

The development & optimization of
the DX12 version of King Of Wushu

Yang Xueqing

Devtech Engineer

NVIDIA

Lv Wenwei

Engine Technology Expert

Snail Game

• First 3D martial arts MOBA

• With top real-time graphics effects

• First DirectX12 multi-platform online game in China

• Latest NVIDIA GameWorks Integration

• Xbox One & PlayStation 4 version have been
released in China, PC verson is coming soon in this
year

King Of Wushu

DX12 Porting

From DirectX11 to DirectX12

• 2 senior graphics engineers, 6 weeks

• Override DX11 interfaces with DX12 APIs

• Manage rendering states with hash map, storing and searching
dynamically in real-time

• Assign an unique ID to each resource and state to generate Hash value,
if the resource is released, the ID can be reassigned

• Every resource has its bit width in the Hash value, and has ID upper
limit

• SDKLayer(Debug Runtime) helps you to find potential rendering issues
as early as possible

• State settings based on DX11 are cached and delayed until
the draw call is executed

1. RasterizerState

2. BlendState

3. DepthStencilState

4. InputLayout

5. Shader

• Speedup the generation of PSOs by getting the cached PSO
via GetCachedBlob

PipelineStateObject Management

• Sampler management

1. One sampler heap can store 2048 Samplers at most

2. Group the 16 samplers of each shader and generate hash
value for each group, so there are at most 128 sampler
groups in one frame

3. Set the same sampler to the fixed slot, e.g. NormalMap，
ShadowMap

4. Have to switch heaps if you want more sampler groups

Sampler Management

• Shader Resource View management

1. One view heap can store 1M view descriptors at most

2. With the same management to the samplers, max 16 SRVs are used in
one draw call

• Constant Buffer View management

1. Instead of descriptor table, we use root descriptor. Because constant
buffers are dynamic, their GPU address changes frequently

2. Static CB can be managed with descriptor table, but the slots should
be fixed

3. 256 bytes align is required for the constant buffers used in each
shader stage

4. Call map before set to avoid iteratively accessing

View Management

• API calling in Command List is not thread–safe

• The submit in the Command Queue is thread-safe

• Generate multiple command lists to avoid rendering stall

• Sync the command lists with fences, using the frame ID as
the expected value

• Driver and run-time don’t provide extra threads for building
and committing render commands asynchronously

• Store the D3D11 commands in the command buffer, send it
to a work thread and execute it at the end of each frame.
you need to reinterpret D3D11 commands to D3D12
commands in the work thread

Command List

• Developers have more options with the open memory
management mode

• Flexible resource binding reduces the requirement of
bandwidth

• Powerful and low overhead command submit pipeline is
helpful to customized parallelized rendering

Summary

Integration of NVIDIA GameWorks & GPU New
Features

• Reuse the graphics pipeline of CE3 MSAA mode

• Need velocity map in resolve pass due to temporal AA
• Use the velocity map generated by motion blur

• Need to decode the packed data to float16

• Record the TXAA result of previous frame

• Set programmable sample locations via NVAPI

TXAA Integration

• Need to transform the view space normals into world
normals

• Convert the depths to view space

• Be aware of the texture format in MSAA mode

HBAO+ Integration

• Render the shadow maps in one pass

• Combine the visible objects lists of each LOD

• Use the coarsest view frustum that contains all the view
frustums of each LOD

• Store shadow maps in a texture array
• Rendered as a render target array

• Render LOD of shadow maps by setting different viewports

• Render the render target array with fast GS

Fast GS Integration

• Besides the GameWorks & features above, we also have
integrated HairWorks & Clothing

• Saved lots of development cost by using GameWorks

• GameWorks makes game more competitive in the market

• NVIDIA provides reliable technical supports

• Take full advantage of the newest GPU features
• Vendors fully understand their products

Summary

NVIDIA GameWorks and GPU new
features in King Of Wushu

Agenda

• GameWorks - VisualFX
– PostWorks : FXAA3.0

– ShadowWorks : HBAO+

– HairWorks

• GameWorks – PhysX
– Clothing

• Maxwell features
– Multi-Projection Acceleration

• Fast Geometry Shader (Fast GS)

• Fast Viewport Multi-casting

TXAA 3.0

What is TXAA

• Temporal AA mixed with MSAA

• Replaces MSAA Resolve

• Provides higher quality resolve filter
– Better than the default MSAA box filter

What’s new TXAA 3.0

• More user controls
– Control of the reconstruction filter that’s used

– Per-pixel control of AA application

• Higher AA quality & faster perf
– Maxwell feature : Programmable sample locations

Programmable sample locations

• Sample locations fully programmable

Programmable sample locations

• High-level MSAA quality at low-level MSAA cost

Programmable sample locations

• Interleaved sample positions

– 16x sample locations can be
tiled to a set of pixels

– Higher AA quality

16xAA
1x1 pixels
16 samples

8xAA
1x2 pixels
16 samples

4xAA
2x2 pixels
16 samples

2xAA
4x2 pixels
16 samples

1xAA
4x4 pixels
16 samples

AA Off

4xMSAA

TXAA 3.0
(4xTXAA+PSL)

HBAO+

HBAO+ Design Goals

• Look better than the HBAO algorithm

– HBAO suffers from over-occlusion behind thin objects

• Better efficiency than the HBAO algorithm

– Minimize the math ops / TEX sample

– Interleaved rendering, have the highest possible texture cache hit rate

• Full-res SSAO, not half-res

– Rendering SSAO in half-res tends to cause bad flickering on thin geometry
(e.g. alpha-tested surfaces)

• Easy to integrate

HBAO

HBAO

Over-occlusion
& flickering

HBAO+

HBAO+

No visual issues

Fixed Sampling Pattern

0

2

3

4

2

3

4

1 1

0

For each sample,
adjacent pixels fetching
adjacent texels

 Good spatial locality

Random Sampling Pattern

For each sample,
adjacent pixels fetching
far-apart texels

 Poor spatial locality

2

3

4 2

3

4 1

1

0 0

Jittered Sampling Pattern

0

2

3

4

2

3

4

1

1

0

For each sample,
adjacent pixels fetching
sectored texels

 Better spatial locality

… but as kernel size increases, sector size
increases too

Interleaved Rendering

Render each sampling pattern separately,

using downsampled input textures

Step1 : Deinterleave Input

Full-Resolution
Input Texture

Width = W
Height = H

Half-Resolution
2D Texture Array

Width = iDivUp(W,2)
Height = iDivUp(H,2)

1 Draw call
with 4xMRTs

Step2 : Jitter-Free Sampling

1 Draw 1 Draw 1 Draw 1 Draw

Input: Texture Array A (slices 0,1,2,3)

Output: Texture Array B (slices 0,1,2,3)

Jitter
value 0

Jitter
value 1

Jitter
value 2

Jitter
value 3

Step2 : Jitter-Free Sampling

1. Constant jitter value per draw call

 better per-sample locality

2. Low-res input texture per draw call
 less memory bandwidth needed

Step3 : Interleave Results

1 Draw call

With 1 Tex2DArray
fetch per pixel

4x4 Interleaving

4x4 jitter textures are commonly used for jittering large sparse
filters

Can use a 4x4 interleaving pipeline

1. Deinterleaving: 2 Draw calls with 8xMRTs
2. Sampling: 16 Draw calls
3. Interleaving: 1 Draw call

Multi-Projection Acceleration

Fast GS vs Regular GS

• Fast GS is a special kind of geometry shader

• Fast GS can not "create" new primitives

• Fast GS saves the cost of the geometry expansion

Fast Viewport Multi-casting

Viewport 1

Viewport 2

Viewport N

…

Geometry
Pipeline

Viewport Mask

Use Cases

• Where we only use the geometry shader stage to set
per-primitive attributes, instead of changing the
primitive topology itself.

• Cube-Map rendering

• Voxelization

• Multi-resolution rendering (for VR)

• Cascaded Shadow Maps

Implementing CSM with Fast GS
• Generate all of the shadow maps in a single rendering pass, save CPU

overhead

• Render the shadow maps with a coarsest view frustum which contains
all the frustums of each LOD, setting different view ports for different
LOD

LOD=2

LOD=1

LOD=0

Implementing CSM with Fast GS

• Do view frustum culling in the GS
– Cast the primitives to desired viewports by setting bits in the

viewport mask

– Primitive is killed if viewport mask equals 0

1 1 1 0 Viewport Mask

Implementing CSM with Fast GS

HairWorks & Clothing

HairWorks & Clothing

Summary

Summary

PhysX

VisualFX

OptiX

Samples

PARTICLES DESTRUCTION CLOTHING

TURBULENCE HAIRWORKS FLAMEWORKS FACEWORKS

AMBIENT OCCLUSION
INTERACTIVE RAY
TRACING LIGHT BAKING PROCEDURAL SURFACES

FLEX

PARTICLE SHADOWS MOTION BLUR TERRAIN TESSELLATION SOFT SHADOWS

Summary

• NVIDIA GameWorks

– SDKs of efficient high-quality graphics & physics effects

– Samples, documentation & tutorials

– Developer tools

– Making game developing easier

https://developer.nvidia.com/gameworks

• New GPU hardware features

– More optimization approaches available

– More new algrithomns

https://developer.nvidia.com/gameworks
https://developer.nvidia.com/gameworks

Thank you！

Questions？

youngy@nvidia.com

mailto:youngy@nvidia.com

