Making Your Game Fully Interactive by

NVIDIA FleX

Quan Chen

<A NVIDIA.

What’ s FleX?

Motivation

* Too many solvers

* Creates redundant work

° Want one Optlmlzathn target [Robinson—Mosher et al. 2008]

* Want two—way i1nteraction between
all object types

[Shinar et al. 2008]

Core Idea

Everything 1s a set of particles
connected by constraints

Advantages

* Simplifies collision detection

* Stable two—way interaction of all object types:

» Cloth

» Deformables
» Liquids
» Rigid Bodies

» Gases (not released)

* Fits well on the GPU

Particles

struct Particle

{
float pos|3]:
"loat vell3];
“loat 1nvMass;
int phase;

b

* Phase—ID used to control
collision filtering

* Particles do not belong to a
particular object

* Single collision radius

Constraints

* Constraint types:
» Distance (clothing)
» Shape (rigids, plastics)
» Density (fluids)
» Volume (inflatables)

» Contact (non—penetration, friction)

* Combine constraints to create wide variety
of effects

» Melting, phase—changes
» Stiff cloth

Solver Loop

I. Apply forces (v = v + 1/mkf*dt)

2. Predict new positions (x* = x + vkdt)

3. Find neighbors, contacts
4. Pre—stabilization

5. For (k iterations)

|. For each constraint group G, in parallel:
deltaX = 0

Solve constraints in G
x* += deltaX* (omega/n)

6. Update velocities (v = (x*-x)/dt)
7. Update positions (x = x%*)

Contact and Friction

Collision Detection

* All dynamics represented as 5
particles g

* Kinematic objects represented as
meshes Cﬂﬂntﬂrﬂt — ‘Xg — Xj‘ — 2T :2 0

* Two types of collision detection:
» Particle—Particle

» Particle—Mesh

Collision Detection

* Particle-Particle
» Tiled uniform grid
» Fixed maximum radius

» Re—order particle data according to
cell index to improve memory locality

Collision Detection

* Particle—Mesh

» Collision primitives

Convex Collision (MTD)
» Plane (projection)

v

Sphere & Capsule

v

Convex

Triangle mesh (CCD)

v

Signed distance field

v

» Friction (Kinetic, static)

» Restitution

Triangle Collision (TOT)

Friction

* Friction 1in PBD traditionally applied
using a velocity filter

* Coupled position—level frictional
constraint

Cfrictiﬂn — |(X — XD)J_H|

* Approximate Coulomb friction using
penetration depth to limit lambda

-1 .

S 2

R RReSeessHHh

. ! .‘ }o-:\.g_._ e A
- - :
- - -l\\\ S N N

\

\-.\A._ NNWRNRNS S

- :)

“ ‘.\»_\\\ Sl Adidnd
:] . -
-~ : .'.__\,‘lbi‘_\ 3

- e
O tale - At
i . :\._\,. & b il adndhgs
» . 5 . :
- sr’\.“‘.‘-“‘\“
- ’\.15'.0 \\-Ml-. ‘ .
] - -

N i A
NS, N S

a . - - L
e - L —

. _ e~ . -
- - 1 l\\f*.l‘"-"‘\.-‘ P = b
v " - s\St.S—a 0. SRS NS '
- - B e, i
- ¥\\\0 ‘t‘u,‘;.ﬁt .t‘. > e e

S *
-
R

- -
- . .Ln_‘\ \\.,_. e i -

" ~ - e
- ! s v ~ e :
‘ o i (- \'s -

.

W

o« e
.

-
L - e~
- b‘v-‘s_ e o e S e S - 9

~
-~

~
N

— " L ;5.\ L
T aaeen
S

oo

- \.st\.‘\.k\-"

What can FleX do?

Rigid Bodies

* Place particles in interior

* Add shape—matching constraint l

* Store SDF dist + gradient on Detormed State

particles:

Best Rigid
Rotation/
Translatio

Rigid Collision

* Just colliding particles i1s not
robust

* Shapes can become interlocked

* Use SDF stored on particles
(distance + gradient) for interior

* Use “one-sided” particles at the
surface [Miiller & Chentanez 11|

Plastic Deformation

* Detect when deformation exceeds a

threshold

* Simply change rest—-configuration of
particles

ﬂ 4
.
I ‘
’ X
' -

* Adjust visual mesh (linear skinning)

Two—Way Rigid Fluid Coupling

* Mostly automatic

* Include all particles in
fluid density estimation

* Treat fluid—>solid particle
Interactions as 1f both
particles solid

Cloth

* Graph of distance + tether constraints

* Adding/removing constraints is easy (tearing)

* Self-collision / inter—collision automatically handled

e

Y e

- "N;

\
MR
c

e’

TN TR A, G YD, S, S, OO, DEED. TS, W THIAA TNl GG B G DN DT DD ARy AENY Ny erEw ST o G TN A SR LW SV SER A P TR TR AT T

T ST AT TS U U R T Ve, Wm0 Ul TRImm i Pomn T ST B ST s d Oy ITEEY S GER Lok fmmw O LI (RN N LSSST GRS oA LT ST ST SN e et i e

TN TS, TERRG. . W, G, Wi, WSSt TS IDDIIL WMEme, TEDDIn GERNT BTEEEN BEESET GCRRET) SR S oy femmay s STy Sy LIS SEERT LTSN ST A ARSI i e e e = o T i =

Ropes

* Build ropes from distance + bending
constraints

* Fit Catmull-Rom spline to points
* Good candidate for GPU tessellation unit

* No torsion constraint (need orientation)

<
LY \‘{ % s
o e, o W O ’ BE-
W b L W L et d o 4TS -

Deformables

* Tetrahedral meshes —> mass
Spring system

* Tetrahedral volume
constraints

* Soft shape—matching

Gases(not released yet)

PhysX Vs. FleX

PhysX Overview

* PhysX helps developers to make better games
» PhysX 1s a complete physics solution
» PhysX 1s a core component for game—play and effects

» PhysX 1s highly competitive on all major platforms:
consoles, mobile devices+*-*and PCs, with or without GPU
acceleration

What’” s the same

* Both are physics simulation engines

* Support similar feature set
» Rigid Bodies
» Cloth
» Fluid & Particles

What’ s different

* Platform

» PhysX: all platforms, from mobile, console, to PC, including GPU acceleration

» FleX: CUDA

* Solver

» PhysX: solvers per feature

» FleX: unified solver

* Game logic
» PhysX: friendly to game logic

» FleX: require mapping particles to game actor and need more callbacks

What’ s different

* PhysX has more game related features

» CCT, joints, vehicle controller, serialization

» Scene queries, e.g ray cast and overlap tests

* FleX has more inter—feature interactivity in nature

* Usually FleX needs to be coupled with PhysX

» Large scale terrain, buildings

» Two—way interaction between CCT and dynamics

FleX Integration

FleX Integration

* FleX SDK has two parts
» Core Library

» Extensions Library

* FleX Solver can be embedded inside any authoring tools
» UE3/4
» Max/Maya

» Standalone

Core Library

* C-style API
* Single .h interface, flex.h + flexRelease.dll

* Bulk operations only, example:

FLEX API void flexSetVelocities(FlexSolver* s, const float* v, int n, FlexMemory source) :
FLEX API void flexGetVelocities (FlexSolver* s, float* v, int n, FlexMemory target) :

FLEX API void flexSetPhases(FlexSolver* s, const int#* phases, int n, FlexMemory source) :
FLEX API void flexGetPhases (FlexSolver* s, int#* phases, int n, FlexMemory target) :

* CUDA code

* Supports interop through device—>device copies

Extensions Library

* C—style API
* Single .h interface, flexExt.h + flexExtRelease. dll]

* Helpers for:
» Allocating and removing particles (freelist management)
» Converting meshes to particles via voxelization
» Creating constraint graphs for clothing

» Creating mass—spring systems from tet—mesh
* Allows users to build lifetime management how they like

* No CUDA code, talks to core API only

Current Status

* UE3 and UE4 FleX integrations
avallable now

* Shipping 1in Batman, Killing
Floor

* Components for:

» Cloth, Rigids, Inflatables,
Ropes, Fluids, Particles

* Github distribution available

hﬁ%gs .a/]/%i Itjllﬁl% gg@%ﬁﬁ?ﬁ@UnrealEngine/tree/FleX

developers:

FleX Cloth

* Environmental cloth
* CCD Triangle Tests

* Auto—attachment to static or

dynamic actors ‘! ‘

* Inflatable constraints

FleX Ropes

* Based on built—1n
UCableComponent

* Supports bending / sel
collision / world col.

* Torsion 1n the future

FleX Particles

* Integration with Cascade

* New modules for spawning
fluids

* New modules for spawning
particle shapes

* Modules for spawning
inflatables / cloth / etc

FleX Force Fields

* Integration with UE4
URadialForceComponent

* Scriptable with
Blueprints

* Applied in CUDA through
FlexExtensions

[Interop between PhysX

* Basic two—way 1nteraction
between FleX<->PhysX

* FleX actors insert bounds
into PhysX scene

* Overlap query per—-FleX
Actor

* Allows CCT to interact with
FleX objects

Frame Timeline

Pre Physics During Physics Post Physics

AN AN AN
- S YS i
PU [t || IS IS MO | o on< S

2

Killing Floor

Game Demo

Thank you!

Q&A

