a value returned by rtContextDeclareVariable. A pointer to the string containing
the name of the variable shall be returned to the location pointed to by the pointer name return. If
variable is not a valid variable, this call sets *name return to NULL and returns RT ERROR INVALID VALUE.
*name return will point to valid memory until another API function that returns a string is called.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtVariableGetName was introduced in OptiX 1.0.

354 CHAPTER 1. API REFERENCE

SEE ALSO

rtContextDeclareVariable

1.13. VARIABLES 355

1.13.4 rtVariableGetAnnotation

NAME

rtVariableGetAnnotation - Queries the annotation string of a program variable.

SYNOPSIS

#include <optix.h>

RTresult rtVariableGetAnnotation(RTvariable variable,

const char** annotation_return)

PARAMETERS

variable

Specifies the program variable to be queried.

annotation return

Returns the program variable’s annotation string.

DESCRIPTION

rtVariableGetAnnotation queries a program variable’s annotation string. A pointer to the string
containing the annotation shall be returned to the location pointed to by the pointer annota-
tion return. If variable is not a valid variable, this call sets *annotation return to NULL and returns
RT ERROR INVALID VALUE. *annotation return will point to valid memory until another API function that
returns a string is called.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

HISTORY

rtVariableGetAnnotation was introduced in OptiX 1.0.

356 CHAPTER 1. API REFERENCE

SEE ALSO

rtContextDeclareVariable, rtContextDeclareAnnotation

1.13. VARIABLES 357

1.13.5 rtVariableGetObject

NAME

rtVariableGetObject - Returns the value of a OptiX object program variable.

SYNOPSIS

#include <optix.h>

RTresult rtVariableGetObject(RTvariable variable,

RTobject* object)

PARAMETERS

variable

Specifies the program variable to be queried.

object

Returns the value of the program variable.

DESCRIPTION

rtVariableGetObject queries the value of a program variable whose data type is a OptiX object. The
target variable is specified by variable. The value of the program variable is returned in the location
pointed to by object. The concrete type of the program variable can be queried using rtVariableGetType,
and the RTobject handle returned by rtVariableGetObject may safely be cast to an OptiX handle of
corresponding type. If variable is not a valid variable, this call sets the location pointed to by object to
NULL and returns RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

RT ERROR TYPE MISMATCH

HISTORY

rtVariableGetObject was introduced in OptiX 1.0.

358 CHAPTER 1. API REFERENCE

SEE ALSO

rtVariableSetObject, rtVariableGetType, rtContextDeclareVariable

1.13. VARIABLES 359

1.13.6 rtVariableGetSize

NAME

rtVariableGetSize - Queries the size, in bytes, of a variable.

SYNOPSIS

#include <optix.h>

RTresult rtVariableGetSize(RTvariable variable,

RTsize* size)

PARAMETERS

variable

Specifies the program variable to be queried.

size

Specifies a pointer where the size of the variable, in bytes, will be returned.

DESCRIPTION

rtVariableGetSize queries a declared program variable for its size in bytes. This is most often used to
query the size of a variable that has a user-defined type. Builtin types (int, float, unsigned int, etc.) may be
queried, but object typed variables, such as buffers, texture samplers and graph nodes, cannot be queried
and will return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtVariableGetSize was introduced in OptiX 1.0.

SEE ALSO

rtVariableGetUserData, rtContextDeclareVariable

360 CHAPTER 1. API REFERENCE

1.13.7 rtVariableGetType

NAME

rtVariableGetType - Returns type information about a program variable.

SYNOPSIS

#include <optix.h>

RTresult rtVariableGetType(RTvariable variable,

RTobjecttype* type_return)

PARAMETERS

variable

Specifies the program variable to be queried.

type return

Returns the type of the program variable.

DESCRIPTION

rtVariableGetType queries a program variable’s type. The variable of interest is specified by variable.
The enumeration identifying the type of the program variable shall be returned to the location pointed to
by type return, if it is not equal to NULL. In this case, after rtVariableGetType, the location pointed to
by type return shall be one of the following:

RT_OBJECTTYPE_UNKNOWN

RT_OBJECTTYPE_GROUP

RT_OBJECTTYPE_GEOMETRY_GROUP

RT_OBJECTTYPE_TRANSFORM

RT_OBJECTTYPE_SELECTOR

RT_OBJECTTYPE_GEOMETRY_INSTANCE

RT_OBJECTTYPE_BUFFER

RT_OBJECTTYPE_TEXTURE_SAMPLER

RT_OBJECTTYPE_OBJECT

RT_OBJECTTYPE_MATRIX_FLOAT2x2

RT_OBJECTTYPE_MATRIX_FLOAT2x3

RT_OBJECTTYPE_MATRIX_FLOAT2x4

RT_OBJECTTYPE_MATRIX_FLOAT3x2

RT_OBJECTTYPE_MATRIX_FLOAT3x3

RT_OBJECTTYPE_MATRIX_FLOAT3x4

RT_OBJECTTYPE_MATRIX_FLOAT4x2

RT_OBJECTTYPE_MATRIX_FLOAT4x3

RT_OBJECTTYPE_MATRIX_FLOAT4x4

RT_OBJECTTYPE_FLOAT

1.13. VARIABLES 361

RT_OBJECTTYPE_FLOAT2

RT_OBJECTTYPE_FLOAT3

RT_OBJECTTYPE_FLOAT4

RT_OBJECTTYPE_INT

RT_OBJECTTYPE_INT2

RT_OBJECTTYPE_INT3

RT_OBJECTTYPE_INT4

RT_OBJECTTYPE_UNSIGNED_INT

RT_OBJECTTYPE_UNSIGNED_INT2

RT_OBJECTTYPE_UNSIGNED_INT3

RT_OBJECTTYPE_UNSIGNED_INT4

RT_OBJECTTYPE_USER

If variable is not valid, this call returns RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtVariableGetType was introduced in OptiX 1.0.

SEE ALSO

rtContextDeclareVariable

362 CHAPTER 1. API REFERENCE

1.13.8 rtVariableGetUserData

NAME

rtVariableGetUserData - Returns the value of a program variable whose data type is user-defined.

SYNOPSIS

#include <optix.h>

RTresult rtVariableGetUserData(RTvariable variable,

RTsize size,

void* ptr)

PARAMETERS

variable

Specifies the program variable to be queried.

size

Specifies the size of the program variable, in bytes.

ptr

The target memory location where to copy the value of the variable.

DESCRIPTION

rtVariableGetUserData queries the value of a program variable whose data type is user-defined. The
variable of interest is specified by variable. The size of the variable’s value must match the value given by
the parameter size. The value of the program variable is copied to the memory region pointed to by ptr.
The storage at location ptr must be large enough to accomodate all of the program variable’s value data. If
variable is not a valid variable, this call has no effect and returns RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

HISTORY

rtVariableGetUserData was introduced in OptiX 1.0.

1.13. VARIABLES 363

SEE ALSO

rtVariableSetUserData, rtContextDeclareVariable

364 CHAPTER 1. API REFERENCE

1.13.9 rtVariableSet

NAME

rtVariableSet - Modifies the value of a program variable.

SYNOPSIS

#include <optix.h>

RTresult rtVariableSet1f(RTvariable variable,

float v1)

RTresult rtVariableSet2f(RTvariable variable,

float v1,

float v2)

RTresult rtVariableSet3f(RTvariable variable,

float v1,

float v2,

float v3)

RTresult rtVariableSet4f(RTvariable variable,

float v1,

float v2,

float v3,

float v4)

RTresult rtVariableSet1i(RTvariable variable,

int v1)

RTresult rtVariableSet2i(RTvariable variable,

int v1,

int v2)

RTresult rtVariableSet3i(RTvariable variable,

int v1,

int v2,

int v3)

RTresult rtVariableSet4i(RTvariable variable,

int v1,

int v2,

int v3,

int v4)

1.13. VARIABLES 365

RTresult rtVariableSet1ui(RTvariable variable,

unsigned int v1)

RTresult rtVariableSet2ui(RTvariable variable,

unsigned int v1,

unsigned int v2)

RTresult rtVariableSet3ui(RTvariable variable,

unsigned int v1,

unsigned int v2,

unsigned int v3)

RTresult rtVariableSet4ui(RTvariable variable,

unsigned int v1,

unsigned int v2,

unsigned int v3,

unsigned int v4)

PARAMETERS

variable

Specifies the program variable to be modified.

v1, v2, v3, v4

Specify the new values of the program variable’s components.

SYNOPSIS

#include <optix.h>

RTresult rtVariableSet1fv(RTvariable variable,

const float* v)

RTresult rtVariableSet2fv(RTvariable variable,

const float* v)

RTresult rtVariableSet3fv(RTvariable variable,

const float* v)

RTresult rtVariableSet4fv(RTvariable variable

const float* v)

RTresult rtVariableSet1iv(RTvariable variable

const int* v)

RTresult rtVariableSet2iv(RTvariable variable

const int* v)

366 CHAPTER 1. API REFERENCE

RTresult rtVariableSet3iv(RTvariable variable

const int* v)

RTresult rtVariableSet4iv(RTvariable variable

const int* v)

RTresult rtVariableSet1uiv(RTvariable variable

const unsigned int* v)

RTresult rtVariableSet2uiv(RTvariable variable,

const unsigned int* v)

RTresult rtVariableSet3uiv(RTvariable variable,

const unsigned int* v)

RTresult rtVariableSet4uiv(RTvariable variable,

const unsigned int* v)

PARAMETERS

variable

Specifies the program variable to be modified.

v

Specifies a pointer to the new values of the program variable’s components.

SYNOPSIS

#include <optix.h>

RTresult rtVariableSetMatrix2x2fv(RTvariable variable,

int transpose,

const float* m)

RTresult rtVariableSetMatrix2x3fv(RTvariable variable,

int transpose,

const float* m)

RTresult rtVariableSetMatrix2x4fv(RTvariable variable,

int transpose,

const float* m)

RTresult rtVariableSetMatrix3x2fv(RTvariable variable,

int transpose,

const float* m)

1.13. VARIABLES 367

RTresult rtVariableSetMatrix3x3fv(RTvariable variable,

int transpose,

const float* m)

RTresult rtVariableSetMatrix3x4fv(RTvariable variable,

int transpose,

const float* m)

RTresult rtVariableSetMatrix4x2fv(RTvariable variable,

int transpose,

const float* m)

RTresult rtVariableSetMatrix4x3fv(RTvariable variable,

int transpose,

const float* m)

RTresult rtVariableSetMatrix4x4fv(RTvariable variable,

int transpose,

const float* m)

DESCRIPTION

rtVariableSet modifies the value of a program variable or variable array. The target variable is specificed
by variable, which should be a value returned by rtContextGetVariable.

The commands rtVariableSet{1-2-3-4}{f-i-ui}v are used to modify the value of a program variable
specified by variable using the values passed as arguments. The number specified in the command should
match the number of components in the data type of the specified program variable (e.g., 1 for float, int,
unsigned int; 2 for float2, int2, uint2, etc.). The suffix f indicates that variable has floating point type,
the suffix i indicates that variable has integral type, and the suffix ui indicates that that variable has
unsigned integral type. The v variants of this function should be used to load the program variable’s value
from the array specified by parameter v. In this case, the array v should contain as many elements as there
are program variable components.

The commands rtVariableSetMatrix{2-3-4}x{2-3-4}fv are used to modify the value of a program vari-
able whose data type is a matrix. The numbers in the command names are the number of rows and columns,
respectively. For example, 2x4 indicates a matrix with 2 rows and 4 columns (i.e., 8 values). If transpose is
0, the matrix is specified in row-major order, otherwise in column-major order or, equivalently, as a matrix
with the number of rows and columns swapped in row-major order.

If variable is not a valid variable, these calls have no effect and return RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

368 CHAPTER 1. API REFERENCE

HISTORY

rtVariableSet was introduced in OptiX 1.0.

SEE ALSO

rtVariableGet, rtVariableGetType, rtContextDeclareVariable

1.13. VARIABLES 369

1.13.10 rtVariableSetObject

NAME

rtVariableSetObject - Sets a program variable value to a OptiX object.

SYNOPSIS

#include <optix.h>

RTresult rtVariableSetObject(RTvariable variable,

RTobject object)

PARAMETERS

variable

Specifies the program variable to be set.

object

Specifies the new value of the program variable.

DESCRIPTION

rtVariableSetObject sets a program variable to an OptiX object value. The target variable is specified by
variable. The new value of the program variable is specified by object. The concrete type of object can
be one of RTbuffer, RTtexturesampler, RTgroup, RTprogram, RTselector, RTgeometrygroup,
or RTtransform. If variable is not a valid variable or object is not a valid OptiX object, this call has no
effect and returns RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR TYPE MISMATCH

HISTORY

rtVariableSetObject was introduced in OptiX 1.0. The ability to bind an RTprogram to a variable was
intrduced in OptiX 3.0.

370 CHAPTER 1. API REFERENCE

SEE ALSO

rtVariableGetObject, rtContextDeclareVariable

1.13. VARIABLES 371

1.13.11 rtVariableSetUserData

NAME

rtVariableSetUserData - Modifies the value of a program variable whose data type is user-defined.

SYNOPSIS

#include <optix.h>

RTresult rtVariableSetUserData(RTvariable variable,

RTsize size,

const void* ptr)

PARAMETERS

variable

Specifies the program variable to be modified.

size

Specifies the size of the new value, in bytes.

ptr

Specifies a pointer to the new value of the program variable.

DESCRIPTION

rtVariableSetUserData modifies the value of a program variable whose data type is user-defined. The
value copied into the variable is defined by an arbitrary region of memory, pointed to by ptr. The size of
the memory region is given by size. The target variable is specified by variable. If variable is not a valid
variable, this call has no effect and returns RT ERROR INVALID VALUE.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID CONTEXT

RT ERROR INVALID VALUE

RT ERROR MEMORY ALLOCATION FAILED

RT ERROR TYPE MISMATCH

372 CHAPTER 1. API REFERENCE

HISTORY

rtVariableSetUserData was introduced in OptiX 1.0.

SEE ALSO

rtVariableGetUserData, rtContextDeclareVariable

1.14. CONTEXT FREE FUNCTIONS 373

1.14 Context Free Functions

NAME

Context-Free Functions

DESCRIPTION

This section describes general OptiX API functions that are not related to a specific context.

rtDeviceGetAttribute

rtDeviceGetDeviceCount

rtDeviceGetD3D9Device

rtDeviceGetD3D10Device

rtDeviceGetD3D11Device

rtDeviceGetWGLDevice

rtGetVersion

HISTORY

Context-free functions were introduced in OptiX 1.0.

SEE ALSO

Context, Geometry Group, Group Node, Selector Node, Transform Node, Acceleration Structure, Geometry
Instance, Geometry, Material, Program, Buffer, Texture Sampler, Variables

374 CHAPTER 1. API REFERENCE

1.14.1 rtDeviceGetAttribute

NAME

rtDeviceGetAttribute - returns an attribute specific to an OptiX device.

SYNOPSIS

#include <optix.h>

RTresult RTAPI rtDeviceGetAttribute(int ordinal,

RTdeviceattribute attrib,

RTsize size,

void* p);

PARAMETERS

ordinal

OptiX device ordinal.

attrib

Attribute to query.

size

Size of the attribute being queried. Parameter p must have at least this much memory backing it.

p

Return pointer where the value of the attribute will be copied into. This must point to at least size
bytes of memory.

DESCRIPTION

rtDeviceGetAttribute() returns in p the value of the per device attribute specified by attrib for device
ordinal.

Each attribute can have a different size. The sizes are given in the following list:

RT_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK sizeof(int)

RT_DEVICE_ATTRIBUTE_CLOCK_RATE sizeof(int)

RT_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT sizeof(int)

RT_DEVICE_ATTRIBUTE_EXECUTION_TIMEOUT_ENABLED sizeof(int)

RT_DEVICE_ATTRIBUTE_MAX_HARDWARE_TEXTURE_COUNT sizeof(int)

RT_DEVICE_ATTRIBUTE_NAME upto B<size>-1

RT_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY sizeof(int2)

RT_DEVICE_ATTRIBUTE_TOTAL_MEMORY sizeof(RTsize)

RT_DEVICE_ATTRIBUTE_TCC_DRIVER sizeof(int)

RT_DEVICE_ATTRIBUTE_CUDA_DEVICE_ORDINAL sizeof(int)

1.14. CONTEXT FREE FUNCTIONS 375

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE - Can be returned if size does not match the proper size of the attribute, if p is
NULL, or if ordinal does not correspond to an OptiX device.

HISTORY

rtDeviceGetAttribute was introduced in OptiX 2.0. RT DEVICE ATTRIBUTE TCC DRIVER
was introduced in OptiX 3.0. RT DEVICE ATTRIBUTE CUDA DEVICE ORDINAL was intro-
duced in OptiX 3.0.

SEE ALSO

rtDeviceGetDeviceCount, rtContextGetAttribute

376 CHAPTER 1. API REFERENCE

1.14.2 rtDeviceGetDeviceCount

NAME

rtDeviceGetDeviceCount - returns the number of OptiX capable devices

SYNOPSIS

#include <optix.h>

RTresult rtDeviceGetDeviceCount(unsigned int* count)

PARAMETERS

count

Number devices available for OptiX.

DESCRIPTION

rtDeviceGetDeviceCount() returns in count the number of compute devices that are available in the
host system and will be used by OptiX.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtDeviceGetDeviceCount was introduced in OptiX 1.0.

SEE ALSO

rtGetVersion

1.14. CONTEXT FREE FUNCTIONS 377

1.14.3 rtDeviceGetD3D9Device

NAME

rtDeviceGetD3D9Device - returns the OptiX device number associated with the specified name of a
D3D9 adapter.

SYNOPSIS

#include <optix_d3d9_interop.h>

RTresult rtDeviceGetD3D9Device(int* device,

const char* pszAdapterName)

PARAMETERS

device

A handle to the memory location where the OptiX device ordinal associated with pszAdapterName
will be stored.

pszAdapterName

The name of an adapter as can be found in the DeviceName field in the D3DADAPTER IDENTIFIER9
struct.

DESCRIPTION

rtDeviceGetD3D9Device() returns in device the OptiX device ID of the adapter represented by
pszAdapterName. pszAdapterName is the DeviceName field in the D3DADAPTER IDENTIFIER9
struct. In combination with rtContextSetDevices(), this function can be used to restrict OptiX to use
only one device. The same device the D3D9 commands will be sent to.

This function is only supported on Windows platforms.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtDeviceGetD3D9Device was introduced in OptiX 2.5.

378 CHAPTER 1. API REFERENCE

SEE ALSO

rtDeviceGetDeviceCount

1.14. CONTEXT FREE FUNCTIONS 379

1.14.4 rtDeviceGetD3D10Device

NAME

rtDeviceGetD3D10Device - returns the OptiX device number associated with the pointer to a D3D10
adapter.

SYNOPSIS

#include <optix_d3d10_interop.h>

RTresult rtDeviceGetD3D10Device(int* device,

ID3D10Device* d3d10Device)

PARAMETERS

device

A handle to the memory location where the OptiX device ordinal associated with d3d10Device will
be stored.

d3d10Device

A pointer to an ID3D10Device as returned from D3D10CreateDeviceAndSwapChain.

DESCRIPTION

rtDeviceGetD3D10Device() returns in device the OptiX device ID of the adapter represented by
d3d10Device. d3d10Device is a pointer returned from D3D10CreateDeviceAndSwapChain. In com-
bination with rtContextSetDevices(), this function can be used to restrict OptiX to use only one device.
The same device the D3D10 commands will be sent to.

This function is only supported on Windows platforms.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtDeviceGetD3D10Device was introduced in OptiX 2.5.

380 CHAPTER 1. API REFERENCE

SEE ALSO

rtDeviceGetDeviceCount

1.14. CONTEXT FREE FUNCTIONS 381

1.14.5 rtDeviceGetD3D11Device

NAME

rtDeviceGetD3D11Device - returns the OptiX device number associated with the pointer to a D3D11
adapter.

SYNOPSIS

#include <optix_d3d11_interop.h>

RTresult rtDeviceGetD3D11Device(int* device,

ID3D11Device* d3d11Device)

PARAMETERS

device

A handle to the memory location where the OptiX device ordinal associated with d3d11Device will
be stored.

d3d11Device

A pointer to an ID3D11Device as returned from D3D11CreateDeviceAndSwapChain.

DESCRIPTION

rtDeviceGetD3D11Device() returns in device the OptiX device ID of the adapter represented by
d3d11Device. d3d11Device is a pointer returned from D3D11CreateDeviceAndSwapChain. In com-
bination with rtContextSetDevices(), this function can be used to restrict OptiX to use only one device.
The same device the D3D11 commands will be sent to.

This function is only supported on Windows platforms.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtDeviceGetD3D11Device was introduced in OptiX 2.5.

382 CHAPTER 1. API REFERENCE

SEE ALSO

rtDeviceGetDeviceCount

1.14. CONTEXT FREE FUNCTIONS 383

1.14.6 rtDeviceGetWGLDevice

NAME

rtDeviceGetWGLDevice - returns the OptiX device number associated with the specified GPU.

SYNOPSIS

#include <optix_gl_interop.h>

RTresult rtDeviceGetWGLDevice(int* device,

HGPUNV hGpu)

PARAMETERS

device

A handle to the memory location where the OptiX device ordinal associated with hGpu will be stored.

hGpu

A handle to a GPU as returned from the WGL NV gpu affinity OpenGL extension.

DESCRIPTION

rtDeviceGetWGLDevice() returns in device the OptiX device ID of the GPU represented by hGpu.
hGpu is returned from WGL NV gpu affinity, an OpenGL extension. This enables OptiX to create a
context on the same GPU that OpenGL commands will be sent to, improving OpenGL interoperation
efficiency.

This function is only supported on Windows platforms.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtDeviceGetWGLDevice was introduced in OptiX 1.0.

SEE ALSO

rtDeviceGetDeviceCount, WGL NV gpu affinity

384 CHAPTER 1. API REFERENCE

1.14.7 rtGetVersion

NAME

rtGetVersion - returns the current OptiX version

SYNOPSIS

#include <optix.h>

RTresult rtGetVersion(unsigned int* version)

PARAMETERS

version

OptiX version number.

DESCRIPTION

rtGetVersion() returns in version a numerically comparable version number of the current OptiX library.

RETURN VALUES

Relevant return values:

RT SUCCESS

RT ERROR INVALID VALUE

HISTORY

rtGetVersion was introduced in OptiX 1.0.

SEE ALSO

rtDeviceGetDeviceCount

Chapter 2

CUDA C Reference

385

386 CHAPTER 2. CUDA C REFERENCE

2.1 Declarations

2.1. DECLARATIONS 387

2.1.1 rtCallableProgram

NAME

rtCallableProgram - Callable Program Declaration.

SYNOPSIS

#include <optix.h>

rtCallableProgram(return_type,

name,

(list_of_arguments))

DESCRIPTION

rtCallableProgram declares callable program name, which will appear to be a function pointer with the
specified return type and list of arguments. This callable program must be matched against a variable
declared on the API object using the lookup hierarchy for the current program.

Example(s):

rtCallableProgram(float3, modColor, (float3, float));

HISTORY

rtCallableProgram was introduced in OptiX 3.0.

SEE ALSO

rtDeclareVariable,

388 CHAPTER 2. CUDA C REFERENCE

2.1.2 rtDeclareAnnotation

NAME

rtDeclareAnnotation - Annotation declaration.

SYNOPSIS

#include <optix.h>

rtDeclareAnnotation(name,

annotation)

DESCRIPTION

rtDeclareAnnotation sets the annotation annotation of the given variable name. Typically annotations
are declared using an argument to rtDeclareVariable, but variables of type rtBuffer and rtTextureSampler
are declared using templates, so separate annotation attachment is required.

OptiX does not attempt to interpret the annotation in any way. It is considered metadata for the application
to query and interpret in its own way.

Valid annotations

The macro rtDeclareAnnotation uses the C pre-processor’s ”stringification” feature to turn the literal text
of the annotation argument into a string constant. The pre-processor will backslash-escape quotes and
backslashes within the text of the annotation. Leading and trailing whitespace will be ignored, and sequences
of whitespace in the middle of the text is converted to a single space character in the result. The only
restriction the C-PP places on the text is that it may not contain a comma character unless it is either
quoted or contained within parens: ”,” or (,).

Example(s):

rtDeclareAnnotation(tex, this is a test);

annotation = "this is a test"

rtDeclareAnnotation(tex, "this is a test");

annotation = "\"this is a test\""

rtDeclareAnnotation(tex, float3 a = {1, 2, 3});

--> Compile Error, no unquoted commas may be present in the annotation

rtDeclareAnnotation(tex, "float3 a = {1, 2, 3}");

annotation = "\"float3 a = {1, 2, 3}\""

rtDeclareAnnotation(tex, string UIWidget = "slider";

2.1. DECLARATIONS 389

float UIMin = 0.0;

float UIMax = 1.0;);

annotation = "string UIWidget = \"slider\"; float UIMin = 0.0; float UIMax = 1.0;"

HISTORY

rtDeclareAnnotation was introduced in OptiX 1.0.

SEE ALSO

rtDeclareVariable, rtVariableGetAnnotation

390 CHAPTER 2. CUDA C REFERENCE

2.1.3 rtDeclareVariable

NAME

rtDeclareVariable - Variable declaration.

SYNOPSIS

#include <optix.h>

rtDeclareVariable(type,

name,

semanticName,

annotation)

DESCRIPTION

rtDeclareVariable declares variable name of the specified type. By default, the variable name will be
matched against a variable declared on the API object using the lookup hierarchy for the current program.
Using the semanticName, this variable can be bound to internal state, to the payload associated with a ray,
or to attributes that are communicated between intersection and material programs. An additional optional
annotation can be used to associate application-specific metadata with the variable as well.

Type may be a primitive type or a user-defined struct (See rtVariableSetUserData). Except for the ray
payload and attributes, the declared variable will be read-only. The variable will be visible to all of the cuda
functions defined in the current file. The binding of variables to values on API objects is allowed to vary
from one instance to another.

Valid semanticNames

rtLaunchIndex

rtLaunchIndex is the launch invocation index. Type must be one of unsigned int, uint2, uint3,
int, int2, int3 and is read-only.

rtLaunchDim

rtLaunchDim is the size of each dimension of the launch. The values range from 1 to the launch
size in that dimension. Type must be one of unsigned int, uint2, uint3, int, int2, int3 and is
read-only.

rtCurrentRay

rtCurrentRay is the currently active ray, valid only when a call to rtTrace is active. Type must be
optix::Ray and is read-only.

rtIntersectionDistance

rtIntersectionDistance The current closest hit distance, valid only when a call to rtTrace is active.
Type must be float and is read-only.

2.1. DECLARATIONS 391

rtRayPayload

rtRayPayload refers to the struct passed into the most recent rtTrace call and is read-write.

attribute name

attribute name refers to a named attribute passed from the intersect program to a closest-hit or any-hit
program. The types must match in both sets of programs. This variable is read-only in the closest-hit
or any-hit program and is written in the intersection program.

Valid annotations

The macro rtDeclareVariable uses the C pre-processor’s ”stringification” feature to turn the literal text
of the annotation argument into a string constant. The pre-processor will backslash-escape quotes and
backslashes within the text of the annotation. Leading and trailing whitespace will be ignored, and sequences
of whitespace in the middle of the text is converted to a single space character in the result. The only
restriction the C-PP places on the text is that it may not contain a comma character unless it is either
quoted or contained within parens: ”,” or (,).

Example(s):

rtDeclareVariable(float3, var1, , this is a test);

annotation = "this is a test"

rtDeclareVariable(float3, var1, , "this is a test");

annotation = "\"this is a test\""

rtDeclareVariable(float3, var1, , float3 a = {1, 2, 3});

--> Compile Error, no unquoted commas may be present in the annotation

rtDeclareVariable(float3, var1, , "float3 a = {1, 2, 3}");

annotation = "\"float3 a = {1, 2, 3}\""

rtDeclareAnnotation(tex, string UIWidget = "slider";

float UIMin = 0.0;

float UIMax = 1.0;);

annotation = "string UIWidget = \"slider\"; float UIMin = 0.0; float UIMax = 1.0;"

HISTORY

rtDeclareVariable was introduced in OptiX 1.0.

rtLaunchDim was introduced in OptiX 2.0.

SEE ALSO

rtDeclareAnnotation, rtVariableGetAnnotation, rtContextDeclareVariable, rtProgramDeclareVariable, rtGroupDe-
clareVariable, rtSelectorDeclareVariable, rtGeometryInstanceDeclareVariable, rtGeometryDeclareVariable, rtMate-
rialDeclareVariable

392 CHAPTER 2. CUDA C REFERENCE

2.1.4 RT PROGRAM

NAME

RT PROGRAM - Define an OptiX program.

SYNOPSIS

#include <optix.h>

RT_PROGRAM void program_name(arguments) {...}

DESCRIPTION

RT PROGRAM defines a program program name with the specified arguments and return value. This
function can be bound to a specific program object using rtProgramCreateFromPTXString or rtPro-
gramCreateFromFile, which will subsequently get bound to different programmable binding points.

All programs should have a ”void” return type. Bounding box programs will have an argument for the
primitive index and the bounding box reference return value (type nvrt::AAbb&). Intersection programs
will have a single int primitiveIndex argument. All other programs take zero arguments.

HISTORY

RT PROGRAM was introduced in OptiX 1.0.

SEE ALSO

RT FUNCTION, rtProgramCreateFromPTXFile, rtProgramCreateFromPTXString

2.2. TYPES 393

2.2 Types

394 CHAPTER 2. CUDA C REFERENCE

2.2.1 Aabb

NAME

Aabb - Axis-aligned bounding box

SYNOPSIS

#include <optixu_aabb.h>

class Aabb;

DESCRIPTION

Aabb is a utility class for computing and manipulating axis-aligned bounding boxes (aabbs). Aabb is
primarily useful in the bounding box program associated with geometry objects. Aabb may also be useful
in other computation and can be used in both host and device code.

METHODS

// Construct an invalid box.

Aabb();

// Construct from min and max vectors.

Aabb(const float3& min, const float3& max);

// Construct from three points (e.g. triangle).

Aabb(const float3& v0, const float3& v1, const float3& v2);

// Array access.

float3& operator[](int i);

// Const array access.

const float3& operator[](int i) const;

// Set using two vectors.

void set(const float3& min, const float3& max);

// Set using three points (e.g. triangle).

void set(const float3& v0, const float3& v1, const float3& v2);

// Invalidate the box.

void invalidate();

2.2. TYPES 395

// Check if the box is valid.

bool valid() const;

// Extend the box to include the given point.

void include(const float3& p);

// Extend the box to include the given box.

void include(const Aabb& other);

// Extend the box to include the given point.

void include(const float3& min, const float3& max);

// Compute the box center.

float3 center() const;

// Compute the box center in the given dimension.

float center(int dim) const;

// Compute the box extent.

float3 extent() const;

// Compute the box extent in the given dimension.

float extent(int dim) const;

// Compute the surface area of the box.

float area() const;

// Compute half the surface area of the box.

float halfArea() const;

// Get the index of the longest axis.

int longestAxis() const;

// Check for intersection with another box.

bool intersects(const Aabb& other) const;

// Make the current box be the intersection between this one and another one.

void intersection(const Aabb& other);

MEMBERS

// Min and max bounds.

float3 m_min;

float3 m_max;

396 CHAPTER 2. CUDA C REFERENCE

HISTORY

Aabb was introduced in OptiX 1.0.

SEE ALSO

RT PROGRAM, rtSetBoundingBoxProgram

2.2. TYPES 397

2.2.2 Matrix

NAME

Matrix - Matrix utility class.

SYNOPSIS

#include <optixu_matrix.h>

template <unsigned int M, unsigned int N> class Matrix;

typedef Matrix<2, 2> Matrix2x2;

typedef Matrix<2, 3> Matrix2x3;

typedef Matrix<2, 4> Matrix2x4;

typedef Matrix<3, 2> Matrix3x2;

typedef Matrix<3, 3> Matrix3x3;

typedef Matrix<3, 4> Matrix3x4;

typedef Matrix<4, 2> Matrix4x2;

typedef Matrix<4, 3> Matrix4x3;

typedef Matrix<4, 4> Matrix4x4;

DESCRIPTION

Matrix provides a utility class for small-dimension floating-point matrices, such as transformation matrices.
Matrix may also be useful in other computation and can be used in both host and device code. Typedefs
are provided for 2x2 through 4x4 matrices.

TYPES

typedef typename VectorDim<N>::VectorType floatN; // A row of the matrix

typedef typename VectorDim<M>::VectorType floatM; // A column of the matrix

METHODS and FUNCTIONS

// Create an uninitialized matrix.

Matrix();

// Create a matrix from the specified float array.

explicit Matrix(const float data[M*N]);

// Copy the matrix.

Matrix(const Matrix& m);

// Assignment operator.

Matrix& operator=(const Matrix& b);

398 CHAPTER 2. CUDA C REFERENCE

// Access the specified element 0..N*M-1

float operator[](unsigned int i)const;

float& operator[](unsigned int i);

// Access the specified row 0..M. Returns float, float2, float3 or float4

// depending on the matrix size.

floatN getRow(unsigned int m)const;

// Access the specified column 0..N. Returns float, float2, float3 or float4

// depending on the matrix size.

floatM getCol(unsigned int n)const;

// Returns a pointer to the internal data array.

// The data array is stored in row-major order.

float* getData();

// Returns a const pointer to the internal data array.

// The data array is stored in row-major order.

const float* getData() const;

// Returns the transpose of the matrix.

Matrix<N,M> transpose();

// Returns the identity matrix.

static Matrix<N,N> identity();

// Ordered comparison operator so that the matrix can be used in an STL container.

bool operator<(const Matrix<M, N>& rhs) const;

// Subtract two matrices of the same size.

template<unsigned int M, unsigned int N>

Matrix<M,N> operator-(const Matrix<M,N>& m1, const Matrix<M,N>& m2);

// Subtract two matrices of the same size.

template<unsigned int M, unsigned int N>

Matrix<M,N>& operator-=(Matrix<M,N>& m1, const Matrix<M,N>& m2);

// Add two matrices of the same size.

template<unsigned int M, unsigned int N>

Matrix<M,N> operator+(const Matrix<M,N>& m1, const Matrix<M,N>& m2);

// Add two matrices of the same size.

template<unsigned int M, unsigned int N>

Matrix<M,N>& operator+=(Matrix<M,N>& m1, const Matrix<M,N>& m2);

// Multiply two compatible matrices.

template<unsigned int M, unsigned int N, unsigned int R>

Matrix<M,R> operator*(const Matrix<M,N>& m1, const Matrix<N,R>& m2)

2.2. TYPES 399

// Multiply two compatible matrices.

template<unsigned int M>

Matrix<M,N>& operator*=(Matrix<M,M>& m1, const Matrix<M,M>& m2)

// Multiply two compatible matrices.

template<unsigned int M, unsigned int N>

typename Matrix<M,N>::floatM operator*(const Matrix<M,N>& m,

const typename Matrix<M,N>::floatN& vec);

// Multiply two compatible matrices.

template<unsigned int M, unsigned int N>

typename Matrix<M,N>::floatN operator*(const typename Matrix<M,N>::floatM& vec,

const Matrix<M,N>& m);

// Multply matrix by a scalar.

template<unsigned int M, unsigned int N>

Matrix<M,N> operator*(const Matrix<M,N>& m, float f);

// Multply matrix by a scalar.

template<unsigned int M, unsigned int N>

Matrix<M,N>& operator*=(Matrix<M,N>& m, float f);

// Multply matrix by a scalar.

template<unsigned int M, unsigned int N>

Matrix<M,N> operator*(float f, const Matrix<M,N>& m);

// Divide matrix by a scalar.

template<unsigned int M, unsigned int N>

Matrix<M,N> operator/(const Matrix<M,N>& m, float f);

// Divide matrix by a scalar.

template<unsigned int M, unsigned int N>

Matrix<M,N>& operator/=(Matrix<M,N>& m, float f);

HISTORY

Matrix was introduced in OptiX 1.0.

SEE ALSO

rtVariableSetMatrix

400 CHAPTER 2. CUDA C REFERENCE

2.2.3 Ray

NAME

Ray - Ray class

SYNOPSIS

#include <optix.h>

namespace optix

{

class Ray;

}

DESCRIPTION

Ray is an encapsulation of a ray mathematical entity. The origin and direction members specify the ray,
while the ray type member specifies which closest-hit/any-hit pair will be used when the ray hits a geometry
object. The tmin/tmax members specify the interval over which the ray is valid.

To avoid numerical range problems, the value RT DEFAULT MAX can be used to specify an infinite extent.

During C++ compilation, Ray is contained within the optix:: namespace but has global scope during C
compilation. Ray’s constructors are not available during C compilation.

MEMBERS

// The origin of the ray

float3 origin;

// The direction of the ray

float3 direction;

// The ray type associated with this ray

unsigned int ray_type;

// The min and max extents associated with this ray

float tmin;

float tmax;

CONSTRUCTORS

// Create a Ray with undefined member values

Ray(void);

2.2. TYPES 401

// Create a Ray copied from an exemplar

Ray(const Ray &r);

// Create a ray with a specified origin, direction, ray_type, and min/max extents.

// When tmax is not given, it defaults to RT_DEFAULT_MAX.

Ray(float3 origin, float3 direction, unsigned int ray_type,

float tmin, float tmax = RT_DEFAULT_MAX);

FUNCTIONS

// Create a ray with a specified origin, direction, ray type, and min/max extents.

Ray make_Ray(float3 origin,

float3 direction,

unsigned int ray_type,

float tmin,

float tmax);

HISTORY

Ray was introduced in OptiX 1.0.

SEE ALSO

rtTrace, rtContextSetRayTypeCount, rtMaterialSetAnyHitProgram, rtMaterialSetClosestHitProgram

402 CHAPTER 2. CUDA C REFERENCE

2.2.4 rtBuffer

NAME

rtBuffer - Declare a reference to a buffer object.

SYNOPSIS

#include <optix.h>

rtBuffer<Type, Dim> name;

DESCRIPTION

rtBuffer declares a buffer of type Type and dimensionality Dim. Dim must be between 1 and 4 inclusive
and defaults to 1 if not specified. The resulting object provides access to buffer data through the [] indexing
operator, where the index is either unsigned int, uint2, uint3, or uint4 for 1, 2, 3 or 4-dimensional buffers
(respectively). This operator can be used to read from or write to the resulting buffer at the specified index.

The named buffer obeys the runtime name lookup semantics as described in rtVariable. A compile error will
result if the named buffer is not bound to a buffer object, or is bound to a buffer object of the incorrect type
or dimension. The behavior of writing to a read-only buffer is undefined. Reading from a write-only buffer
is well defined only if a value has been written previously by the same thread.

This declaration must appear at the file scope (not within a function), and will be visible to all
RT PROGRAM and RT FUNCTION instances within the same compilation unit.

An annotation may be associated with the buffer variable by using the rtDeclareAnnotation macro.

HISTORY

rtBuffer was introduced in OptiX 1.0.

SEE ALSO

rtDeclareAnnotation, rtDeclareVariable, rtBufferCreate, rtTextureSampler, rtVariableSetBuffer

2.2. TYPES 403

2.2.5 rtObject

NAME

rtObject - Opaque handle to a OptiX object.

SYNOPSIS

#include <optix.h>

class rtObject;

DESCRIPTION

rtObject is an opaque handle to an OptiX object of any type. To set or query the variable value, use
rtVariableSetObject and rtVariableGetObject.

Depending on how exacly the variable is used, only certain concrete types may make sense. For example,
when used as an argument to rtTrace, the variable must be set to any OptiX type of RTgroup, RTselector,
RTgeometrygroup, or RTtransform.

Note that for certain OptiX types, there are more specialized handles available to access a variable. For
example, to access an OptiX object of type RTtexturesampler, a handle of type rtTextureSampler
provides more functionality than one of the generic type rtObject.

HISTORY

rtObject was introduced in OptiX 1.0.

SEE ALSO

rtVariableSetObject, rtVariableGetObject, rtTrace, rtTextureSampler, rtBuffer

404 CHAPTER 2. CUDA C REFERENCE

2.2.6 rtTextureSampler

NAME

rtTextureSampler - Declares a reference to a texture sampler object.

SYNOPSIS

#include <optix.h>

rtTextureSampler<Type, Dim, ReadMode> texref;

DESCRIPTION

rtTextureSampler declares a texture of type Type and dimensionality Dim. Dim must be between 1 and
3 inclusive and defaults to 1 if not specified. The resulting object provides access to texture data through
the tex1D, tex2D and tex3D functions. These functions can be used only to read the data.

Texture filtering and wrapping modes, specified in ReadMode will be dependent on the state of the texture
sampler object created with rtTextureSamplerCreate.

An annotation may be associated with the texture sampler variable by using the rtDeclareAnnotation macro.

HISTORY

rtTextureSampler was introduced in OptiX 1.0.

SEE ALSO

rtDeclareAnnotation, rtTextureSamplerCreate

2.3. FUNCTIONS 405

2.3 Functions

406 CHAPTER 2. CUDA C REFERENCE

2.3.1 rtGetExceptionCode

NAME

rtGetExceptionCode - Retrieves the type of a caught exception.

SYNOPSIS

#include <optix.h>

unsigned int rtGetExceptionCode()

DESCRIPTION

rtGetExceptionCode can be called from an exception program to query which type of exception was
caught. The returned code is equivalent to one of the RTexception constants passed to rtContextSetEx-
ceptionEnabled, RT EXCEPTION ALL excluded. For user-defined exceptions, the code is equivalent to the
argument passed to rtThrow.

HISTORY

rtGetExceptionCode was introduced in OptiX 1.1.

SEE ALSO

rtContextSetExceptionEnabled, rtContextGetExceptionEnabled, rtContextSetExceptionProgram, rtCon-
textGetExceptionProgram, rtThrow, rtPrintExceptionDetails

2.3. FUNCTIONS 407

2.3.2 rtGetTransform

NAME

rtGetTransform - Get requested transform.

SYNOPSIS

#include <optix.h>

void rtGetTransform(RTtransformkind kind,

float matrix[16])

PARAMETERS

kind

The type of transform to retrieve.

matrix

Return parameter for the requested transform.

DESCRIPTION

rtGetTransform returns the requested transform in the return parameter matrix. The type of transform
to be retrieved is specified with the kind parameter. kind is an enumerated value that can be either
RT OBJECT TO WORLD or RT WORLD TO OBJECT and must be a constant literal. During traversal, intersection
and any-hit programs, the current ray will be located in object space. During ray generation, closest-hit and
miss programs, the current ray will be located in world space.

There may be significant performance overhead associated with a call to rtGetTransform compared to a
call to rtTransformPoint, rtTransformVector, or rtTransformNormal.

HISTORY

rtGetTransform was introduced in OptiX 1.0.

SEE ALSO

rtTransformCreate, rtTransformPoint, rtTransformVector, rtTransformNormal

408 CHAPTER 2. CUDA C REFERENCE

2.3.3 rtIgnoreIntersection

NAME

rtIgnoreIntersection - Cancels the potential intersection with current ray.

SYNOPSIS

#include <optix.h>

void rtIgnoreIntersection()

DESCRIPTION

rtIgnoreIntersection causes the current potential intersection to be ignored. This intersection will not
become the new closest hit associated with the ray. This function does not return, so values affecting the
per-ray data should be applied before calling rtIgnoreIntersection. rtIgnoreIntersection is valid only
within an any-hit program.

rtIgnoreIntersection can be used to implement alpha-mapped transparency by ignoring intersections that
hit the geometry but are labeled as transparent in a texture. Since any-hit programs are called frequently
during intersection, care should be taken to make them as efficient as possible.

HISTORY

rtIgnoreIntersection was introduced in OptiX 1.0.

SEE ALSO

rtTerminateRay, rtPotentialIntersection

2.3. FUNCTIONS 409

2.3.4 rtIntersectChild

NAME

rtIntersectChild - Visit child of selector.

SYNOPSIS

#include <optix.h>

void rtIntersectChild(unsigned int index)

DESCRIPTION

rtIntersectChild will perform intersection on the specified child for the current active ray. This is used in a
selector visit program to traverse one of the selector’s children. The index specifies which of the children to
be visited. As the child is traversed, intersection programs will be called and any-hit programs will be called
for positive intersections. When this process is complete, rtIntersectChild will return unless one of the
any-hit programs calls rtTerminateRay, in which case this function will never return. Multiple children
can be visited during a single selector visit call by calling this function multiple times.

index matches the index used in rtSelectorSetChild on the host. rtIntersectChild is valid only within
a selector visit program.

HISTORY

rtIntersectChild was introduced in OptiX 1.0.

SEE ALSO

rtSelectorSetVisitProgram, rtSelectorCreate, rtTerminateRay

410 CHAPTER 2. CUDA C REFERENCE

2.3.5 rtPotentialIntersection

NAME

rtPotentialIntersection - Determine whether a computed intersection is potentially valid.

SYNOPSIS

#include <optix.h>

bool rtPotentialIntersection(float t)

DESCRIPTION

Reporting an intersection from a geometry program is a two-stage process. It the geometry program computes
that the ray intersects the geometry, it will first call rtPotentialIntersection. rtPotentialIntersection
will determine whether the reported hit distance is within the valid interval associated with the ray, and
return true if the intersection is valid. Subsequently, the geometry program will compute the attributes
(normal, texture coordinates, etc.) associated with the intersection before calling rtReportIntersection.
When rtReportIntersection is called, the any-hit program associated with the material is called. If the
any-hit program does not ignore the intersection then the t value will stand as the new closest intersection.

If rtPotentialIntersection returns true, then rtReportIntersection should always be called after com-
puting the attributes. Furthermore, attributes variables should only be written after a successful return from
rtPotentialIntersection.

rtPotentialIntersection is passed the material index associated with the reported intersection. Objects
with a single material should pass an index of zero.

rtReportIntersection and rtPotentialIntersection are valid only within a geometry intersection pro-
gram.

HISTORY

rtPotentialIntersection was introduced in OptiX 1.0.

SEE ALSO

rtGeometrySetIntersectionProgram, rtReportIntersection, rtIgnoreIntersection

2.3. FUNCTIONS 411

2.3.6 rtPrintExceptionDetails

NAME

rtPrintExceptionDetails - Print information on a caught exception.

SYNOPSIS

#include <optix.h>

void rtPrintExceptionDetails()

DESCRIPTION

rtGetExceptionCode can be called from an exception program to provide information on the caught
exception to the user. The function uses rtPrintf to output details depending on the type of the exception.
It is necessary to have printing enabled using rtContextSetPrintEnabled for this function to have any
effect.

HISTORY

rtPrintExceptionDetails was introduced in OptiX 1.1.

SEE ALSO

rtContextSetExceptionEnabled, rtContextGetExceptionEnabled, rtContextSetExceptionProgram, rtCon-
textGetExceptionProgram, rtContextSetPrintEnabled rtGetExceptionCode, rtThrow, rtPrintf

412 CHAPTER 2. CUDA C REFERENCE

2.3.7 rtPrintf

NAME

rtPrintf - Prints text to the standard output.

SYNOPSIS

#include <optix.h>

void rtPrintf(const char* format, ...)

DESCRIPTION

rtPrintf is used to output text from within user programs. Arguments are passed as for the standard
C printf function, and the same format strings are employed. The only exception is the ”%s” format
specifier, which will generate an error if used. Text printed using rtPrintf is accumulated in a buffer and
printed to the standard output when rtContextLaunch finishes. The buffer size can be configured using
rtContextSetPrintBufferSize. Output can optionally be restricted to certain launch indices using rt-
ContextSetPrintLaunchIndex. Printing must be enabled using rtContextSetPrintEnabled, otherwise
rtPrintf invocations will be silently ignored.

HISTORY

rtPrintf was introduced in OptiX 1.0.

SEE ALSO

rtContextSetPrintEnabled, rtContextGetPrintEnabled, rtContextSetPrintBufferSize, rtContextGetPrint-
BufferSize, rtContextSetPrintLaunchIndex, rtContextSetPrintLaunchIndex

2.3. FUNCTIONS 413

2.3.8 rtReportIntersection

NAME

rtReportIntersection - Report an intersection with the current object and the specified material.

SYNOPSIS

#include <optix.h>

bool rtReportIntersection(unsigned int material)

DESCRIPTION

rtReportIntersection reports an intersection of the current ray with the current object, and specifies the
material associated with the intersection. rtReportIntersection should only be used in conjunction with
rtPotentialIntersection as described in rtPotentialIntersection.

HISTORY

rtReportIntersection was introduced in OptiX 1.0.

SEE ALSO

rtPotentialIntersection

414 CHAPTER 2. CUDA C REFERENCE

2.3.9 rtTerminateRay

NAME

rtTerminateRay - Terminate traversal associated with the current ray.

SYNOPSIS

#include <optix.h>

void rtTerminateRay()

DESCRIPTION

rtTerminateRay causes the traversal associated with the current ray to immediately terminate. After
termination, the closest-hit program associated with the ray will be called. This function does not return,
so values affecting the per-ray data should be applied before calling rtTerminateRay. rtTerminateRay
is valid only within an any-hit program.

This function can be used to provide early-ray termination for opaque objects in shadow rays.

HISTORY

rtTerminateRay was introduced in OptiX 1.0.

SEE ALSO

rtPotentialIntersection, rtIgnoreIntersection

2.3. FUNCTIONS 415

2.3.10 rtTex

NAME

rtTex{1,2,3}D - Similar to CUDA Cs texture functions, OptiX programs can access textures in a bindless
way.

SYNOPSIS

#include <optix.h>

template<> float4 rtTex1D(rtTextureId id, float x)

template<> int4 rtTex1D(rtTextureId id, float x)

template<> uint4 rtTex1D(rtTextureId id, float x)

template<> float4 rtTex2D(rtTextureId id, float x, float y)

template<> int4 rtTex2D(rtTextureId id, float x, float y)

template<> uint4 rtTex2D(rtTextureId id, float x, float y)

template<> float4 rtTex3D(rtTextureId id, float x, float y, float z)

template<> int4 rtTex3D(rtTextureId id, float x, float y, float z)

template<> uint4 rtTex3D(rtTextureId id, float x, float y, float z)

DESCRIPTION

rtTex{1,2,3}D fetches the texture referenced by the id with texture coordinate x, y and z. The used
texture sampler id can be obtained on the host side using rtTextureSamplerGetId function. There are
also C++ template and C-style additional declarations for other texture types (char1, uchar1, char2, uchar2
...):

template<> uchar2 rtTex1D(rtTextureId id, float x)

void rtTex1D(ushort2 *retVal, rtTextureId id, float x)

HISTORY

rtTex{1,2,3}D were introduced in OptiX 3.0.

SEE ALSO

rtTextureSamplerGetId

416 CHAPTER 2. CUDA C REFERENCE

2.3.11 rtThrow

NAME

rtThrow - Throw a user exception.

SYNOPSIS

#include <optix.h>

void rtThrow(unsigned int code)

DESCRIPTION

rtThrow is used to trigger user defined exceptions which behave like built-in exceptions. That is, upon invo-
cation, ray processing for the current launch index is immediately aborted and the corresponding exception
program is executed. rtThrow does not return.

The code passed as argument must be within the range reserved for user exceptions, which starts at
RT EXCEPTION USER (0x400) and ends at 0xFFFF. The code can be queried within the exception
program using rtGetExceptionCode.

rtThrow may be called from within any program type except exception programs. Calls to rtThrow will
be silently ignored unless user exceptions are enabled using rtContextSetExceptionEnabled.

HISTORY

rtThrow was introduced in OptiX 1.1.

SEE ALSO

rtContextSetExceptionEnabled, rtContextGetExceptionEnabled, rtContextSetExceptionProgram, rtCon-
textGetExceptionProgram, rtGetExceptionCode, rtPrintExceptionDetails

2.3. FUNCTIONS 417

2.3.12 rtTrace

NAME

rtTrace - Traces a ray.

SYNOPSIS

#include <optix.h>

void rtTrace(rtObject topNode,

Ray ray,

T& prd)

DESCRIPTION

rtTrace traces ray against object topNode. A reference to prd, the per-ray data, will be passed to all of
the closest-hit and any-hit programs that are executed during this invocation of trace. topNode must refer
to an OptiX object of type RTgroup, RTselector, RTgeometrygroup, or RTtransform.

HISTORY

rtTrace was introduced in OptiX 1.0.

SEE ALSO

rtObject, Ray

418 CHAPTER 2. CUDA C REFERENCE

2.3.13 rtTransformNormal

NAME

rtTransformNormal - Apply the current transformation to a normal.

SYNOPSIS

#include <optix.h>

float3 rtTransformNormal(RTtransformkind kind,

const float3& n)

DESCRIPTION

rtTransformNormal transforms n as a normal using the current active transformation stack (the inverse
transpose). During traversal, intersection and any-hit programs, the current ray will be located in object
space. During ray generation, closest-hit and miss programs, the current ray will be located in world space.
This function can be used to transform values between object and world space.

kind is an enumerated value that can be either RT OBJECT TO WORLD or RT WORLD TO OBJECT and must be a
constant literal. For ray generation and miss programs, the transform will always be the identity transform.
For traversal, intersection, any-hit and closest-hit programs, the transform will be dependent on the set of
active transform nodes for the current state.

HISTORY

rtTransformNormal was introduced in OptiX 1.0.

SEE ALSO

rtTransformCreate, rtTransformPoint, rtTransformVector

2.3. FUNCTIONS 419

2.3.14 rtTransformPoint

NAME

rtTransformPoint - Apply the current transformation to a point.

SYNOPSIS

#include <optix.h>

float3 rtTransformPoint(RTtransformkind kind,

const float3& p)

DESCRIPTION

rtTransformPoint transforms p as a point using the current active transformation stack. During traversal,
intersection and any-hit programs, the current ray will be located in object space. During ray generation,
closest-hit and miss programs, the current ray will be located in world space. This function can be used to
transform the ray origin and other points between object and world space.

kind is an enumerated value that can be either RT OBJECT TO WORLD or RT WORLD TO OBJECT and must be a
constant literal. For ray generation and miss programs, the transform will always be the identity transform.
For traversal, intersection, any-hit and closest-hit programs, the transform will be dependent on the set of
active transform nodes for the current state.

HISTORY

rtTransformPoint was introduced in OptiX 1.0.

SEE ALSO

rtTransformCreate, rtTransformVector, rtTransformNormal

420 CHAPTER 2. CUDA C REFERENCE

2.3.15 rtTransformVector

NAME

rtTransformVector - Apply the current transformation to a vector.

SYNOPSIS

#include <optix.h>

float3 rtTransformVector(RTtransformkind kind,

const float3& v)

DESCRIPTION

rtTransformVector transforms v as a vector using the current active transformation stack. During traver-
sal, intersection and any-hit programs, the current ray will be located in object space. During ray generation,
closest-hit and miss programs, the current ray will be located in world space. This function can be used to
transform the ray direction and other vectors between object and world space.

kind is an enumerated value that can be either RT OBJECT TO WORLD or RT WORLD TO OBJECT and must be a
constant literal. For ray generation and miss programs, the transform will always be the identity transform.
For traversal, intersection, any-hit and closest-hit programs, the transform will be dependent on the set of
active transform nodes for the current state.

HISTORY

rtTransformVector was introduced in OptiX 1.0.

SEE ALSO

rtTransformCreate, rtTransformVector, rtTransformNormal

Chapter 3

Appendix

421

422 CHAPTER 3. APPENDIX

3.1 Interop Formats

DESCRIPTION

This section lists OpenGL and D3D texture formats that are currently supported for interop:

OpenGL

R8I, R8UI, RG8I, RG8UI, RGBA8, RGBA8I, RGBA8UI,

R16I, R16UI, RG16I, RG16UI, RGBA16, RGBA16I, RGBA16UI,

R32I, R32UI, RG32I, RG32UI, RGBA32I, RGBA32UI,

R32F, RG32F, RGBA32F

D3D Formats

L8, A8

A8L8, V8U8

A8R8G8B8, X8R8G8B8, A8B8G8R8, X8B8G8R8, Q8W8V8U8

L16, G16R16, V16U16

A16B16G16R16, Q16W16V16U16

R32F, G32R32F, A32B32G32R32F

DXGI Formats

R8 SINT, R8 SNORM, R8 UINT, R8 UNORM

R16 SINT, R16 SNORM, R16 UINT, R16 UNORM

R32 SINT, R32 UINT, R32 FLOAT

R8G8 SINT, R8G8 SNORM, R8G8 UINT, R8G8 UNORM

R16G16 SINT, R16G16 SNORM, R16G16 UINT, R16G16 UNORM

R32G32 SINT, R32G32 UINT, R32G32 FLOAT

R8G8B8A8 SINT, R8G8B8A8 SNORM, R8G8B8A8 UINT, R8G8B8A8 UNORM

R16G16B16A16 SINT, R16G16B16A16 SNORM, R16G16B16A16 UINT, R16G16B16A16 UNORM

R32G32B32A32 SINT, R32G32B32A32 UINT, R32G32B32A32 FLOAT

HISTORY

Interop Texture Formats were introduced in OptiX 2.0.

SEE ALSO

rtTextureSamplerCreateFromGLImage

3.1. INTEROP FORMATS 423

rtTextureSamplerCreateFromD3D9Resource

rtTextureSamplerCreateFromD3D10Resource

rtTextureSamplerCreateFromD3D11Resource

Index

Aabb, 394
Acceleration Structure, 129
API Reference, 1
Appendix, 421

Buffer, 239

Context, 2
Context Free Functions, 373
CUDA C Reference, 385

Declarations, 386

Functions, 405

Geometry, 176
Geometry Group, 62
Geometry Instance, 152
Group Node, 78

Interop Formats, 422

Material, 200
Matrix, 397

Program, 223

Ray, 400
RT PROGRAM, 392
rtAccelerationCreate, 130
rtAccelerationDestroy, 132
rtAccelerationGetBuilder, 133
rtAccelerationGetContext, 134
rtAccelerationGetData, 135
rtAccelerationGetDataSize, 136
rtAccelerationGetProperty, 137
rtAccelerationGetTraverser, 139
rtAccelerationIsDirty, 140
rtAccelerationMarkDirty, 142
rtAccelerationSetBuilder, 143
rtAccelerationSetData, 145
rtAccelerationSetProperty, 147
rtAccelerationSetTraverser, 149
rtAccelerationValidate, 151

rtBuffer, 402
rtBufferCreate, 241
rtBufferCreateForCUDA, 243
rtBufferCreateFromD3D10Resource, 249
rtBufferCreateFromD3D11Resource, 251
rtBufferCreateFromD3D9Resource, 247
rtBufferCreateFromGLBO, 245
rtBufferD3D10Register, 257
rtBufferD3D10Unregister, 254
rtBufferD3D11Register, 258
rtBufferD3D11Unregister, 255
rtBufferD3D9Register, 256
rtBufferD3D9Unregister, 253
rtBufferDestroy, 259
rtBufferGetContext, 260
rtBufferGetD3D10Resource, 267
rtBufferGetD3D11Resource, 268
rtBufferGetD3D9Resource, 266
rtBufferGetDevicePointer, 261
rtBufferGetDimensionality, 263
rtBufferGetElementSize, 264
rtBufferGetFormat, 265
rtBufferGetGLBOId, 269
rtBufferGetSize1D, 270
rtBufferGetSize2D, 271
rtBufferGetSize3D, 273
rtBufferGetSizev, 275
rtBufferGLRegister, 278
rtBufferGLUnregister, 277
rtBufferMap, 279
rtBufferMarkDirty, 281
rtBufferSetDevicePointer, 282
rtBufferSetElementSize, 284
rtBufferSetSize1D, 286
rtBufferSetSize2D, 287
rtBufferSetSize3D, 289
rtBufferSetSizev, 291
rtBufferUnmap, 293
rtBufferValidate, 294
rtCallableProgram, 387
rtContextCompile, 4
rtContextCreate, 6

424

INDEX 425

rtContextDeclareVariable, 7
rtContextDestroy, 9
rtContextGetAttribute, 10
rtContextGetDeviceCount, 13
rtContextGetDevices, 12
rtContextGetEntryPointCount, 14
rtContextGetErrorString, 15
rtContextGetExceptionEnabled, 16
rtContextGetExceptionProgram, 18
rtContextGetMissProgram, 20
rtContextGetPrintBufferSize, 21
rtContextGetPrintEnabled, 22
rtContextGetPrintLaunchIndex, 23
rtContextGetRayGenerationProgram, 25
rtContextGetRayTypeCount, 27
rtContextGetRunningState, 28
rtContextGetStackSize, 29
rtContextGetVariable, 31
rtContextGetVariableCount, 30
rtContextLaunch, 59
rtContextQueryVariable, 33
rtContextRemoveVariable, 35
rtContextSetAttribute, 36
rtContextSetD3D10Device, 39
rtContextSetD3D11Device, 40
rtContextSetD3D9Device, 38
rtContextSetDevices, 41
rtContextSetEntryPointCount, 42
rtContextSetExceptionEnabled, 43
rtContextSetExceptionProgram, 45
rtContextSetMissProgram, 47
rtContextSetPrintBufferSize, 49
rtContextSetPrintEnabled, 50
rtContextSetPrintLaunchIndex, 51
rtContextSetRayGenerationProgram, 53
rtContextSetRayTypeCount, 55
rtContextSetStackSize, 56
rtContextSetTimeoutCallback, 57
rtContextValidate, 61
rtDeclareAnnotation, 388
rtDeclareVariable, 390
rtDeviceGetAttribute, 374
rtDeviceGetD3D10Device, 379
rtDeviceGetD3D11Device, 381
rtDeviceGetD3D9Device, 377
rtDeviceGetDeviceCount, 376
rtDeviceGetWGLDevice, 383
rtGeometryCreate, 177
rtGeometryDeclareVariable, 178
rtGeometryDestroy, 180
rtGeometryGetBoundingBoxProgram, 181

rtGeometryGetContext, 182
rtGeometryGetIntersectionProgram, 183
rtGeometryGetPrimitiveCount, 184
rtGeometryGetVariable, 186
rtGeometryGetVariableCount, 185
rtGeometryGroupCreate, 63
rtGeometryGroupDestroy, 64
rtGeometryGroupGetAcceleration, 65
rtGeometryGroupGetChild, 68
rtGeometryGroupGetChildCount, 66
rtGeometryGroupGetContext, 70
rtGeometryGroupSetAcceleration, 71
rtGeometryGroupSetChild, 75
rtGeometryGroupSetChildCount, 73
rtGeometryGroupValidate, 77
rtGeometryInstanceCreate, 153
rtGeometryInstanceDeclareVariable, 154
rtGeometryInstanceDestroy, 156
rtGeometryInstanceGetContext, 157
rtGeometryInstanceGetGeometry, 158
rtGeometryInstanceGetMaterial, 160
rtGeometryInstanceGetMaterialCount, 159
rtGeometryInstanceGetVariable, 164
rtGeometryInstanceGetVariableCount, 162
rtGeometryInstanceQueryVariable, 166
rtGeometryInstanceRemoveVariable, 168
rtGeometryInstanceSetGeometry, 170
rtGeometryInstanceSetMaterial, 173
rtGeometryInstanceSetMaterialCount, 171
rtGeometryInstanceValidate, 175
rtGeometryIsDirty, 188
rtGeometryMarkDirty, 190
rtGeometryQueryVariable, 191
rtGeometryRemoveVariable, 193
rtGeometrySetBoundingBoxProgram, 195
rtGeometrySetIntersectionProgram, 196
rtGeometrySetPrimitiveCount, 198
rtGeometryValidate, 199
rtGetExceptionCode, 406
rtGetTransform, 407
rtGetVersion, 384
rtGroupCreate, 79
rtGroupDestroy, 80
rtGroupGetAcceleration, 81
rtGroupGetChild, 83
rtGroupGetChildCount, 82
rtGroupGetChildType, 84
rtGroupGetContext, 85
rtGroupSetAcceleration, 86
rtGroupSetChild, 89
rtGroupSetChildCount, 88

426 INDEX

rtGroupValidate, 91
rtIgnoreIntersection, 408
rtIntersectChild, 409
rtMaterialCreate, 201
rtMaterialDeclareVariable, 203
rtMaterialDestroy, 205
rtMaterialGetAnyHitProgram, 206
rtMaterialGetClosestHitProgram, 208
rtMaterialGetContext, 210
rtMaterialGetVariable, 212
rtMaterialGetVariableCount, 211
rtMaterialQueryVariable, 214
rtMaterialRemoveVariable, 216
rtMaterialSetAnyHitProgram, 218
rtMaterialSetClosestHitProgram, 220
rtMaterialValidate, 222
rtObject, 403
rtPotentialIntersection, 410
rtPrintExceptionDetails, 411
rtPrintf, 412
rtProgramCreateFromPTXFile, 224
rtProgramCreateFromPTXString, 226
rtProgramDeclareVariable, 228
rtProgramDestroy, 230
rtProgramGetContext, 231
rtProgramGetVariable, 233
rtProgramGetVariableCount, 232
rtProgramQueryVariable, 235
rtProgramRemoveVariable, 237
rtProgramValidate, 238
rtReportIntersection, 413
rtSelectorCreate, 93
rtSelectorDeclareVariable, 94
rtSelectorDestroy, 96
rtSelectorGetChild, 98
rtSelectorGetChildCount, 97
rtSelectorGetChildType, 100
rtSelectorGetContext, 102
rtSelectorGetVariable, 104
rtSelectorGetVariableCount, 103
rtSelectorGetVisitProgram, 106
rtSelectorQueryVariable, 107
rtSelectorRemoveVariable, 109
rtSelectorSetChild, 111
rtSelectorSetChildCount, 110
rtSelectorSetVisitProgram, 113
rtSelectorValidate, 115
rtTerminateRay, 414
rtTex, 415
rtTextureSampler, 404
rtTextureSamplerCreate, 297

rtTextureSamplerCreateFromD3D10Resource, 302
rtTextureSamplerCreateFromD3D11Resource, 304
rtTextureSamplerCreateFromD3D9Resource, 300
rtTextureSamplerCreateFromGLImage, 298
rtTextureSamplerD3D10Register, 310
rtTextureSamplerD3D10Unregister, 307
rtTextureSamplerD3D11Register, 311
rtTextureSamplerD3D11Unregister, 308
rtTextureSamplerD3D9Register, 309
rtTextureSamplerD3D9Unregister, 306
rtTextureSamplerDestroy, 312
rtTextureSamplerGetArraySize, 313
rtTextureSamplerGetBuffer, 314
rtTextureSamplerGetContext, 316
rtTextureSamplerGetD3D10Resource, 318
rtTextureSamplerGetD3D11Resource, 319
rtTextureSamplerGetD3D9Resource, 317
rtTextureSamplerGetFilteringModes, 320
rtTextureSamplerGetGLImageId, 322
rtTextureSamplerGetId, 324
rtTextureSamplerGetIndexingMode, 325
rtTextureSamplerGetMaxAnisotropy, 326
rtTextureSamplerGetMipLevelCount, 327
rtTextureSamplerGetReadMode, 328
rtTextureSamplerGetWrapMode, 329
rtTextureSamplerGLRegister, 331
rtTextureSamplerGLUnregister, 330
rtTextureSamplerSetArraySize, 332
rtTextureSamplerSetBuffer, 333
rtTextureSamplerSetFilteringModes, 335
rtTextureSamplerSetIndexingMode, 337
rtTextureSamplerSetMaxAnisotropy, 339
rtTextureSamplerSetMipLevelCount, 340
rtTextureSamplerSetReadMode, 341
rtTextureSamplerSetWrapMode, 343
rtTextureSamplerValidate, 345
rtThrow, 416
rtTrace, 417
rtTransformCreate, 117
rtTransformDestroy, 118
rtTransformGetChild, 119
rtTransformGetChildType, 120
rtTransformGetContext, 122
rtTransformGetMatrix, 123
rtTransformNormal, 418
rtTransformPoint, 419
rtTransformSetChild, 125
rtTransformSetMatrix, 126
rtTransformValidate, 128
rtTransformVector, 420
rtVariableGet, 347

INDEX 427

rtVariableGetAnnotation, 355
rtVariableGetContext, 352
rtVariableGetName, 353
rtVariableGetObject, 357
rtVariableGetSize, 359
rtVariableGetType, 360
rtVariableGetUserData, 362
rtVariableSet, 364
rtVariableSetObject, 369
rtVariableSetUserData, 371

SEE ALSO rtContextGetDevices, rtContextGetDe-
viceCount, 41

Selector Node, 92

Texture Sampler, 295
Transform Node, 116
Types, 393

Variables, 346

	API Reference
	Context
	Geometry Group
	Group Node
	Selector Node
	Transform Node
	Acceleration Structure
	Geometry Instance
	Geometry
	Material
	Program
	Buffer
	Texture Sampler
	Variables
	Context Free Functions

	CUDA C Reference
	Declarations
	Types
	Functions

	Appendix
	Interop Formats

