
SDK White Paper

Improve Batching Using
Texture Atlases

WP-01387-001-v01
July 2004

WP-01387-001_v01 1
07/07/04

Motivation

Batching, or rather the lack of batching is a common problem for game developers.
A batch consists of a number of render-state changes followed by a draw-call.
Submitting hundreds or worse, thousands of batches per frame inevitably makes an
application CPU-limited due to inherent driver overhead. See [Wloka2003] for a
detailed characterization of this problem.

While game-developers are aware of and understand this problem, it is nonetheless
difficult to avoid, since ultimately game developers want to display many objects
that all have different characteristics, and thus typically require render-state changes:
game developers therefore require practical techniques that allow them to eliminate
state-changes and merge batches.

An internal survey of four DirectX9 titles (some of them still under development)
reveals that the following render-state changes occur most frequently:
� SetTexture()
� SetVertexShaderConstantF()
� SetPixelShader()
� SetStreamSource()
� SetVertexDeclaration()
� SetIndices()

As this survey shows, SetTexture() is one of the most common batch-breakers.
This paper describes a technique that reduces batches caused by having to
repeatedly bind different textures, i.e., repeated calls to DirectX9’s SetTexture().

The technique described here copies multiple textures into one larger texture. This
larger texture is referred to as an atlas. Models using these packed textures need to
remap their texture coordinates to access the relevant sub-rectangles out of the
atlas-texture.

WP-01387-001_v01 2
07/07/04

Batching Using Texture Atlases

The most straightforward way to render, say, two textured quads is to bind the
texture of the first quad (i.e., call SetTexture()), draw the first quad (i.e., call
DrawPrimitive()), then bind the texture for the second quad (i.e., call
SetTexture() again), and finally draw the second quad (i.e., call
DrawPrimitive() again). This rendering technique requires two batches.

If the two textures are combined into a texture atlas, as shown in Figure 1, you no
longer need to call SetTexture() between drawing the two quads, and thus are
able to combine the two DrawPrimitive() calls into one. In other words,
reduce batch-count from two to one.

To access the same texels out of an atlas instead of out of the original texture,
however, one has to modify the texture coordinates of the models referring to that
texture. For example, a quad that displays an entire texture uses the texture
coordinates of the four corner texels, i.e., uv-coordinates (0, 0), (0, 1),
(1, 0), and (1, 1). A quad wanting to show the same texels, but accessed out
of an atlas, refers to the atlas sub-rectangle containing that texture. Figure 1 shows
the texture coordinates for the corner texels of textures A and B, as well as the
texture coordinates required to access the same information out of their atlas.

The following sequence of steps thus enables improved batching via texture atlases:

1. Select a collection of textures that are responsible for breaking batches.
2. Pack this texture collection into one or more texture atlases.
3. Update the uv-coordinates of all models using any of the textures in that

collection to access the appropriate sub-rectangles of an atlas instead.
4. Ensure that sequential DrawPrimitive() calls that are uninterrupted by

state-change calls issue as single DrawPrimitive() calls.
Ideally, steps 1-3 integrate into an existing tool chain, and step 4 is part of the
rendering engine.

Selecting a suitable collection of textures for step 1 could be as easy as grouping all
textures of the same format into an atlas. To help with steps 2 and 3, NVIDIA
provides the following free tools:

� Atlas Creation Tool [AtlasCreation2004]
This tool is a command-line tool that accepts a collection of textures and packs
them into atlases. It also generates a file describing how textures and texture
coordinates map from the original texture to a texture atlas. The accompanying
user’s guide describes its current options.

� Atlas Comparison Viewer [AtlasViewer2004]
This tool reads and interprets these mapping-files so as to correctly display
textures out of atlases. The Atlas Comparison Viewer also demonstrates the
feasibility of texture atlases: it provides a pixel-by-pixel comparison of the
results of texturing out of textures versus atlases.

Anisotropic Lighting Technique Using HLSL

WP-01386-001_v01 3
07/06/04

Figure 1. Combining Two Textures into a Single Atlas

NVIDIA currently does not provide a tool to re-map texture coordinates of general
models since game-developers use a variety of model-formats and their tool-chains
differ. Therefore, to create such a general tool is ambitious. Since the Atlas
Comparison Viewer, however, performs a similar task (re-mapping of texture
coordinates for quads), and since its source code is freely available, game-developers
could use the provided source as blueprints for their internal tools.

(0,0) (1,0) (0,0) (1,0)

(0,1) (1,1) (0,1) (1,1)

(0,0) (0,5,0) (1,0)

(0,1) (0,5,0) (1,1)

Texture 1 Texture 2

Texture Atlas

Different texture
coordinates are required
to access the same data
out of an atlas.

WP-01387-001_v01 4
07/07/04

How to Use Atlases

Using Mip-Maps with Atlases
Mip-mapped textures are essential for achieving any kind of rendering performance.
Packing mip-mapped textures into an atlas, however, seems to imply that the mip-
maps of these packed textures combine, until eventually the lowest mip-level of 1x1
resolution smears all textures of an atlas into a single texel. It therefore seems that
using an atlas with mip-maps creates horrible artifacts as soon as the graphics
processing unit (GPU) accesses them.

Truth is that the tool-chain generates the mip-maps for individual textures before
these are packed into an atlas. To obtain the highest fidelity results, a special-
purpose mip-map filter should be used (such as NVIDIA’s texture tools
[TextureTools2000]).

When packing textures and their mip-chains into an atlas, the textures, as well as
their mip-chains, copy directly into their respective mip-map levels. Because texels
are never combined—just copied—no smearing or cross-pollution occurs.

Even if one were to generate a complete mip-map chain for an atlas on the fly,
polluting mip-maps with texels from neighboring textures is avoidable: the filter
generating the mip-maps should properly clamp at a texture’s borders, a requirement
also common when generating mip-maps for non-atlas textures.

Finally, even generating mip-map chains of atlases on the fly with a two-by-two box-
filter does not pollute mip-maps with neighboring texels, if the atlas is a power-of-
two texture and contains only power-of-two textures that do not unnecessarily cross
power-of-two lines. For example, a 32x32 atlas containing one 16x16 texture and
twelve 8x8 textures must ensure that the 16x16 texture is in one of the four corners
of the atlas—it cannot be in the dead-center of the atlas (see Figure 2).

Anisotropic Lighting Technique Using HLSL

WP-01386-001_v01 5
07/06/04

Figure 2. ‘16’, ‘8’, and ‘4’ Power-of-2 Lines for a 32x32 Atlas

As the various mip-levels are generated, texels of separate textures do not combine.
That is until the 2x2 level.

In the 4x4 level, the 8x8 textures reduce to single texels each and a 2x2 texel block
represents the 16x16 texture. To be able to represent the 16x16 texture with a single
texel, you need to also generate the 2x2 level. And thus the 2x2 level contains one
texel representing the 16x16 texture and three texels representing the combination
of four 8x8 textures each: Pollution occurs (see Figure 3).

‘16’ power-of-2 line
‘8’ power-of-2 lines

32x32 Atlas

A 16x16 texture
cannot cross any
‘16’ power-of-2
lines.

‘4’ power-of-2 lines

A sub-texture of dimension width w times
height h cannot cross ‘w’ power-of-2
lines horizontally nor can it cross ‘h’
power-of-2 lines vertically.

Anisotropic Lighting Technique Using HLSL

WP-01386-001_v01 6
07/06/04

Figure 3. Texture pollution at the 2x2 Mip-map level for an
Atlas Containing 16x16 and 8x8 Sub-textures

Even when copying mip-chains into an atlas a similar problem occurs: because
textures can differ in size, and large textures have longer mip-chains than smaller
textures, the largest texture packed into an atlas determines the number of mip-map
levels in that atlas. The smaller textures thus have effectively longer than necessary
mip-chains whose bottom-most levels are uninitialized (see Figure 4).

Solution approaches might be to abridge an atlas’s mip-chain to the length of the
mip-chain of the smallest texture contained in the atlas. However, that would
typically have severe performance and image quality implications. Another approach
would be to limit only same or similar size textures to pack into the same atlas.
Luckily, these measures are uncalled for.

32x32 Atlas with 13 sub-textures Generated 4x4 mip-map

Generated 2x2 mip-map

Anisotropic Lighting Technique Using HLSL

WP-01386-001_v01 7
07/06/04

Figure 4. Uninitialized Texels at the 2x2 and 1x1 Mip-maps
for an Atlas Containing 16x16 and 8x8 Sub-
textures

32x32 Atlas with 13 sub-textures
Its copied 4x4 mip-
map

Its copied 2x2
mip-map

Side-view of the atlas’s mip-chain, grouped by sub-texture:

Uninitialized texels

32 texels wide
16 texels wide
8 texels wide
4 texels wide
2 texels wide
1 texel wide

Anisotropic Lighting Technique Using HLSL

WP-01386-001_v01 8
07/06/04

Since models using texture atlases use modified texture coordinates (see Batching
Using Texture Atlases on page 2), a triangle’s texture-coordinates never span across
multiple atlas sub-rectangles containing separate textures. Thus, even when a
triangle spans an entire sub-texture in an atlas, and even if that triangle maps to a
single pixel on screen, then only the one-texel representation of that texture is
accessed. This one-texel representation is filled with valid non-polluted data (see
Figure 5). In other words, in order to be able to access the bottom-most,
uninitialized or polluted mip-levels, a sub-texture spanning triangle would have to be
smaller than half a pixel. DirectX’s rasterization rules make it unlikely that such a
small triangle generates any pixels. Thus, corruption due to accessing these bottom-
most mip-levels does not occur.

Figure 5. Mechanics of Accessing Atlas Textures.

To save video-memory, it is nonetheless good practice to avoid storing completely
uninitialized mip-levels. For example, a 1kx1k atlas containing 16 256x256 textures
should only store 8 mip-levels: the 2x2 and 1x1 levels do not contain relevant data
and are superfluous.

The Atlas Creation Tool [AtlasCreation2004] follows these principles and copies a
texture’s mip-chain into the generated atlas. For textures without complete mip-
chains it first generates the complete mip-chain and then copies the data. The
uninitialized texels of an atlas contain black. The Atlas Comparison Viewer
[AtlasViewer2004] shows no visible artifacts even at extreme viewing angles that
force access to the lowest mip-maps.

Atlas with 16 sub-textures

Same quad but only one
square-pixel big: Accesses 4x4 mip-map of atlas:

Quad using entire sub-
texture from atlas:

Because all models have remapped
texture coordinates to access an
atlas’s sub-texture, even single-
pixel quads that access an entire
sub-texture only access valid,
initialized, and non-polluted texels

Anisotropic Lighting Technique Using HLSL

WP-01386-001_v01 9
07/06/04

Using Clamp, Wrap, or Mirror
Modes with Atlases

GPUs provide different address modes for when texture coordinates are outside the
zero to one range. If in clamp mode, coordinates outside the [0,1] interval clamp to
either zero or one. The visual effect of this mode is that a texture’s border texels
repeat indefinitely (see Figure 6). Wrap mode discards the integer part of a texture
coordinate and just relies on the fractional part to address a texture (see Figure 5).
Mirror mode repeatedly mirrors the texture image for texture coordinates outside
the [0, 1] interval (see Figure 6).

Figure 6. Clamp, Wrap, and Mirror Address-modes.

Texture (-1,0) Quad using texture with clamp mode (2,0)

(-1,1) (2,1)

(-1,0) Quad using texture with wrap mode (2,0)

(-1,0) Quad using texture with mirror mode (2,0)

(-1,1) (2,1)

(-1,1) (2,1)

Anisotropic Lighting Technique Using HLSL

WP-01386-001_v01 10
07/06/04

To access a texture packed into the center of an atlas one uses texture coordinates
that are a strict subset of [0,1], thus a GPU’s address modes never apply. Worse,
remapping texture coordinates outside of the [0, 1] range, i.e., texture coordinates
making use of address modes, results in atlas coordinates that access neighboring
textures in the atlas (see Figure 7).

Figure 7. Atlas Coordinates that Access Neighboring
Textures in the Atlas

A possible workaround is to replicate the same texture multiple times into an atlas.
For example, if a texture wraps up to five times, then this texture copies five times
into an atlas. This technique wastes large amounts of texture memory, especially
when u- and v-address modes are used simultaneously. It also complicates the
atlas packing algorithms, as they now require usage information about the textures:
which address modes is a particular texture using and what are the maximum and
minimum texture coordinates used for that texture?

Fortunately, replicating textures multiple times into an atlas is unnecessary. Pixel-
shaders are able to emulate these address modes. The Atlas Comparison Viewer
[AtlasViewer2004] implements clamping, wrapping, and mirroring of textures that
are part of an atlas.

To implement these GPU address modes in a pixel-shader requires pixel-shader
version 2.a; more specifically the ddx and ddy pixel-shader instructions.

Atlas

Quad attempting to use an address mode:

Original texture coordinates outside the
[0,1] range, i.e., coordinates indicating the
use of an address mode, map to atlas
coordinates that access texels outside the
intended sub-texture

Anisotropic Lighting Technique Using HLSL

WP-01386-001_v01 11
07/06/04

Using Coordinates in the
Zero-to-One Range

DirectX defines texture coordinates 0 and 1 to coincide, i.e., a vertex with texture
coordinates (0, 0) and a vertex with texture coordinates (1, 1) both access the exact
same texel. To access all texels of a texture of dimensions width by height once and
only once, models need to use u-coordinates in the range [.5/width, 1-.5/width] and
v-coordinates in the range [.5/height, 1-.5/height].

Most applications, however, use texture coordinates ranging from zero to one,
inclusive, nonetheless. While such coordinates actually wrap, clamp, or mirror a
texture by exactly one texel, the benefit of being texture-dimension independent
outweighs the slight image-quality reduction.

Because texture coordinates in the inclusive [0, 1] interval thus address an area larger
than the actual texture, directly re-mapping these coordinates to atlas coordinates
also accesses an area larger then the texture’s assigned sub-rectangle. The Atlas
Creation Tool [CreationTool2004] offers several solutions to this problem.

The first option is to use the default setting in the Atlas Creation Tool. In this case,
the Atlas Creation Tool maps the coordinates directly. If the original texture
coordinates range from .5/texture-dimension to 1-.5/texture-dimension, then the
atlas coordinates correctly access only texels of the original texture. The Atlas
Comparison Viewer’s [ComparisonViewer2004] display mode Original Adjusted,
Atlas Adjusted demonstrates the resulting image quality.

If the original texture coordinates, however, range from 0 to 1 inclusive, then, yes,
the atlas coordinates do access texels of neighboring textures. The resulting image-
artifacts are, however, minimal as the Atlas Comparison Viewer demonstrates via its
Original NOT adjusted, atlas NOT adjusted display mode.

A better solution, however, is to specify the Atlas Creation Tool’s –halftexel option
if the original texture coordinates range from 0 to 1 inclusive. It instructs the tool to
rescale the texture coordinates to only range from .5/texture-dimension to 1-
.5/texture-dimension. The corresponding Atlas Comparison Viewer’s display mode
Original NOT adjusted, atlas adjusted thus shows this scaling in the difference
view. If the intent of specifying 0 to 1 inclusive coordinates is to refer to an entire
texture and no more, while maintaining texture dimension independence, then
integrating the Atlas Creation Tool into the tool-chain realizes both intents.

Applying the previous section’s pixel-shader to fix the one-texel wrapping,
clamping, or mirroring is another possible solution. This solution, however, is
heavy-weight and largely unnecessary as the Atlas Comparison Viewer’s display
mode Original NOT adjusted, atlas NOT adjusted demonstrates.

Anisotropic Lighting Technique Using HLSL

WP-01386-001_v01 12
07/06/04

Applying Texture Filtering To
Atlases

Specifying coordinates in the [.5/texture-dimension, 1-.5/texture-
dimension] range (see previous section) samples a texture’s texel’s dead-center.
Sampling a texel at its center means that even when bilinear filtering is enabled that
only that texel contributes to the filtered output. Conversely, sampling a texel off-
center and bilinearly filtering it, results in other texels contributing to the filtered
output; behavior to be avoided, however, for texels lining the border of sub-textures
in an atlas, as they are in danger of pulling in texels from foreign textures.

While bilinear filtering of the highest resolution mip-level is thus safe, anisotropic
filtering of the same mip-level does potentially access unrelated neighboring texels.
Worse, bilinear and anisotropic filtering of all lower mip-maps also access unrelated
neighboring texels, as Figure 8 demonstrates.

Figure 8. Bilinear Filtering of Lower Mip-levels Accesses
Texels from Unrelated Neighboring Textures

Unfortunately, these artifacts are not easily overcome. While their overall effect on
image quality is small, they are nonetheless noticeable (refer to Atlas Comparison
Viewer [ComparisonViewer2004]). Experimentation with the Atlas Comparison
Viewer shows that enabling anisotropic filtering minimizes these errors. At first
sight that seems counter-intuitive since an anisotropic filter penetrates deeper into a
bordering foreign texture than a bilinear filter. Anisotropic filters, however, have by
definition narrower footprints than bilinear filters, and thus fewer foreign texels
enter the equation.

There are two possible solutions that potentially eliminate access of foreign texels
due to texture filtering. These solutions have not yet been implemented, so the
following discussion is only theory.

The problem only gets worse
at lower mip-levels:

Sampling the corner texels dead-center
at the highest mip-level:

The same coordinates are no longer
dead-center at the next mip-level:

Anisotropic Lighting Technique Using HLSL

WP-01386-001_v01 13
07/06/04

The first solution is to write a pixel-shader to clamp atlas coordinates to
corresponding sub-textures taking into account which mip-level the texture
operation is about to access. For the highest mip-level the atlas coordinates remain
unchanged, yet for lower mip-levels the atlas coordinates are remapped closer to the
center, until at the 1x1 mip-map all coordinate map to the center of the texture. This
technique requires ps.2.a pixel-shader support and a comparatively complex and
thus expensive shader.

The second solution is to pad textures and their mip-chains with border texels. For
example, surround the 1x1 mip-map with identical texels so that it consumes a total
of 3x3 texels space. These border texels of lower mip-maps, however, need to map
up to the higher mip-levels. In the above example, the padded 3x3 mip-map is the
lowest mip-level. The one above it would be of dimension 6x6 for a 2x2 block of
data. This scheme quickly wastes texture-memory.

Using Volume Textures as
Atlases

Volume textures are seemingly perfect for storing multiple textures: each slice of a
volume texture stores exactly one original texture. To access different textures one
only varies the w-coordinate. As long as filtering in the w-dimension is set to point-
filtering, textures stored in different slices do not influence one another.

Address modes such as clamp, wrap, or mirror, work correctly for the u- and v-
dimensions of each slice of the volume texture even without pixel-shader emulation,
as long as all textures stored in slices are of the same size. If a texture is smaller than
the dimension of a slice, then texture memory is wasted and clamp, wrap, or mirror
only work correctly if the slice’s empty space duplicates texel data according to the
desired address mode.

Unfortunately, mip-maps of volume textures reduce in size in all dimensions, e.g., a
4x4x4 volume texture has mip-maps of dimension 2x2x2 and 1x1x1. Thus, storing
mip-mapped textures in a volume-texture proves impossible, as there is not enough
memory available in a volume texture’s mip-chain.

Volume textures are nonetheless useful as texture atlases for textures guaranteed to
not need mip-maps, such as 2D user-interface textures. 2D user-interface textures
are always screen-aligned and stay at the same distance from the camera, i.e., they do
not minify. Thus, if they have a mip-chain, a GPU never accesses it regardless.
Storing a mip-chain for these textures is thus superfluous, and these textures are
therefore ideal for storing into a non-mip-mapped volume texture for batching
purposes.

WP-01387-001_v01 14
07/07/04

Conclusions

Texture atlases are not a new technique; many games use them for specialized
situations, e.g., rendering sprite animations or text. Some games even use them as
described here.

As GPUs continue to follow Moore’s Law squared [Wloka2003] and get
comparatively faster than CPUs, it is important for game developers to aggressively
reduce batches. The fewer batches a game uses the higher its frame-rate, or rather
the more eye-candy, physics, or AI computations are available to the game. Texture
atlases promise to be one tool that allows reduced batch-counts.

While texture atlases have a perceived stigma of producing lower image quality, the
Atlas Comparison Viewer demonstrates this to be a misconception. This paper
explains how to use texture atlases and how to avoid common pitfalls. Since the
Atlas Comparison Viewer and the Atlas Creation Tool come with source code, we
hope that game developers take a second look at texture atlases as a technique to be
integrated into their tool chains.

WP-01387-001_v01 15
07/07/04

Bibliography

[AtlasCreation2004] “Atlas Creation Tool User Guide,” NVSDK 7.0, March’04.

[AtlasViewer2004] “Atlas Comparison Viewer User Guide,” NVSDK 7.0, March’04.

[TextureTools2000] “Texture Tools User Guide,” NVSDK 7.0, March’04.

[Wloka2003] “Batch, Batch, Batch: What Does It Really Mean,” Matthias Wloka,
GDC 2003, San Jose, CA.
http://developer.nvidia.com/docs/IO/8230/BatchBatchBatch.ppt

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS." NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

