

 - 1 -
March 2012

OpenGL ES 2.0 Development for the
Tegra Platform

Version 111128.01

March 2012 - 2 -

Contents

INTRODUCTION 3

SHADER DEVELOPMENT 4

EGL DEVELOPMENT NOTES 4

TEGRA OPENGL ES LIMITS 6

TEGRA-SUPPORTED OPENGL ES 2.0 EXTENSIONS 7

March 2012 - 3 -

Introduction

This documentation provides platform-specific details for developing shader-based OpenGL ES

2.0 (GLES2) applications on the Tegra platform. The information in this documentation is

designed to be OS-independent, and represents the capabilities of the Tegra OpenGL ES 2.0

hardware and driver on all supported operating systems.

This document does not detail performance optimizations; it only covers rendering feature- and

compatibility-related items. Performance optimizations for Tegra are described in other

documentation that may be available from the Tegra Developers’ site.

March 2012 - 4 -

Shader Development

This section provides guidelines and details of shader development on the Tegra platform. It

discusses specific shader features and limitations on the Tegra.

GLSL-ES Shaders

The Tegra supports OpenGL ES 2.0 and its shading language, GLSL-ES. Basically a subset of

desktop GLSL, GLSL-ES removes all of the fixed-function language constructs, and also

removes language constructs for GL features that are not a part of OpenGL ES 2.0 core, such as

1D and 3D textures.

General GLSL-ES features and uses are outside the scope of this document. Developers should

refer directly to the GLSL specification, which is currently downloadable from the Khronos

group website:

http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.14.pdf

Source versus Binary Shaders

Earlier versions of the Tegra OpenGL ES drivers supported either source code or precompiled

binary shaders, as the shader compilers on the platform matured. However, the many benefits

of source code shaders on the platform, especially multiple commercial platforms now

outweigh the previous benefits and current issues with precompiled shaders. Only source code

shaders are supported in the current Tegra drivers. Some drivers may still export the legacy

GL_NV_platform_binary, however binary shaders should be considered deprecated and their

use is not recommended.

Loading Shaders

Shaders are loaded using the OpenGL ES standard functions: glShaderSource,

glCompileShader, and glLinkProgram.

EGL Development Notes

EGL Configurations

Searching the Returned List

EGL’s method of sorting configurations returned from queries is often counter-intuitive.

Applications using eglChooseConfig must not simply select the first returned configuration,

http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.14.pdf

March 2012 - 5 -

nor should they request only one configuration. An example of a common and confusing case

is requesting a 565 RGB configuration. Owing to section 3.4 of the EGL spec,

eglChooseConfig must return the deepest color buffer first, even if it is deeper than the

requested format, and even if the requested format could have been matched exactly. In other

words, an implementation that supports 565 and 8888 must return 8888 earlier in the list than

565, even if 565 is requested. The EGL spec notes the following in a footnote to 3.4:

“This rule places configs with deeper color buffers first in the list returned by

eglChooseConfig. Applications may find this counterintuitive, and need to
perform additional processing on the list of configs to find one best matching
their requirements. For example, specifying RGBA depths of 5651 could return

a list whose first config has a depth of 8888.”

Applications should always request an array of multiple configurations, and should query

important attributes such as red, green and blue depths of each, performing their own manual

sorting and filtering of the resulting array. EGL’s behavior is defined by the spec; Tegra’s driver

cannot deviate from the proscribed order.

32-bit versus 24-bit

Tegra does not support rendering to 24-bit “888” buffers. Applications wishing to use such

formats should request a RGBA8888 format to ensure that the OS does not return a SW-

emulated configuration. Requesting 24-bit RGB888 with OpenGL ES1.x on Android can lead to

a SW-rendered configuration and decreased performance and available features.

March 2012 - 6 -

Tegra OpenGL ES Limits

The following table lists the current limits of various OpenGL ES 2.0 values as returned by the

driver. Note that these are intended as guidelines – applications should always query

important values from the particular driver being used.

GL_SUBPIXEL_BITS 4

GL_ALIASED_POINT_SIZE_RANGE (1, 256)

GL_ALIASED_LINE_WIDTH_RANGE (1, 256)

GL_MAX_ARRAY_TEXTURE_LAYERS_EXT 2048

GL_MAX_CUBE_MAP_TEXTURE_SIZE 2048

GL_MAX_TEXTURE_SIZE 2048

GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 15

GL_MAX_VIEWPORT_DIMS (3839, 3839)

GL_NUM_COMPRESSED_TEXTURE_FORMATS 9

GL_NUM_SHADER_BINARY_FORMATS 0 (may export 1, but use of

binary shaders is not

recommended)

GL_SHADER_BINARY_FORMATS (may export

GL_NV_platform_binary, but

use of binary shaders is not

recommended)

GL_MAX_VERTEX_ATTRIBS 16

GL_MAX_VERTEX_UNIFORM_VECTORS 256

GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS 0

GL_MAX_VARYING_VECTORS 15

GL_MAX_TEXTURE_IMAGE_UNITS 16

GL_MAX_FRAGMENT_UNIFORM_VECTORS 1024

GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS 16

GL_MAX_COLOR_ATTACHMENTS_NV 8

GL_MAX_RENDERBUFFER_SIZE 3839

GL_MAX_DRAW_BUFFERS_ARB 8

March 2012 - 7 -

Tegra-Supported OpenGL ES 2.0 Extensions

Extension support in EGL and GLES differs on a device-by-device and OS-by-OS basis on

Tegra. Applications should always query for extension support on the target platform. Some of

the Khronos-general GLES extensions supported on most Tegra platforms include the

following. The specifications for these extensions may be found at

http://www.khronos.org/registry/gles/

Vertex and Geometry Extensions

GL_EXT_packed_float RGB floating-point textures in one 32bpp format
GL_OES_mapbuffer Low-overhead buffer updates
GL_OES_vertex_half_float 16-bit float vertex support (1 sign bit, 5 exponent

bits, 10 mantissa bits)
FBO and Renderbuffer Extensions

GL_OES_EGL_image Cross-API images
GL_OES_EGL_image_external Cross-API images
GL_OES_EGL_sync Command-stream synchronization
GL_OES_fbo_render_mipmap Mipmap-level FBO support
GL_OES_rgb8_rgba8 24 and 32bpp FBOs

Texture Format Extensions
GL_EXT_bgra Reversed RGBA texture support
GL_EXT_texture_compression_dxt1 DXT1 texture support
GL_EXT_texture_compression_latc LA compressed textures
GL_EXT_texture_compression_s3tc DXT3/5 texture support
GL_EXT_texture_format_BGRA8888 Reversed RGBA texture support
GL_OES_compressed_ETC1_RGB8_textu

re
ETC1 textures

GL_OES_texture_float Note that 32-bit floating point textures are accepted,

but are converted to 16-bit floating point textures

internally, and thus use of this extension is not

recommended
GL_OES_texture_half_float 16-bit (1 sign bit, 5 exponent bits, 10 mantissa bits)

Texture Feature Extensions
GL_EXT_texture_filter_anisotropic Anisotropic mipmap filtering
GL_EXT_texture_array 1D arrays of 2D textures
GL_EXT_unpack_subimage Limited stride support for texture updates
GL_EXT_occlusion_query_boolean

http://www.khronos.org/registry/gles/

March 2012 - 8 -

The list below highlights some of the NV-specific extensions and the links to their specifications

in the Khronos registry. Several of these extensions do not yet appear in the registry; the specs

for these extensions are included at the end of the chapter.

EGL_NV_system_time http://www.khronos.org/registry/egl/extensions/N

V/EGL_NV_system_time.txt

GL_NV_coverage_sample http://www.khronos.org/registry/gles/extensions/

NV/EGL_NV_coverage_sample.txt

GL_NV_depth_nonlinear http://www.khronos.org/registry/gles/extensions/

NV/EGL_NV_depth_nonlinear.txt

GL_NV_draw_buffers http://www.khronos.org/registry/gles/extensions/

NV/GL_NV_draw_buffers.txt

GL_NV_draw_path Documented at the end of the chapter

GL_NV_fbo_color_attachments http://www.khronos.org/registry/gles/extensions/

NV/GL_NV_fbo_color_attachments.txt

GL_NV_platform_binary Deprecated; use source-code shaders

GL_NV_read_buffer http://www.khronos.org/registry/gles/extensions/

NV/GL_NV_read_buffer.txt

GL_NV_read_depth http://www.khronos.org/registry/gles/extensions/

NV/GL_NV_read_depth_stencil.txt

GL_NV_read_stencil http://www.khronos.org/registry/gles/extensions/

NV/GL_NV_read_depth_stencil.txt

GL_NV_shader_framebuffer_fetch Documented at the end of the chapter

GL_NV_texture_compression_s3tc

_update

http://www.khronos.org/registry/gles/extensions/

NV/GL_NV_texture_compression_s3tc_update.txt

GL_NV_texture_npot_2D_mipmap http://www.khronos.org/registry/gles/extensions/

NV/GL_NV_texture_npot_2D_mipmap.txt

Other Extension Specs

The following extensions specs are not yet in the Khronos registry site. They are included at the

end of this chapter.

 GL_NV_draw_path

 GL_NV_shader_framebuffer_fetch

http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_system_time.txt
http://www.khronos.org/registry/egl/extensions/NV/EGL_NV_system_time.txt
http://www.khronos.org/registry/gles/extensions/NV/EGL_NV_coverage_sample.txt
http://www.khronos.org/registry/gles/extensions/NV/EGL_NV_coverage_sample.txt
http://www.khronos.org/registry/gles/extensions/NV/EGL_NV_depth_nonlinear.txt
http://www.khronos.org/registry/gles/extensions/NV/EGL_NV_depth_nonlinear.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_draw_buffers.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_draw_buffers.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_fbo_color_attachments.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_fbo_color_attachments.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_read_buffer.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_read_buffer.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_read_depth_stencil.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_read_depth_stencil.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_read_depth_stencil.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_read_depth_stencil.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_texture_compression_s3tc_update.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_texture_compression_s3tc_update.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_texture_npot_2D_mipmap.txt
http://www.khronos.org/registry/gles/extensions/NV/GL_NV_texture_npot_2D_mipmap.txt

March 2012 - 9 -

NV_draw_path

Name

 NV_draw_path

Name Strings

 GL_NV_draw_path

Contact

 Jussi Rasanen, NVIDIA Corporation (jrasanen 'at' nvidia.com)

 Tero Karras, NVIDIA Corporation (tkarras 'at' nvidia.com)

Notice

 Copyright NVIDIA Corporation, 2008

Status

 NVIDIA Proprietary

Version

 Last Modified: 2008/09/16

 NVIDIA Revision: 0.11

Number

 XXXX Not Yet XXXX

Dependencies

 Written based on the wording of the OpenGL 2.0 Specification.

 Requires OpenGL-ES 2.0.

Overview

 This extension adds functionality to render planar Bezier paths. Use cases

 for this extension include acceleration of vector graphics content and

 text rendering.

 A path is defined as a number of segments, representing either straight

 lines, or quadratic or cubic Bezier curves, and can be either filled or

 stroked. Filling corresponds to generating the fragments that lie within

 the interior of the path. Stroking corresponds to generating the fragments

 that lie within a region defined by sweeping a straight-line pen along the

 path.

 Path segments are specified using a command array and a vertex coordinate

 array. When a path is drawn, the command array is processed sequentially.

 There are two categories of commands: ones that cause a path segment to be

 drawn, and ones that affect how path is rendered. Depending on its type,

 each command consumes a variable number of coordinates from the vertex

 coordinate array.

 When filling a path, the order in which the path segments are specified is

 disregarded. The only requirement is that they form zero or more closed

March 2012 - 10 -

 contours. If a path contains unclosed contours, its interior and thus the

 resulting set of fragments is undefined.

 The contours of a path may have self-intersecting geometry and overlap

 with each other. For such paths, the interior is determined using a fill

 rule. Two fill rules, even-odd and non-zero, are provided. The direction

 of path segments matters only with the non-zero fill rule, as explained

 below.

 When stroking a path, additional cap and join styles may be applied at

 the start and end of path segments. Joins are automatically generated

 between pairs of segments whose corresponding commands are adjacent. Caps

 are generated based on explicit path commands.

 Rendering quality can be controlled per path by specifying the maximum

 deviation from the ideal curve in window space.

Path rendering pipeline

 The path rendering pipeline consists of three stages: transformation and

 texture coordinate generation, fill and stroke rasterization, and fragment

 shader. This extension provides a minimal fixed function transformation

 and texture coordinate generation stage. Programmable vertex shaders are

 not supported in the context of path rendering.

Path definition

 Paths are defined as a combination of an immutable sequence of commands

 and an associated mutable sequence of vertex coordinates. Each command

 consumes zero or more vertex coordinates. Path commands are represented as

 unsigned bytes, whereas the data type of the vertex coordinates is

 specified separately for each path. Path vertices are always

 two-dimensional.

 The following table lists the available path commands:

 +------------------------+--------+--------------------------------------+

 | Path command | Coords | Notes |

 +------------------------+--------+--------------------------------------+

 | MOVE_TO_NV | 2 | Change the current position |

 | LINE_TO_NV | 2 | Draw a straight line |

 | QUADRATIC_BEZIER_TO_NV | 4 | Draw a quadratic Bezier curve |

 | CUBIC_BEZIER_TO_NV | 6 | Draw a cubic Bezier curve |

 | START_MARKER_NV | 0 | Record the current position |

 | CLOSE_NV | 0 | Draw line to the recorded position |

 | STROKE_CAP0_NV | 0 | Use cap style 0 in adjacent segment |

 | STROKE_CAP1_NV | 0 | Use cap style 1 in adjacent segment |

 | STROKE_CAP2_NV | 0 | Use cap style 2 in adjacent segment |

 | STROKE_CAP3_NV | 0 | Use cap style 3 in adjacent segment |

 +------------------------+--------+--------------------------------------+

Transformation and texture coordinate generation

 Path vertices specified by the vertex coordinate sequence are converted to

 the homogenous form (x, y, 0, 1) by the transformation stage, and then

 transformed from model space to clip space using the

 MATRIX_PATH_TO_CLIP_NV matrix.

 To facilitate texture mapping and color gradients, the path vertices are

 also transformed using each of the MATRIX_PATH_COORD[0-3]_NV matrices. A

March 2012 - 11 -

 built-in fragment shader varying array gl_PathCoord of type vec4 receives

 the corresponding interpolated values. The number of elements in the

 gl_PathCoord array is 4. Although gradients and texture coordinates can

 also be implemented using the gl_FragCoord built-in fragment shader

 variable, it is generally more efficient to use gl_PathCoord, avoiding

 unnecessary per-fragment matrix multiplications.

 MATRIX_PATH_COORD[0-3]_NV and MATRIX_PATH_TO_CLIP_NV can define a

 homogenous perspective transformation. It is up to the fragment shader

 to normalize the interpolated coordinates if necessary.

Filling a path

 When filling a path, the path segments must form zero or more closed

 contours. If any of the contours are left open, the resulting set of

 fragments is undefined. This requirement can be rephrased as follows,

 depending on the value of FILL_RULE_NV:

 NON_ZERO_NV:

 Each two-dimensional point has an equal number of path segments

 starting and ending at it.

 EVEN_ODD_NV

 Each two-dimensional point has an even number of path segments

 starting or ending at it.

 Note that for any two points to be considered identical, the binary

 representations of their coordinates must match exactly.

 To determine the segments to draw, the path commands are processed

 sequentially. The following temporary values are maintained during the

 process:

 i: Current vertex coordinate index, initially 0.

 cp: Current position, initially (0, 0).

 sp: Start position, initially undefined.

 Each path command is processed depending on its type as follows. c[i] is

 used to denote the i'th value in the vertex coordinate array.

 MOVE_TO_NV:

 Replace the current position.

 cp = (c[i+0], c[i+1]), i += 2.

 LINE_TO_NV:

 Draw a straight line from <cp> to (c[i+0], c[i+1]).

 cp = (c[i+0], c[i+1]), i += 2.

 QUADRATIC_BEZIER_TO_NV:

 Draw a quadratic Bezier curve from <cp> to (c[i+2], c[i+3]) using

 (c[i+0], c[i+1]) as the control point.

 cp = (c[i+2], c[i+3]), i += 4.

 CUBIC_BEZIER_TO_NV:

 Draw a cubic Bezier curve from <cp> to (c[i+4], c[i+5]) using

 (c[i+0], c[i+1]) and (c[i+2], c[i+3]) as the control points.

 cp = (c[i+4], c[i+5]), i += 6.

 START_MARKER_NV:

 Replace the start position.

March 2012 - 12 -

 sp = cp.

 CLOSE_NV:

 If <sp> is undefined, ignore the command.

 Otherwise, draw a straight line from <cp> to <sp>.

 cp = sp.

 STROKE_CAP[0-3]_NV:

 Ignore the command.

 START_MARKER_NV and CLOSE_NV commands can be used to implement subpath

 closure found in many vector graphics content formats. For filled paths,

 an explicit LINE_TO_NV command to the start position will produce the same

 result as CLOSE_NV. For stroked paths, the difference is that CLOSE_NV

 will join the closing line segment to the segment following

 the START_MARKER_NV command.

 A fill rule is applied to determine if any given point is contained within

 the interior of the path. The fill rules are defined by projecting a ray

 from the point in question to infinity and counting the intersections of

 the ray and path segments. When looking along the direction of the ray,

 segments intersecting from left to right increment the counter and right

 to left segment intersections decrement the counter. If the fill rule is

 NON_ZERO_NV, the point is within the interior if the final count is

 non-zero. If the fill rule is EVEN_ODD_NV, the point is within the

 interior if the final count is odd. The counter must support at least 255

 intersections. For more complex paths, the results are undefined.

 Curves may be approximated within a limit specified by the PATH_QUALITY_NV

 parameter. The limit defines the radius of a disc in the window space.

 Placing the disc at each sampling point, the following rules are used to

 determine whether to generate the corresponding fragments:

 * If the disc is entirely inside the path, generate a fragment.

 * If the disc is entirely outside the path, do not generate a fragment.

 * If the disc is partially inside the path, whether to generate a fragment

 is up to the implementation.

Stroking a path

 Stroking is performed by sweeping a straight-line pen along each path

 segment, generating fragments for the sampling points touched by the pen.

 Additionally, cap and join styles may be applied at the start and end of

 the segments.

 Cap and join styles are selected for each path segment based on the path

 commands adjacent to the one specifying the segment, and the values of the

 path parameters. The general rule is that the end of a segment is joined

 to start of the following segment if they are specified by adjacent path

 commands. If the start or end of a segment is not joined, a cap is

 generated instead.

 Fill rule is not applied when stroking. Instead, a fragment is generated

 for each sampling point inside the stroke. Even in case the stroke sweeps

 over a sampling point multiple times, only one fragment is generated.

 Dashing is not supported directly. Instead, this extension allows

 implementing dashing in user code by generating the corresponding.

 Paths are stroked in a coordinate space distinct from the path user space

March 2012 - 13 -

 and the clip space. The transformation from the stroke space to the path

 user space is is controlled by the MATRIX_STROKE_TO_PATH_NV matrix. Both

 the path user space and the stroke space are two-dimensional, and thus

 only the 2x2 upper-left components of the matrix are used.

 Conceptually, stroking a path consists of five steps. First, the path

 segments are transformed from the path user space to the stroke space

 using the inverse of the stroke-to-path matrix. Second, the set of points

 affected by the stroke is determined in the stroke space, using a

 straight-line pen that extends one unit into each direction. Third, the

 set of points is transformed from the stroke space back to the path user

 space using the stroke-to-path matrix. Fourth, the points are further

 transformed from the path user space to the clip space using the

 path-to-clip matrix. Fifth, a fragment is generated for each sampling

 point contained by the set of transformed points.

 The stroke-to-path matrix allows specifying stroke width independent of

 how the path itself is transformed. Two common scenarios include scaling

 stroke, where the stroke width varies as the path-to-clip transformation

 changes, and non-scaling stroke, where the width remains constant in the

 clip space. For scaling stroke, the stroke-to-path matrix should be

 specified as an identity matrix multiplied by half of the desired stroke

 width in the path user space. For non-scaling stroke, it should be

 specified as the inverse of the path-to-clip matrix multiplied by half of

 the stroke width in the clip space.

 The style of all joins is determined by the STROKE_JOIN_STYLE_NV path

 parameter, which can be set to one of the following values:

 JOIN_MITER_NV:

 Extend the incoming and outgoing stroke outlines until they intersect.

 If the distance between the intersection point and the center point

 exceeds STROKE_MITER_LIMIT_NV in the stroke space, apply a bevel join

 instead.

 JOIN_ROUND_NV:

 Connect the incoming and outgoing stroke outlines with a circular arc

 segment in the stroke space, corresponding to a radius of one unit.

 JOIN_BEVEL_NV:

 Connect the incoming and outgoing stroke outlines with a straight

 line.

 JOIN_CLIPPED_MITER_NV:

 Same as JOIN_MITER_NV if STROKE_MITER_LIMIT_NV is not exceeded.

 Otherwise, clip the extended outlines and connect them with a straight

 line. The clipping is done against a line whose distance from the

 center point is equal to STROKE_MITER_LIMIT_NV in the stroke space,

 and whose orientation is symmetrical with regards to the outlines.

 The style of a start cap depends on the previous path command, and the

 style of an end cap depends on the next command. If the command is not

 STROKE_CAP[0-3]_NV, the cap style is STROKE_CAP_BUTT_NV. Otherwise, the

 style is determined by the corresponding STROKE_CAP[0-3]_STYLE_NV path

 parameter, each opf which can be set to one of the following values:

 CAP_BUTT_NV:

 Terminate the segment with a straight line connecting the two

 outline endpoints.

March 2012 - 14 -

 CAP_ROUND_NV:

 Terminate the segment with a semicircle with radius equal to one in

 the stroke space.

 CAP_SQUARE_NV:

 Terminate the segment with a rectangle extending one unit along the

 path tangent.

 CAP_TRIANGLE_NV:

 Terminate the segment with a triangle with two vertices at the stroke

 outline endpoints, and a third vertex one unit along the path tangent.

 As with fill, the path commands are processed sequentially, maintaining

 the following temporary values:

 i: Current vertex coordinate index, initially 0.

 cp: Current position, initially (0, 0).

 ct: Current tangent, initially undefined.

 cs: Pending cap style, initially butt.

 sp: Start position, initially undefined.

 st: Start tangent, initially undefined.

 Each command is processed as follows, depending on its type:

 MOVE_TO_NV:

 * If <ct> is defined, draw a butt end cap at <cp>.

 * cp = (c[i+0], c[i+1]), ct = undefined, cs = butt, i += 2.

 LINE_TO_NV, QUADRATIC_BEZIER_TO_NV, and CUBIC_BEZIER_TO_NV:

 * Draw the segment corresponding to the command type.

 * If <ct> is undefined, draw a start cap of style <cs> at <cp>.

 * If <ct> is defined, draw a join at <cp> between <ct> and the start

 tangent of the segment.

 * If the previous command is START_MARKER_NV, replace <st> with the

 start tangent of the segment.

 * cp = end point, ct = end tangent, i += num.

 START_MARKER_NV:

 * If <ct> is defined, draw a butt end cap at <cp>.

 * ct = undefined, cs = butt, sp = cp, st = undefined.

 CLOSE_NV:

 * If <sp> is undefined, ignore the command.

 * Draw a straight line from <cp> to <sp>.

 * If <ct> is undefined, draw a start cap of style <cs> at <cp>.

 * If <ct> is defined, draw a join at <cp> between <ct> and the

 direction of the line.

 * If <st> is undefined, draw a butt end cap at <sp>.

 * If <st> is defined, draw a join at sp between the direction of the

 line and <st>.

 * cp = sp, ct = undefined, cs = butt.

 STROKE_CAP[0-3]_NV:

 * If <ct> is defined, draw an end cap of the specified style.

 * ct = undefined, cs = style specified by the command.

Path programs

 Paths are drawn using a special type of program object called a path

 program. Path programs function like normal program objects, except that

March 2012 - 15 -

 they do not allow a vertex shader to be specified. Path programs are

 created with a new function CreatePathProgramNV().

Fragment shader

 Fragment shader depth values are obtained by transforming the homogenous

 vertex coordinates (x, y, 0, 1) into the clip space. This enables mixing

 3D and path geometry using depth buffering.

 Since path programs do not support vertex shaders, path fragment shaders

 cannot make use of user-defined varyings. Instead, this extension adds

 built-in variables gl_PathCoord[0-3] of type vec4 that receive

 interpolated vertex positions transformed with their respective

 MATRIX_PATH_COORD[0-3]_NV matrices.

 The value of gl_FrontFacing is undefined when rendering paths.

The rest of the pipeline

 When rendering paths, stencil functionality and backface culling are not

 applied. Blending, dithering, depth test, scissor test, polygon offset,

 and multisampling are applied as with other primitives.

 Even though stencil test and operation are unavailable when rendering

 paths, the original contents of the stencil buffer are retained.

Path buffers

 Path buffers facilitate efficient rendering of animated text or other

 instanced path geometry by making it possible to render multiple path

 objects with a single draw call. A path buffer contains a list of path

 object handles and associated translation vectors.

Invariance rules

 Changing path parameters, viewport, transformations and clipping

 parameters may result in a different set of pixels to be rendered.

New Procedures and Functions

 uint CreatePathNV(enum datatype,

 sizei numCommands,

 const ubyte* commands);

 void DeletePathNV(uint path);

 void PathVerticesNV(uint path,

 const void* vertices);

 void PathParameterfNV(uint path,

 enum paramType,

 float param);

 void PathParameteriNV(uint path,

 enum paramType,

 int param);

 uint CreatePathProgramNV(void);

 void PathMatrixNV(enum target,

March 2012 - 16 -

 const float* value);

 void DrawPathNV(uint path,

 enum mode);

 uint CreatePathbufferNV(sizei capacity);

 void DeletePathbufferNV(uint buffer);

 void PathbufferPathNV(uint buffer,

 int index,

 uint path);

 void PathbufferPositionNV(uint buffer,

 int index,

 float x,

 float y);

 void DrawPathbufferNV(uint buffer,

 enum mode);

New Types

 None

New Tokens

 Accepted as the <paramType> parameter of PathParameterNV:

 PATH_QUALITY_NV 0x8ED8

 FILL_RULE_NV 0x8ED9

 STROKE_CAP0_STYLE_NV 0x8EE0

 STROKE_CAP1_STYLE_NV 0x8EE1

 STROKE_CAP2_STYLE_NV 0x8EE2

 STROKE_CAP3_STYLE_NV 0x8EE3

 STROKE_JOIN_STYLE_NV 0x8EE8

 STROKE_MITER_LIMIT_NV 0x8EE9

 Values for the ILL_RULE_NV path parameter:

 EVEN_ODD_NV 0x8EF0

 NON_ZERO_NV 0x8EF1

 Values for the CAP[0-3]_STYLE_NV path parameter:

 CAP_BUTT_NV 0x8EF4

 CAP_ROUND_NV 0x8EF5

 CAP_SQUARE_NV 0x8EF6

 CAP_TRIANGLE_NV 0x8EF7

 Values for the JOIN_STYLE_NV path parameter:

 JOIN_MITER_NV 0x8EFC

 JOIN_ROUND_NV 0x8EFD

 JOIN_BEVEL_NV 0x8EFE

 JOIN_CLIPPED_MITER_NV 0x8EFF

 Accepted as the <target> parameter of PathMatrixNV:

 MATRIX_PATH_TO_CLIP_NV 0x8F04

March 2012 - 17 -

 MATRIX_STROKE_TO_PATH_NV 0x8F05

 MATRIX_PATH_COORD0_NV 0x8F08

 MATRIX_PATH_COORD1_NV 0x8F09

 MATRIX_PATH_COORD2_NV 0x8F0A

 MATRIX_PATH_COORD3_NV 0x8F0B

 Accepted as the <mode> parameter of DrawPathbufferNV:

 FILL_PATH_NV 0x8F18

 STROKE_PATH_NV 0x8F19

 Accepted as path commands by CreatePathNV:

 MOVE_TO_NV 0x00

 LINE_TO_NV 0x01

 QUADRATIC_BEZIER_TO_NV 0x02

 CUBIC_BEZIER_TO_NV 0x03

 START_MARKER_NV 0x20

 CLOSE_NV 0x21

 STROKE_CAP0_NV 0x40

 STROKE_CAP1_NV 0x41

 STROKE_CAP2_NV 0x42

 STROKE_CAP3_NV 0x43

Additions to Chapter 2 of the OpenGL ES Specification

 Add the following error conditions to Chapter 2.8, under DrawArrays:

 "An INVALID_OPERATION error is generated if the current program is a path

 program."

 Add the following error conditions to Chapter 2.8, under DrawElements:

 "An INVALID_OPERATION error is generated if the current program is a path

 program."

 Add the following error conditions to Chapter 2.15, under AttachShader.

 "An INVALID_OPERATION error is generated if the program is a path program

 and the shader is a vertex shader."

 Add the following error conditions to Chapter 2.15, under LinkProgram.

 "Linking a program without a vertex shader will not fail if the program is

 a path program."

Additions to Chapter 3 of the OpenGL ES Specification

 Add a new section between sections 3.5 (Polygons) and 3.6 (Pixel

 Rectangles)

 "3.6 Paths

 This extension adds a new type of primitive, paths, to OpenGL ES'

 primitives - points, lines, polygons, pixel rectangles and bitmaps.

 3.6.1 Path objects

 New path objects are created with the call

March 2012 - 18 -

 uint CreatePathNV(enum datatype,

 sizei numCommands,

 const ubyte* commands);

 where <datatype> is the vertex data type and it must be one of

 [UNSIGNED_]BYTE, [UNSIGNED_]SHORT, [UNSIGNED_]INT, FLOAT, FIXED,

 <numCommands> is the number of commands in the path definition and

 <commands> is a pointer to an unsigned byte array of commands. Valid

 commands are listed below. The function returns a non-zero handle to the

 object or 0 on error.

 An INVALID_ENUM error is generated if <datatype> is not one of the values

 specified above. An INVALID_VALUE error is generated if <numCommands> is

 less than zero or <numCommands> is greater than zero and <commands> is

 NULL or the <commands> array contains an invalid command.

TODO note that path objects can be shared between multiple contexts

 Path objects are deleted with the command

 void DeletePathNV(uint path);

 where <path> is the handle to the path object to delete. If the path is

 assigned to one or more path buffers, path resources are freed only when

 the last reference to the path is removed. Path handle is invalid after a

 call to DeletePathNV. An INVALID_VALUE error is generated if the path

 object does not exist.

 Path vertices are specified with the command

 void PathVerticesNV(uint path,

 const void* vertices);

 where <path> is the handle to the path object and <vertices> is a pointer

 to an array of vertices. <vertices> must contain at least as many

 coordinate tuples as is consumed by the associated path commands,

 otherwise the results are undefined, and may lead to a program crash. If

 <vertices> contains more coordinates than consumed by the path commands,

 the rest are silently ignored.

 An INVALID_VALUE error is generated if the specified <path> object does

 not exist or if <vertices> is NULL and the path command requires vertices.

 Path parameters are set using the commands

 void PathParameterfNV(uint path,

 enum paramType,

 float param);

 void PathParameteriNV(uint path,

 enum paramType,

 int param);

 where <path> is the path object handle, <paramType> is the parameter to

 set and <param> is the value of the parameter.

 The following symbols are accepted as <paramType>:

 PATH_QUALITY_NV

 Maximum allowed deviation from the ideal path measured in pixels. The

March 2012 - 19 -

 default value is 0.5 pixels.

 FILL_RULE_NV

 Fill rule to use for filling paths. <param> must be either

 EVEN_ODD_NV or NON_ZERO_NV. The default value is EVEN_ODD_NV.

 STROKE_CAPn_STYLE_NV

 cap style for the cap index n used when stroking a path. The default

 values are CAP_BUTT_NV.

 STROKE_JOIN_STYLE_NV

 join style used when stroking a path. The default value is

 JOIN_MITER_NV.

 STROKE_MITER_LIMIT_NV

 miter limit used when stroking a path with miter joins. If a join

 angle exceeds the limit, a miter join is converted into a bevel join.

 The default value is 4.

 If paramType is PATH_QUALITY_NV in PathParameteriNV(), param is converted

 to a float. If paramType is not PATH_QUALITY_NV in PathParameterfNV(),

 param is converted to an int.

 An INVALID_VALUE error is generated if the <path> object does not exist.

 An INVALID_ENUM error is generated if <paramType> is not any of the above.

 An INVALID_VALUE error is generated if <paramType> is PATH_QUALITY_NV and

 <param> <= 0 or <paramType> is STROKE_MITER_LIMIT_NV and <param> < 1. An

 INVALID_ENUM error is generated if <paramType> is FILL_RULE_NV and param

 is not a valid fill rule, <paramType> is STROKE_CAPn_STYLE_NV and <param>

 is not a valid cap style, or <paramType> is STROKE_JOIN_STYLE_NV and

 <param> is not a valid join style.

 Path transformations are set using the call

 void PathMatrixNV(enum target,

 const float* value);

 where <value> must specify a 4x4 matrix. The following values are accepted

 as the <target> parameter:

 MATRIX_PATH_TO_CLIP_NV

 used for transforming path vertices into clip space when drawing a

 path.

 MATRIX_STROKE_TO_PATH_NV

 used for transforming the pen when stroking a path. The vertices are

 subsequently transformed into clip space by MATRIX_PATH_TO_CLIP_NV

 matrix. Only the top-left 2x2 submatrix is used.

 MATRIX_PATH_COORDn_NV

 used for generating values for gl_PathCoord[0-3] varyings for fragment

 shader by transforming vertex positions.

 The default value for all matrices is the identity matrix.

 An INVALID_ENUM error is generated if <target> is not any of the above. An

 INVALID_VALUE error is generated if value is NULL.

 A path is rendered using the call

 void DrawPathNV(uint path,

 enum mode);

 where <path> is the path to be drawn and <mode> must be either

 FILL_PATH_NV or STROKE_PATH_NV.

March 2012 - 20 -

 An INVALID_VALUE error is generated if the <path> does not exist. An

 INVALID_OPERATION error is generated if there is no current program, the

 current program is not a path program, stencil test is enabled, polygon

 mode is not GL_FILL, or shade model is not GL_SMOOTH. An INVALID_ENUM is

 generated if <mode> is not FILL_PATH_NV or STROKE_PATH_NV.

 3.6.2 Path programs

 A path program is a special type of program object that otherwise behaves

 like a normal program object, but allows attaching only a fragment shader.

 Path programs are created using the command

 uint CreatePathProgramNV(void);

 The function returns 0 on error (i.e. OUT_OF_MEMORY).

 TODO describe LinkProgram error conditions here for clarity?

 3.6.3 Path buffers

 Path buffers can be used for efficiently rendering multiple instances of a

 set of path objects with a single draw call. Each path in a path buffer

 has an associated position vector that allows specifying a model space

 position offset for that path. Path buffers are created using the function

 uint CreatePathbufferNV(sizei capacity);

 where <capacity> is the number of paths in a path buffer. This function

 returns a non-zero handle to a path buffer object or 0 on error.

 An INVALID_VALUE error is generated if capacity < 0.

TODO note that path buffer objects can be shared between multiple contexts

 Path buffers are deleted using the call

 void DeletePathbufferNV(uint buffer);

 where <buffer> is the handle to the path buffer. Path buffer handle is

 invalid after a call to DeletePathbufferNV.

 An INVALID_VALUE error is generated if the path buffer does not exist.

 A path can be added to or removed from a path buffer with the function

 void PathbufferPathNV(uint buffer,

 int index,

 uint path);

 where <buffer> is the path buffer object handle, <index> is the index of

 the path buffer slot and <path> is the path object handle. Path buffer

 paths are mutable and can be re-specified later. Calling PathbufferPathNV

 with <path> set to zero removes path from the path buffer and leaves the

 slot corresponding to <index> empty.

 An INVALID_VALUE error is generated if the path buffer object <buffer>

 does not exist, or <index> is less than zero, or greater than or equal to

 the path buffer capacity.

 Path buffer path position vector is specified using the call

March 2012 - 21 -

 void PathbufferPositionNV(uint buffer,

 int index,

 float x,

 float y);

 where <buffer> is the path buffer object handle, <index> is the index of

 the path buffer slot and <x> and <y> specify the translation. Path buffer

 path translations are mutable and can be re-specified later.

 An INVALID_VALUE error is generated if the path buffer does not exist or

 index < 0 or index >= path buffer capacity.

 All paths in a path buffer are rendered using the command

 void DrawPathbufferNV(uint buffer,

 enum mode);

 An INVALID_VALUE error is generated if <buffer> does not exist. An

 INVALID_OPERATION error is generated if there is no current program, the

 current program is not a path program, stencil test is enabled, polygon

 mode is not GL_FILL, or shade model is not GL_SMOOTH. An INVALID_ENUM is

 generated if <mode> is not FILL_PATH_NV or STROKE_PATH_NV. The effect of a

 DrawPathbufferNV call is the same as if DrawPathNV was called for each

 individual path reference in the path buffer, ordered from the first index

 to the last."

 Add the following to Chapter 3.11 in the section Shader Inputs.

 "The value of gl_FrontFacing is undefined if the current program is a path

 program."

 "If the current program is a path program and fragment shader has defined

 varying variables gl_PathCoord[0-3], they will recieve interpolated vertex

 coordinates transformed with their respective MATRIX_PATH_COORD[0-3]_NV".

Additions to Chapter 4 of the OpenGL ES Specification

 Add the following to the end of Chapter 4.1.5 Stencil Test.

 "Stencil functionality is not applied when rendering paths. Path rendering

 will generate an error if stencil testing is enabled."

Issues

 1. Should we use vertex shader or fixed function transform?

 RESOLUTION: Introduce minimal fixed function transform and texgen

 functionality.

 DISCUSSION: The problem with vertex shader is that it allows changing

 vertex/control point positions arbitrarily, but path geometry only

 makes sense if it remains planar. A similar problem occurs with vertex

 attributes: since attributes of three vertices define interpolation on

 a plane, the attributes of the rest of the vertices cannot be chosen

 freely for the interpolation to remain well-defined. In effect, this

 forces vertex attributes to be derived from vertex positions, which can

 be described by a matrix multiplication. Furthermore, many

 implementations are expected to cache the results of flattening and/or

 triangulation, which is much simpler in case of fixed function

March 2012 - 22 -

 transform.

 Downsides to using fixed function transformation include the lack of

 support for morphing. We expect most content to not use morphing, so a

 viable alternative is modifying the path coordinates. Another downside

 is that we're reintroducing fixed function transform stage into ES2. In

 our opinion, the downsides of adopting vertex shader solution outweigh

 this concern.

 2. Should we leverage VBOs/vertex arrays for path coordinates and

 commands?

 RESOLUTION: Involving VBOs would make the extension much messier.

 3. Should we have elliptical arc segments?

 RESOLUTION: Not in this version. It is fairly straightforward to

 convert arcs into quadratic beziers in an application when content is

 loaded.

 4. Should we have vertex indices?

 RESOLUTION: No. This would unnecessarily complicate the API.

 5. Should we use 1 - 4 component vectors as vertex position?

 RESOLUTION: No. It is not clear how non-planar geometry would be

 rendered.

 6. Should we support perspective transformations?

 RESOLUTION: Yes.

 7. Should we support stroking?

 RESOLUTION: Yes, all vector graphics formats have stroking. Stroking is

 a rather involved process both implementation-wise and computationally,

 so it is a good candidate for being implemented in a driver.

 8. Should we allow modification of paths?

 RESOLUTION: Modifying coordinates is needed for animation, especially

 since we ignore vertex shader. There is no good use case for modifying

 commands.

 9. What happens in case a contour is not closed?

 RESOLUTION: The result is undefined. Alternatively we could have an

 error check, but that is an extra burden for implementations and extra

 work in the common case where the path data is ok.

 10. Should we support edge antialiasing?

 RESOLUTION: No. ES2 doesn't support edge antialiasing for other

 primitives either, and this extension is compatible with multisampling.

 11. What invariance requirements should we impose?

 SUGGESTION:

 1) Rendering the same path with the same state must generate the same

March 2012 - 23 -

 pixels. This is the normal GL invariance requirement.

 2) If two adjoining paths have a shared curve defined by exactly the

 same vertices (bitwise exact), there can be no gaps. The curve

 direction can change and the invariant must still hold.

 3) UNRESOLVED: If two paths have a shared curve, plus one of the paths

 has extra geometry that intersects the shared curve, does the

 no-gap requirement still have to hold? This is problematic for

 implementations that generate extra vertices at intersection points

 in the process of triangulation/path simplification.

Revision History

 #0.11 - 2008/09/16 - Tero Karras

 #0.10 - 2008/09/15 - Tero Karras

 #0.9 - 2008/09/12 - Jussi Rasanen

March 2012 - 24 -

NV_shader_framebuffer_fetch

Name

 NV_shader_framebuffer_fetch

Name Strings

 GL_NV_shader_framebuffer_fetch

Contact

 Gary King, NVIDIA Corporation (gking 'at' nvidia.com)

Notice

 Copyright NVIDIA Corporation, 2005 - 2006

Status

 NVIDIA Proprietary

Version

 Last Modified: 2006/04/28

 NVIDIA Revision: 0.9

Number

 XXXX Not Yet XXXX

Dependencies

 This extension is written against the OpenGL-ES Shading Language

 1.10 Specification.

Overview

 This extension provides a mechanism whereby a fragment shader

 written in the OpenGL-ES Shading Language (GLSL-ES) may use

 the color values stored in the active draw buffers as

 well-defined input values.

Issues

 1. How should this functionality be exposed?

 RESOLVED: Four options were considered for this functionality:

 A) Defining reads from gl_FragColor and gl_FragData (prior

 to any writes) to result in the existing framebuffer

 values.

 B) Defining new read-only built-in variables corresponding

 to the existing framebuffer data (e.g., gl_LastFragColor).

 C) Defining new built-in functions which return the existing

 framebuffer data.

March 2012 - 25 -

 D) Defining a new programmable stage (e.g., a Sample Shader)

 which takes the fragment shader output values and

 the existing framebuffer data as inputs.

 This extension has chosen option B, as it provides the best mix of

 language / API simplicity and programmer flexibility. Reusing

 the existing built-in variables (option (A)) unnecessarily

 complicates the language, since it requires shader compilers to

 perform flow analysis to determine whether or not framebuffer loads

 are required. Option (C) requires adding either multiple entry

 points (one for each gl_FragData array entry), or also adding

 keywords to specify which buffer should be read. Option (D) is

 interesting, but leads to a variety of questions regarding what

 functionality should be included in the new stage (e.g., "should

 texturing be included?") Therefore, Option B has been chosen

 due to its comparative simplicity and available functionality.

 2. What value should gl_LastFragColor contain when the

 ARB_draw_buffers extension is in use?

 RESOLVED: Two options were considered for this functionality:

 A) To mirror ARB_draw_buffers specification the value in

 gl_LastFragColor should be dependent on all active

 draw buffers.

 B) The value on gl_LastFragColor should be the same as the one

 in gl_LastFragData[0].

 This extension has chosen option B, for its simplicity. Option

 A may follow the spirit of the original ARB_draw_buffers

 specification more closely but the value of gl_LastFragData becomes

 somewhat undefined. There is no good way to combine the values

 from multiple draw buffers.

New Functions and Entry Points

 None

New Builtin Variables

 mediump vec4 gl_LastFragData[gl_MaxDrawBuffers]

 mediump vec4 gl_LastFragColor

Changes to the OpenGL-ES Shading Language 1.10 Specification, Chapter 7

 Add after the last sentence of Paragraph 2 of Section 7.2, Fragment

 Shader Special Variables ("These variables may be written to more [...]":

 "... To access the existing framebuffer values (e.g., to implement

 a complex blend operation inside the shader), fragment shaders

 should use the read-only input values gl_LastFragColor and

 gl_LastFragData."

 Insert new paragraph after Paragraph 7 of Section 7.2 ("If a shader

 statically assigns [...]")

 "Similarly, if a shader using the NV_shader_framebuffer_fetch extension

March 2012 - 26 -

 statically assigns a value to gl_FragColor, it may not read any element

 of gl_LastFragData. If a shader using the NV_shader_framebuffer_fetch

 extension statically writes a value to any element of gl_FragData, it

 may not read from gl_LastFragColor. That is, use of the inputs defined

 in the NV_shader_framebuffer_fetch extension must mirror the outputs

 used in the shader program."

NVIDIA Corporation

2701 San Tomas Expressway

Santa Clara, CA 95050

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL
IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the
consequences of use of such information or for any infringement of patents or other rights of third parties that may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support
devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, Tegra, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and product
names may be trademarks of the respective companies with which they are associated.

Copyright

© 2008-2011 NVIDIA Corporation. All rights reserved.

