
Slide 1

1

Next-gen 3D Mobile Gaming

on Android: A Practical Guide

Lars M. Bishop,

Developer Technologies Engineer,

NVIDIA

Slide 2

2

Agenda

Bringing high-end games to Android

Target APIs and Android OS versions

The common stages of a port

This presentation is about next gen 3D gaming on Android and Tegra. We’ve got a lot to cover
here today, but at the top level, we’re going to discuss the most common paths we’ve seen for
bringing high-end 3D games to Android. We’ll discuss some of the market share and feature
tradeoffs developers must make, and we’ll detail some issues we see developers facing in each
of the three common stages of an Android port or development project.

Slide 3

3

Targeting Android

What screen sizes and form factors do you intend to target?

Tablet? Phone? Both?

Widescreen? Portrait? Both?

Input devices?

Touch? Multi-touch?

Accelerometer/gyros?

What versions of Android do you intend to support?

Include Éclair (2.1) and Froyo (2.2) support?

Support only Gingerbread (2.3) and newer?

Rendering HW requirements?

Can require workload / TAM tradeoffs

Android devices are not all cut from the same cloth. There are a lot of decisions to make
regarding what you mean when you say “porting to Android”. For example, Android’s support
of both phones and tablets of multiple sizes requires you to consider the screen sizes, form
factors and orientations you intend to target.
As for input, how many touch points do you need? Do you want to require accelerometer or
gyros?
Most importantly from a market perspective, what versions of Android do you need to support?
These decisions will affect your total available market size and your development workload

Slide 4

4

Bringing High-end Gaming to Android

Common sources today:

Ported from existing console/PC titles

Ported and expanded/improved from existing mobile titles

Co-developed on multiple mobile platforms

Common phases:

“Bring-up”

“Tuning”

“Productization”

Plan your port up-front…

Currently, most high-end 3D gaming content that we see coming to Android is either existing
console and PC titles porting to Android as their first mobile platform, existing mobile titles
being ported and improved for Tegra and Android, or new purpose-built mobile titles being
developed on multiple mobile platforms simultaneously. We’ve seen porting normally include
three distinct phases: An initial “Bring-up” phase where the game is quickly brought to “first
playable”, then a “Tuning” phase where the performance and playability are improved, and then
a “Productization” phase where the game moves from demo to marketable property. Note that
some decisions made or ignored early on in the process can have consequences later…

Slide 5

5

Android and Native Code

All Android apps are Java at the top-level

Does not always mean you will write/see that Java code…

Native code can support a wide range of features; but not all

Native code adds complexity

But can be managed reasonably

Unlocks peak performance

And makes porting existing code easier

Most developers we engage are using Native code to a high

degree

Enter the Native Development Kit (NDK)

5

The first issues that most games face is the questions of Java versus C code. The question of
Java versus native code has several facets on Android which we’ll detail in this talk, but for now,
an overview. The question is oversimplified: all Android apps are Java at the top level, although
in the latest versions of Android, you the developer may not have to write any of that Java code.
Java-level APIs give access to all Android platform features
Native (C/C++)-level APIs give access to many important game platform features, but not all of
them
Java-only apps can be simpler to code and manage
But Native apps unlock both peak system/app performance and allow for reuse of existing
console and PC engine source code
The choice is per-game, but for high-end, differentiated content, we mainly see Native-based
games and engines
Native C++ code is handled via the Native Development Kit and generally called from a Java-
based app class. We’ll be spending a good bit of quality time with the NDK, so let me introduce
it.

Slide 6

6

The NDK: What it is

A set of cross-compiler toolchains

Gcc for ARM

Hosted on Windows, Linux or MacOS

A set of “stable APIs”

The set of Android functionalities that can be called from native code

directly

The system and Android-level APIs that are considered “safe” in terms of

forward compatibility

A proper subset of the Android Java APIs

An implementation of JNI, the Java/Native Interface

Since native code in Android is always called from Java

Put simply, the NDK is a set of cross-compiler toolchains that build your C and C++ code for
Android devices, along with a set of headers and libs for the APIs that Android allows native
code to call directly. These APIs are known as “stable” APIs, not in the sense of being stable at
runtime, but in the sense that the APIs themselves won’t require changes moving forward, and
thus an app built on them can be forward-compatible with new Android versions. Finally, the
NDK includes as a part of its stable APIs the Java-to-Native code bindings known as JNI, or the
Java Native Interface. All of this serves to generate shared library code that can interop with the
Java level app.

Slide 7

7

The NDK: What it isn’t

Is NOT free reign to write generic Linux apps for Android

The system still protects the user and device from general access by

native apps

Not all POSIX APIs are available

Does not make Java completely redundant

Older versions of Android require every app to use Java with their native

code

Newer versions of Android allow SOME apps to avoid writing Java code

Some functionality remains Java-only even in the latest Android OS

Is NOT an IDE for development

Other IDEs (like Eclipse) can be used

The NDK is not a free hand to start trapping into the kernel and treating the Android device as
an open Linux system. The NDK APIs still protect the user’s device from various forms of access.
Not all POSIX APIs are available, and not all Android APIs are available. Using APIs exposed in
Android’s source code but not in the NDK can lead to issues on later OS versions. Until the most
recent versions of Android, the NDK did not make Java redundant at all, since every app still had
to write Java code. While that is changing as more and more functionality if made available to
the NDK, many apps will still end up writing Java code for one feature or another. Finally, the
NDK does not include a specific IDE like Visual Studio. It can be integrated into any number of
other IDEs, Eclipse being the most common.

Slide 8

8

Android SDK Levels

Choosing your minimum Android SDK level determines:

The features you can use (newer means more)

The APIs that can be called from C/C++ (newer means more)

The oldest OS revision your game can support (older means larger

addressable market)

Decisions, decisions…

The specific features available in native code (as opposed to Java) depend on the SDK level you
target. Basically, the higher the minimum SDK level, the newer the OS required to run the
application, and the greater the number of APIs that can be called directly from native code.
But that also means that when you select your minimum SDK level, you select the size of your
target market. Apps requiring a min SDK level newer than the device’s OS will be filtered out of
the Market for that device. Choosing your SDK level is a tradeoff between native code feature-
set and range of supported devices

Slide 9

9

Android Market Share (2 May 2010)

Android Version
Market

Share

Honeycomb (3.0) 0.3%

Gingerbread (2.3, 2.3.3) 4.0%

Froyo (2.2) 65.9%

Eclair (2.0/2.1) 24.5%

Donut (1.6) 3.0%

Cupcake (1.5) 2.3%

^ "Platform Versions". Android Developers.

http://developer.android.com/resources/dashboard/platform-versions.html.

"based on the number of Android devices that have accessed Android Market

within a 14-day period ending on the data collection date noted below"

Froyo

Éclair

Gingerbread

Cupcake

Donut

Honeycomb

Let’s look at some Android OS version market share numbers released at the beginning of May.
This most recent public chart gives the basic idea of the breakdown of Android versions across
all Android devices. If you support Éclair and newer, you will cover about 95% of the active
devices. If you make Froyo your minspec, you’ll still net about two-thirds and rising. If you
choose to make Gingerbread or Honeycomb your minspec, you’ll be waiting at least a while for
your total addressable market to expand. So why would you select a newer OS version as a
minspec? The main answer is required features: let’s discuss them in more detail.

Slide 10

10

Android 2.1 (Éclair)

Available from native code (C/C++):

POSIX-like threads, file I/O, math, sockets

OpenGL ES 2.0

Not available from native code (C/C++):

EGL

User input

Audio

Video

Android UI rendering

In addition, the entire installable app must be installed to (limited)

internal storage

If you want to put large data on external storage, you MUST sideload

SDK API level 7+

Since going back as far as Éclair as the minimum platform opens up the market to cover over
95% of the currently active Android devices, we’ll use it as a baseline. As of Éclair (AKA Android
2.1 or API level 7), you can do basic system-level work like file I/O, math, networking and
threads from native code. You can also render 3D content with OpenGL ES 2.0 from native
code, but you still have to use Java to initialize the buffers and contexts. Furthermore, in order
to flesh out your game with user input events and sound, you have use some Java at this API
level. Finally, apps built for Éclair had to be installed to the device’s internal storage, rather than
removable SD cards. So this limited the practical size of the app’s installer package. Most apps
had to side-load their data from the network and place it onto external storage themselves. So
game development is definitely possible on API level 7, but there are programming and logistics
challenges.

Slide 11

11

Android 2.2 (Froyo)

Now available from native code C/C++:

The ability to lock a surface and CPU-render to it

In addition, applications can now request to

have most of their data (other than code) be

installed to external storage

This still may not remove the need to side-load data…

The Android Market places size limits on APKs

(currently about 50MB)

SDK API level 8+

Switching to Froyo as the minspec currently equates to about two-thirds of the active installed
base. Froyo didn’t add any interesting new APIs to the NDK. However, building an application
with Froyo as the minspec DOES make it possible to specify that the app can (or even should) be
installed to external storage like a large SD card, rather than the limited user data partition.
However, this is not carte blanche to pack huge assets into your apps installer (or APK). Side
loading will still be required for the largest games, as the Android Market enforces APK size
limits independent of OS version. Currently, that limit is about 50 megabytes per APK.

Slide 12

12

Android 2.3 (Gingerbread)

Now available from native code C/C++:

Pure-native applications (Native Activity)

OpenSL ES Audio

EGL! (3D rendering initialization)

Window management

User input (touch, buttons)

Sensors (accelerometer, gyro, compass)

Installed asset/resource loading

Basically, most games can do all of their work common work

(other than play videos) with no Java code

But the result will not run on Éclair or Froyo

SDK API level 9+

Keeping in mind that Gingerbread’s current installed market share is small but obviously
growing, its SDK level adds pivotal functionality, known as NativeActivity. For some 3D games,
NativeActivity may obviate the need for any app-specific Java code. Other than video playback,
which is still Java-only, the core functionality is all available in native code on Gingerbread and
beyond. This includes setup and management of 3D contexts, application lifecycle events, audio
and user input devices. While almost all of this can be done in earlier SDK levels via Java-to-
Native JNI wrappers, the new native interfaces are undeniably enticing.

Slide 13

13

NativeActivity

API level 9 (Gingerbread) adds NativeActivity

Supports

The entire app lifecycle

User input

All in native C/C++ code

This is key to minimizing or avoiding Java app code

Also, note the NDK’s native_app_glue

With the advent of Gingerbread’s NativeActivity, applications using Gingerbread as a minspec
can be written entirely in native C++ code. This was specifically designed to make it easier to
port native content to Android, and from the buzz it has generated with developers, it seems to
have succeeded. While NativeActivity can be used alone, the Android NDK samples also include
a very important sample framework called native_app_glue that does an excellent job of
making NativeActivity easier to use in practice.

Slide 14

14

Dalvik (Java)-only Interfaces

Still Java-only:

Video playback

Camera

Android UI rendering

Lots of system-integration APIs

Research your “native only” decision carefully

Some features have yet to be exposed to the NDK, even in the latest SDK level. These include
Video playback, camera, Android UI rendering, and some system-integration APIs. While these
may not be required by most games, you should be prepared for the idea that you may not be
able to completely avoid Java code by moving to Gingerbread as a min spec. So if you believe
that using Gingerbread as a minspec will allow you to completely avoid Java, research carefully
to ensure that this is indeed true, and that it is actually important. Plenty of native games have
done well with small amounts of Java code and a lower minspec.

Slide 15

15

Android 3.0 (Honeycomb)

No new NDK adding new Honeycomb features yet

Existing NDK still works fine on Honeycomb!

Some app lifecycle changes

Java-level additions

Code to assist async data loading

More Video/Camera-to-3D integration

Touch events can span multiple activities

SDK API level 11

Of course, there’s also Android 3.0, or Honeycomb, the OS running on the Motorola Xoom
tablet. That is API level 11, and as of this morning, there was no new NDK version that adds
specific API level 11 functionality in native code. So new features are at the Java level; I list a
few here, such as standardized video texture support and some new classes to assist with
background data loading.

Slide 16

16

Android 3.1 (Honeycomb)

Adds support for USB devices (Java level)

Adds support for new input devices (Java level)

SOURCE_GAMEPAD

SOURCE_JOYSTICK

Still no upgrade to the NDK to support the

specific new features

The existing enums in the NDK for sensors and

input devices do not seem to include support for

these new input devices

SDK API level 12

Slide 17

17

The Porting Process

“Bring-up”

“Tuning”

“Productization”

Now, we’ll spend the rest of this presentation spiraling into some details on each of my three
steps of the porting process, in the order that an app would attack them. Most of the high-end
games we see coming to Android right now are existing titles of one form or another, so we’ll
refer to this most frequently as the “porting” process, rather than the development process,
and we’ll assume that game code and assets exist in one form or another.

Slide 18

18

Stages of the Port: Bringup

Common work items:

Build system integration

System APIs (sockets, file I/O, input, etc)

Renderer creation (OpenGL ES)

Content re-export/packing

Initial debug

Do not ignore productization planning even at this stage

Bringup is often done as a quick (and dirty) pass to see things running. The most common initial
work item in bringup is to integrate the app into the Android build system. Then basic system
features like I/O need to be ported. You’ll need an OpenGL ES renderer. Also, there’s content.
Depending on your art toolchain, content re-export and packing can be anything from trivial to
challenging. And there’s always the joys of knocking down the load-time bugs one by one until
the first rendered screen pops up. Depending on the tools you have at your disposal, this can
be a challenge on Android.

Slide 19

19

Build System Integration

Android applications (Java and native) can be built on a wide range

of platforms:

Windows

Linux

MacOS

Eclipse integration is the most common IDE

But completely command-line builds are possible on all platforms, too

NVIDIA DevTech has assisted developers with samples of how

Android apps can be built by almost any existing multiplatform

build flow

The first hurdle that almost any existing project hits is “how do I compile my code?” Building an
Android application involves compiling and linking your native code, building any Java code and
then packing the results into an installable pack, known as an APK. The APK can also include
game art and assets. All of the stages of building code and packing the app can be
accomplished on Windows, Linux or Mac OS. And while Eclipse is the most common IDE, no
specific high-level build system like make is required by Android. So most build systems for a
given cross-platform game can pretty easily handle building for Android, too. If you game
already builds under GCC, then you’re really in good shape. NVIDIA DevTech has helped
developers move all manner of build systems over to Android, and in general we’ve found it can
be done cleanly.

Slide 20

20

System API Port

Well-treaded ground for most cross-platform engines

If you have a POSIX port, you’re in good shape

A few common Android-specific challenges

File system permission limits, especially writing

No support for wchar_t prior to Android 2.3

And even after, support is mainly for “migrating existing code”

C++ STL support only added recently, still some issues with it

More stringent alignment requirements than some other platforms (not

specifically an Android issue)

Sometimes an issue for serialization of content

Once you can compile your code, you’ll likely be looking at porting the system level
functionalities next. If you have a Linux port of your game, that’s the best starting point for your
Android version. Pay particular attention to file I/O, since Android enforces some access path
limitations. Also, wide character support is problematic and sizes can differ per OS version, so
watch out for tricky memory bugs there. STL was only recently added to the NDK and there are
features missing, so users of STL may need to pay attention there. Finally, there are often more
stringent data access alignment requirements on this platform, so keep that in mind if you use
direct binary data loads in your serialization code.

Slide 21

21

Tip: Know your Permissions!

Every Android app has a manifest XML file

Declares a lot of basic naming, Java class mappings, etc

But also declares the desired permissions for the app

Not having the right permissions can cause confusing bugs:

No INTERNET permission? Socket calls fail…

No WRITE_EXTERNAL_STORAGE? Writing to the SD card will fail…

These affect Java AND NDK code

Get to know these
http://developer.android.com/reference/android/Manifest.permission.html

Android apps all include a manifest XML file that declares a number of application settings. But
the manifest also includes a very important list of requested app permissions pertaining to both
Java and native code. Not having the right permissions can lead to runtime failures. For
example, not having the INTERNET permission declared will cause your native POSIX socket
functions to fail. There’s also a permission flag for writing to external storage cards. Check out
the Manifest permission docs on the Android developer website for a list of all permissions.
Request the permissions you need, but keep in mind that users are often suspicious of apps
requesting many of them, so request what you need only.

Slide 22

22

Threading

Multi-core SoC’s like NVIDIA’s Tegra are the accepted norm

Threading is key to maximizing application performance

Thread your:

Physics

Particles

Game logic

Rendering

Networking

Prepare for the future as well

Don’t assume just 2 CPU cores…

Multi-core systems like NVIDIA’s Tegra are really de facto requirements in quality Android
devices today. So. application threading is key to maximizing performance. This tends to mesh
well with current-generation console and PC titles, which were designed for multi-core
platforms from the ground up. Note that on Android, blocking I/O and networking calls almost
have to be moved to a secondary thread. For example, the upcoming Android API levels may
require networking calls be made from a secondary thread or else they will immediately fail.
Prepare for the near future. As you may have seen in the news, NVIDIA has been showing the
quad-core Project Kal-El since February and other major vendors have announced that they will
have quad core solutions by next year. Don’t assume just 2 cores…

Slide 23

23

Java Threads and Native Threads

Threads can be spawned in Java or native code

Java threadrs can call down to native code and back up again

PThreads can call up to Java

But you must “register” them with the Java VM first

Synchronizing Java and native threads can be a challenge

Native threads can keep running after the Java classes have

stopped

But could be killed at any time

Avoid this case!

Threads can be spawned from Java or native code. Threads created in Java can call down to
native code and back up again using JNI. Native spawned threads can call up to Java code, but
you must “register” those threads with the Java VM first or else you’ll crash. Be careful with
thread lifespan: Android keeps an app’s process running after the Java class is destroyed. But
once the Java class is destroyed, android can choose to kill the process at any time. So while
Native threads can keep running after the Java finishes, don’t risk it.

Slide 24

24

Bringing up the Renderer

Pivotal part of any port

OpenGL ES (GLES, ES) is the 3D API for Android

Mobile titles likely have one

PC and console titles probably don’t

Must choose between OpenGL ES 1.x and 2.0

Next-gen titles require 2.0

All titles should consider 2.0

OpenGL ES can be “brought up” on desktop!

Linux/Windows OpenGL ES emulators to the rescue

Can make a world of difference

Bringing up your 3D renderer is a pivotal part of any port. On Android, this means an OpenGL
ES (or GLES or ES) renderer. Mobile titles will likely have a ES renderer of some sort already, but
PC and console titles may require much more work. You must choose between ES 1.x (fixed
function) and ES 2.0 (shaders). Most next-gen, high end titles will require 2.0, but 2.0 should be
considered for any title, as it is the “native language” of current and future mobile 3D hardware.
You do not need to have your app compiling and loading on Android to start your renderer port,
and you don’t have to debug your ES renderer on Android. If you have a Linux or Windows build
of your codebase, you can use a desktop ES emulator to bring up the OpenGL ES renderer on
desktop before running on Android.

Slide 25

25

Desktop OpenGL “ES2 Profile”

The Android emulator does not support GLES2 today

But even if it did, it assumes a partially-working Android app port!

But many Android-bound apps run on Windows/Linux already

EXT_create_context_es2_profile desktop GL extension to the

rescue!

Port the renderer to ES2 on desktop

Using the tools you know

Parallelizes the port process

Bringup on Android itself can include a known-good renderer

As of today, the Android emulator on PC cannot support GLES 2. But using an Android device or
emulator to debug your renderer assumes that the rest of your Android port is working. Many
applications looking to port to Android are already running on Windows or Linux. Since the
renderer can be one of the larger parts of a port, it would be nice to be able to bring up an ES 2
renderer in parallel with or even before the Android port. NVIDIA’s desktop drivers support an ES2

profile extension that makes the API act like GLES 2. An ES2-compatible rendering path can be
developed on PC without first having to port to Android and can be done using familiar desktop
tools. Some of the quickest and best ports we’ve seen used PC-based ES2 renderer
development

Slide 26

26

Debugging

A tale of two cities:

Java: Great

Native Code: Tricky and problematic

Issues include:

Remote gdb/gdbserver config

Java/Native use different debuggers

Broken gdbserver in some NDK packs

Threaded program debugging not working prior to Android 2.3

This is getting a lot better

But we aren’t there yet

Debugging on Android has been a tale of two cities; Java debugging from Eclipse has been solid
for Android really since day one. Native code debugging has been more problematic and longer
in coming. At the best of times, remote debugging with gdb/gdbserver is, well, “exciting”. But
the Java/Native situation with Android complicates things further. For a while, various basic
tool issues caused troubles. Threaded program debugging was not working prior to Android
2.3. This is getting a lot better, and we regularly debug large game engines in Eclipse. But native
code debugging is still not at the level to which Windows/PC developers are accustomed.

Slide 27

27

NVIDIA Debug Manager

Is an Eclipse plug-in that simplifies debugging native C/C++

Android applications

Seamless Java and Native code debugging

Supports the latest version of the NDK as soon as possible after

each NDK update

Supported Operating Systems include

Windows 7

Mac OS X

Linux

NVIDIA’s Debug Manager NVDM is an Eclipse plug-in that simplifies debugging hybrid Java / C++
Android applications on Tegra. Note that this tool works not only with apps that use Eclipse as
their build system, but also with applications that are built by custom build systems. It supports
seamless Java and Native code debugging in the same project and works on multiple Android
OS versions. And because it is based on Eclipse and the Android SDK, it supports debugging
from development host PCs that run Windows 7, Mac OS or Linux

Slide 28

28

Stages of the Port: Tuning

Gameplay tuning

Sensitivity/variance of input devices and sensors

Adjusting for screen size and form-factor (e.g. on-screen “gamepads”)

Important to have multiple devices no later than the tuning phase

Performance tuning

Determine the main bottlenecks (CPUs, GPU, memory bandwidth)

Circle down on them with the available tools

The tuning phase generally involves initial performance optimization and then a mix of
performance tuning and user input tuning. Input varies across Android devices. Tuning is often
very device-specific, and is generally the first time that developers start testing on more than
one device. It can actually be valuable to have a different device type per engineer. Engineers
then become natural “advocates” for the device they have to use! They have a vested interest
in it not being broken. It can improve the quality of the initial port. The important points of the
performance tuning are the same as you’d expect on any platform. Other NVIDIA presentations
will cover performance tuning and tools in detail, so we’ll not discuss them in this presentation.

Slide 29

29

Stages of the Port: Productization

Key to good reviews and happy users

More than “doesn’t crash”

Includes handling:

Android lifecycle

3D platform differences

OS versions

Power management

Productization is perhaps the most important stage of your game port because it can make the
difference between a 1-star review and a 5-star review, even if the core game is good.
Productization may also involve some of the most “foreign” steps for games coming from PC or
console, since games on Android are like any other app; they are considered interruptible and
lightweight. Note that productization is not just basic stabilization; it includes handling
Android’s ideas of app-swapping, different 3D HW features and different Android OS variants.

Slide 30

30

The Circle of Life

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

onWindowFocusChanged(T)

onWindowFocusChanged(F)

Activity is started

Process is killed

User navigates

to killed Activity

(Pre-Honeycomb)

Games on a platform have to conform to the basic application model of the OS. In Android,
that’s generally known as the Android Activity lifecycle. The Activity lifecycle expects games to
be subservient to the overall device’s functionalities. The top level structure of this graph is
shown on this slide. The orange ovals on the left show external operations or states, and the
green rectangles show application callbacks that are called by Android on the app as it moves
the app from state to state according to the arrows. Note that while most of the functions in
this sequence only get called via the transitions listed, that’s not always the case. Over the next
few slides, we’ll cover common actions the user might take, and how they progress through the
graph.

Slide 31

31

Surface Callbacks

The diagram does not include the three surface callbacks

surfaceCreated

surfaceChanged (size or format change)

surfaceDestroyed

These are key to a 3D app, as they affect EGL

EGLSurface is created from the Android surface

But these callbacks do not fall into the graph

They can come at various times

Despite showing an already complex set of sequences, the previous graph actually leaves out
another set of callbacks that are pivotal to application lifecycle, especially 3D applications: the
Surface callbacks. The indicate the lifespan of the Android surface to which an application’s
EGLSurface is attached, and thus imply the lifespan and size changes of the 3D rendering
surface. These callbacks are not fixed in the sequence of the previous slide’s graph. They can
come during a wider range of application states. So applications should be ready to track the
state of the surface themselves in the larger context of app state. These surface callbacks
themselves cannot make too many assumptions about the application’s state. For example,
we’ve seen surfaceDestroyed come after onStop and even after onDestroy.

Slide 32

32

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

Activity is started

Process is killed

User navigates

to killed Activity

(Pre-Honeycomb)

onWindowFocusChanged(T)

onWindowFocusChanged(F)

The focus callbacks can happen at

any time! They are not a part of

the fixed hierarchical sequence

Focus

In addition, while the diagram shows the onWindowFocusChanged callbacks as being a part of
the fixed sequence, this is not guaranteed. While this is a COMMON result, this function is not a
part of the fixed graph of calling sequences. Window focus changes can be sent to an app that
is not between calls to onResume and onPause. The ordering will vary from OS version to OS
version. So be ready to catch these cases.

Slide 33

33

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

onWindowFocusChanged(T)

onWindowFocusChanged(F)

Activity is started

Process is killed

User navigates

to killed Activity

(Pre-Honeycomb)

Launching An App

onCreate()

onStart()

onResume()

onWindowFocusChanged(T)

Activity is started

App is now running and is the

focused Activity, ready for input

and appropriate for rendering and

sound playback

When the user launches an app that is not already running, then the Activity’s Java class is
created, the onCreate function is called on it to initialize the Activity’s global state. Then, it
transitions to a visible state with a call to onStart. It transitions to being the top-most app with
a call to the Activity’s onResume. And finally, the app’s window is given the focus callback to
indicate that the window is not only the top-most app, but is definitely visible to the user. That
last distinction will become important in another case down the road. At this point, we should
be rendering, playing our sounds, and accepting input.

Slide 34

34

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

onWindowFocusChanged(T)

onWindowFocusChanged(F)

Activity is started

Process is killed

User navigates

to killed Activity

(Pre-Honeycomb)

Turning off the Screen

onPause()

onWindowFocusChanged(F)

App starts in focused, visible mode

when the POWER key is pressed

or the screen times out

Note that the Activity is still extant,

and not even stopped

If the user taps the power button to turn off the screen, or the screen-saver timeout goes off,
we lose our focus, which is an indication to pause our gameplay to some auto-pause screen,
start to turn off our sounds and slow or stop our rendering to save battery. But we then get
onPause because we’re not fully visible. We need to stop rendering and stop doing most
processing. Note that how we handle onPause depends on whether we have to run on all
versions of Android or only on Honeycomb and newer. On versions of Android prior to
Honeycomb, Android was allowed to kill our process silently any time after we return from
onPause. So, you had to save all of your app’s state before returning from onPause or risk the
user losing game progress. On Honeycomb and newer, the activity is not silently killable until it
is stopped and the onStop callback returns. So in this case, on Honeycomb, we would not be
required to save state.

Slide 35

35

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

onWindowFocusChanged(T)

onWindowFocusChanged(F)

Activity is started

Process is killed

User navigates

to killed Activity

(Pre-Honeycomb)

Turning on the Screen

onResume()

Turning the screen power back on

leaves us at the lock screen, which

is “covering” our app. We cannot

interact with or see our app

The Activity receives the resume

message, but NOT the focus message

When we turn the screen back on, we get an onResume to indicate that we are the top-most
activity. HOWEVER, we are not visible. The lock screen is covering us! So we must not begin
playing music or rendering yet. We prepare to render, but we stay dormant for the moment.

Slide 36

36

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

onWindowFocusChanged(T)

onWindowFocusChanged(F)

Activity is started

Process is killed

User navigates

to killed Activity

(Pre-Honeycomb)

Unlocking the Screen

onWindowFocusChanged(T)

Activity is running

and focused

Unlocking the screen leaves

us focused and visible again

When the user unlocks their screen, we get the window focus change we’ve been waiting for,
and we know that it is time to start rendering and playing sound again. However, we should go
back to the game’s autopause screen rather than just resuming the game to make sure the user
isn’t scrambling to catch up.

Slide 37

37

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

onWindowFocusChanged(T)

onWindowFocusChanged(F)

Activity is started

Process is killed

User navigates

to killed Activity

(Pre-Honeycomb)

The Back Button

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

onWindowFocusChanged(F)

App starts in focused, visible mode

when the BACK button is pressed

When your application receives a back-button event, you have two choices; you can handle it
yourself and “eat” the event, or you can pass it on to Android. If you pass it to Android, it will
“pop” your app’s activity off of the UI stack. So, we’ll lose focus, we’ll get paused and then
stopped because we are not visible. Finally, because we’ve been completely popped from the
stack, we’ll get our Java class destroyed. Note that to speed re-launch, our process will likely
keep running. But our Java class is gone, and our native code had better stopped doing any
work at all, because Android could kill the process at will in that state!

Slide 38

38

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

onWindowFocusChanged(T)

onWindowFocusChanged(F)

Activity is started

Process is killed

User navigates

to killed Activity

(Pre-Honeycomb)

The Home Button

onPause()

onStop()

onWindowFocusChanged(F)

App starts in focused, visible mode

when the HOME button is pressed

Note that the Activity is still extant,

as HOME is like a task-switch

If we again start from our app being the focused, visible activity and hit the HOME button, we’re
indicating that we want to task-switch to our home screen to run other apps or swap to another
app. We haven’t been popped off of the stack, we’ve just been shuffled down. So, unlike BACK,
we do not get destroyed. We’re not focused, we’re not visible, but our app still has all of its
global state. After returning from onStop, we’ll be killable, so we need to save game state
before returning. We really should not be doing _ANYHTING_ at that point, because in the
stopped state, we could get our process killed by Android at any moment

Slide 39

39

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

onWindowFocusChanged(T)

onWindowFocusChanged(F)

Activity is started

Process is killed

User navigates

to killed Activity

(Pre-Honeycomb)

Low Memory

onPause()

onStop()

Process is killed

(Pre-Honeycomb)

App must be stopped (or

stopped or paused prior to

Honeycomb) in order to be

“killable”

As mentioned, if we’ve been given the onStop in any version of Android or if we’ve been given
the onPause prior to Honeycomb, we need to save our state to persistent storage before
returning from the appropriate callback, or else we could be killed before we have the time to
save the user’s progress or settings. Now, you may think you can keep yourself from being
killable by simply never returning from the appropriate callback. No. If you do not return from
those lifecycle callbacks in a some brief period, android will consider you unresponsive, show
the user an error dialog and give them the option of killing you. It is called an Application Not
Responding or ANR error, and various device makers and carriers consider it a showstopper for a
game. While technically you will not get an ANR until you have failed to respond to user input
for 5 seconds, in practice, you don’t want to be unresponsive for anywhere near that long.

Slide 40

40

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()
Activity is shut down

(process may still be running)

onWindowFocusChanged(T)

onWindowFocusChanged(F)

Activity is started

Process is killed

User navigates

to killed Activity

(Pre-Honeycomb)

Selecting a HOME’ed App

onStart() onRestart()

onResume()

onWindowFocusChanged(T)

Activity was stopped, so we

move to Restart

Activity is running

and focused

Now, if we were sent away by the HOME button but then before Android found a need to kill us
we got selected from the list of backgrounded apps, we get restarted. Rather than be sent
straight to the onStart callback again, we first get our onRestart callback. This lets us deal with
the case of restarting from a stopped object, which may be a different setup path than if we are
being started from scratch like we were in the launch case.

Slide 41

41

Lifecycle Recommendations

onWindowFocusChanged(FALSE)

Always auto-pause gameplay

Stop sounds/music

Strongly consider stopping rendering; at least throttle back

onPause

Stop all rendering, even if you do not do so on focus loss

onResume

Prepare to begin rendering again

Do not restart rendering or audio until you also get a “focus regained”

onStop

Google now recommends freeing all graphics/3D resources here

onDestroy

Release all of your native resources

I recommend writing an app that prints to the log in each callback and playing for a while –
that’s how I generated the previous graphs and compared them to the spec. It is very
informative; we’ll be including several such apps in the next Tegra Android Samples Pack. So

here are the top-level recommendations for what to do in callbacks. On loss of focus, always
auto-pause gameplay and stop sounds. You probably want to stop rendering, but you should at
least throttle back. onPause, stop all rendering, even if you kept rendering on focus loss.
When you get onResume, _prepare_ to begin rendering again, but do not restart rendering
or audio until you also get a “focus regained”. In onStop, Google now recommends freeing

all graphics/3D resources. And, of course in onDestroy release all of your remaining
resources and be sure to stop any native threads you might have left running.

Slide 42

42

Configuration (Orientation) Changes

Configuration changes include (not limited to):

Orientation change

Screen size change (e.g. HDMI hot-plug)

Language change

Two ways to handle:

Declare changes you want to call onConfigurationChange in manifest

Undeclared changes will destroy and restart app

Warning:

Declaring a fixed orientation in manifest XML is not a panacea

Some OSes will still generate config changes!

Configuration changes are a source of confusion and bugs in many apps. Android sends them
for numerous different events like orientation and screen size change. For each possible
configuration change, you can choose to handle it by receiving an onConfigurationChange
callback, or you can default. For any change you default, when that change happens, Android
will shut down your app completely and relaunch it in the new configuration. This can be
expensive for big games. The most common configuration change by far is device rotation
between portrait and landscape. Android includes the ability to request that your app be given
a fixed orientation, but note that this does not ensure that you will never see an orientation
config change. We see them sent to fixed-orientation apps on some devices at startup or at
wakeup from sleep. So test your app with multiple devices and be sure to try launching your
landscape-forced app with the device in portrait mode. You don’t want to crash.

Slide 43

43

High-level Lifecycle Concepts

Consider supporting:

Fast-path loading for OpenGL ES resources

Textures

Vertex/Index buffers

Makes it easy/faster to handle EGL_CONTEXT_LOST

Fine-scale “game save”

And do so incrementally

Makes it easy to support onPause/onResume

Only explicitly-initialized static data in native code

Makes it easy to handle being kept resident in memory after application

exit

There are some other things you can do to make the lifecycle support cleaner. If possible, make
it easy to reload OpenGL ES resources like textures and buffer objects without restarting the
engine from scratch. Try to support fine-grained “game save” rather than widely-spaced “save
points”. If swapped out or killed, games should pick up right where the user left off rather than
some distant save point. In a perfect world, the user shouldn’t know when they navigate back
to a backgrounded game whether the app was restarted or merely resumed. Finally, avoid
implicitly-initialized static data in your code. This is a coding detail that really matters: Your
native library proably won’t be unloaded and reloaded every time the game is exited and
restarted, so your implicit static data initializers may not be called when you expect them to be.
Initialize all data explicitly in onCreate.

Slide 44

44

Graphics Compatibility

Rendering quality anfd features are key differentiators

Games want to push the envelope/platform

Android 3D HW capabilities differ per device

Rendering corruption or crashes can result

Users may find out too late that the game should not have been

allowed on their device…

Graphics rendering is a key feature in high-end games; Games want to push every feature they
can to stand out in the market. But Android HW platforms differ quite a lot with respect to 3D
features. Graphics features and renderer setup are common reasons for apps to fail on a given
device. This can lead to unhappy customers, sspecially if the issue arises only after they buy the
game and wait for the app’s side-loaded content to download. It gets even worse if that issue
happens only after the Android Marketplace’s 15 minute refund timeout has expired.

Slide 45

45

OpenGL ES Features: Be Flexible

EGL is the configuration, buffer and rendering context API that

sets up OpenGL ES

Write your own EGL configuration sorting and filtering code

Be ready to fall back if your preferred settings are not available

Minimize the number of “absolute requirements”

Log all configurations to debugging log for remote failure triage

Different platforms have different support for

Texture compression

Anti-aliasing

Color and depth buffer formats

When setting up your application’s rendering, ask for what you want, but be ready to fall back if
you can’t find a perfect match. You need to select the best feature and buffer configuration for
your app as available on the device. We recommend writing your own, custom algorithm for
finding the best config. Existing, black-box filtering code may fall back to software rendering or
return no matching configs at all. Keep in mind that different Android hardware platforms have
different support for texture compression, antialiasing, and color and depth buffer formats. Test
on as wide a variety of hardware as possible. If possible, include a debug mode that logs the
available configs to stdout. That way, if a beta tester has a problem on a new device, they can
send you a log of all configurations, so you can debug why your filtering failed.

Slide 46

46

Texture Compression

Texture compression is pivotal

ETC1 is almost universal

But has no alpha channel

Applications must use compressed textures for RGBA, too

So they must handle vendor-specific or non-universal formats:

DXT3/5 (S3TC)

PVRTC

ATITC

Generally, this means side-loading data per major platform

But the market filters can help…

Texture compression is pivotal for high-quality mobile games owing to the limited memory and
memory bandwidth on these devices. But there is no universally supported compressed format
with alpha. So, applications wishing to maximize their market must handle multiple vendor-
specific or non-universal formats. Generally, this means either multiple versions of the game or
a single version that side-loads data per platform on first the run of the app. You can improve
user experience on this front by giving the Android market information in your manifest about
texture formats and other features you require…

Slide 47

47

Market Filters

Market filters make it easier to ensure that users only see your

game if the device can support it

The <supports-gl-texture> tag allows the market to filter based on

available texture compression formats

The <uses-feature> tag allows the market to filter based on

numerous options:

openGlEsVersion: Required OpenGL ES API (e.g. ES 2.0)

android.hardware.touchscreen.multitouch.distinct: Requires distinct

finger touches be available (i.e. not just “pinch” multitouch)

android.hardware.touchscreen.multitouch.jazzhand: Requires ~5-finger

distinct multitouch events

The Android Market supports filtering of apps based on tags in your manifest file. They just
added app filters based on supported texture compression formats. These can ensure that your
game appears only on devices that will run it and run it well. There are a wide range of other
filters that can ensure that users do not download your game to a device that will not run it; I
list a few key ones here. This can avoid the dreaded 1-star flame reviews. See the android
developer site for details of the supported filters.

Slide 48

48

Summary

Plan your port carefully

Review your game’s needs

Learn the NDK features you need

Choose your target API/SDK/market

Use the best tools you can get to smooth the port

Tune your game aggressively

Test the game under a range of device use cases

Including incoming calls, etc

On a wide selection of devices

But use the manifest to filter the devices you cannot support

In summary, it is important to consider all stages of the port when you plan it. Planning ahead
for things like your targetted OS version and for Android lifecycle issues can save time and
hassle later. Use the best tools at your disposal for renderer porting, debugging and tuning.
Aggressively tune for performance when you’re active, and for battery when you’re not. And
test on every device you can, testing both how the game plays and how it behaves in the larger
context of device use. Finally, be sure to try to indicate accurately in you manifest what devices
you can and can’t support.

Slide 49

49

Thank You!

LBISHOP@NVIDIA.COM

