

February 2009Fe

January 2011

DirectX 11 Terrain
Tessellation

Iain Cantlay
icantlay@nvidia.com

Document Change History

Version Date Responsible Reason for Change

1.0 21/01/11 IAC Initial release

Contents

Abstract 2

How Does It Work? 3

Mapping to the Tessellation Pipeline .. 3

Hull Shader: Tessellation LOD ... 5

Domain Shader: Displacement Mapping .. 7

Pixel Shader & Normals ... 7

Crack-Free Tessellation ... 7

Non-Uniform Patch Sizes .. 8

Motivation ð Range of Scales .. 8

Implementation ð Adjacency of Different-Sized Patches .. 9

Advisability of Adjacent, Different-sized Patches ...12

Multiple Displacement Maps ...13

Upgrade Path for Game Assets ..15

Performance 16

Rendering Efficiency ...16

Tessellation LOD Targets ..18

Tessellation Level Histograms ..19

Displacement Map Sampling and Aliasing ..21

Scrolling in Displacement Map Generation ..21

Running the Sample 22

Debug Options...22

Appendices 22

Real Star Rendering ...22

Lunar Data ..22

Bibliography 23

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Figures

Figure 1: A typical view of our DirectX 11 sample. ... 2

Figure 2: A similar terrain technique as used in Tom Clancyõs H.A.W.X. 2, courtesy of Ubisoft. 3

Figure 3: the shader pipeline stages, their tasks and a sketch of one patch, passing through the
pipeline. ... 4

Figure 4: A basic grid of uniform patches. Terrain tiles are separated by the thick green/yellow lines;
patches are shown by the checkerboard pattern (8x8 per tile). ... 5

Figure 5: Patches displaced by seven octaves of fBm noise. These are the same patches as shown in
Figure 4. .. 5

Figure 6: Screen-space-based computation of tessellation factors. .. 6

Figure 7: Screen-space-based tessellation factors for a quad seen edge-on. ... 7

Figure 8: The wide range of polygon sizes in a typical engine. Note how the screen-space size is
approximately constant. ... 9

Figure 9: Non-uniform patch sizes. ... 9

Figure 10: Adjacency size relationships between non-uniform patches. ...10

Figure 11: Identifying edges that require adjacency adjustment within a tile. The larger tile is shown
divided into its 8x8 patches. ..10

Figure 12: Reconstructing the edge of a patches larger neighbor. ..11

Figure 13: fractional_even partitioning across a boundary between different-sized patches.11

Figure 14: fixing boundaries with non-square patches. ..13

Figure 15: Adding detail to an Australia model from (Fournier, 1982). ..14

Figure 16: Our fBm detail noise displacement map. ..14

Figure 17a: The low resolution displacement map alone (above) and Figure 18b the result of adding
detailed displacement (below). ..15

Figure 19: Different displacement detail scales used in Tom Clancyõs H.A.W.X 2, courtesy of Ubisoft.
 ..16

Figures 20a-c: The effect of target triangle size on FPS and total triangle count.18

Figure 21: Performance of the tessellation LOD and its visual effect on triangle size.19

Figure 22: Terrain triangle size distribution histograms measured for Tom Clancyõs H.A.W.X. 2.
Triangle count (vertical) vs. triangle size buckets (horiz). ...20

Abstract

This sample implements a technique for rendering a terrain surface using DirectX
11 tessellation. We show how to implement a crack-free surface with LOD that is
adaptive in screen-space. Tessellating the geometry on the GPU is highly efficient
and rendering 1.5 million polygons at more than 100 FPS is easily possible on a
GeForce GTX460.

The technique is also easy to integrate with an existing terrain rendering engine. We
show how art assets from an existing engine can be reused and augmented with
additional detail.

This paper assumes a general familiarity with DirectX 11 tessellation. For an
introduction to tessellation see the recording of this GTC 2010 presentation
(Cebenoyan, 2010) which also includes a discussion of this terrain technique.

Figure 1: A typical view of our DirectX 11 sample.

Figure 2: A similar terrain t echnique as used in Tom Clancyôs H.A.W.X. 2,

courtesy of Ubisoft.

How Does It Work?

Mapping to the Tessellation
Pipeline

Figure 3 below shows how the technique maps onto the stages of the shader
pipeline. On the left are the various shader stages; on the right is an approximate
sketch of the status of one patch at the corresponding pipeline stage.

Figure 3: the shader pipeline stages, their tasks and a sketch of one patch,
passing through the pipeline.

The primitives are axis-aligned quad patches. They are entirely flat: all the heights
are zero. The vertex data defines only the 2D extents of a patch. Figure 4 shows
the arrangement of patches. They are grouped into tiles for top-level culling and
rendering, with 8x8 patches per tile. Patches are shown as a checkerboard pattern;
whereas tiles are separated by thick green/yellow gaps. (The tessellation factors are
artificially low in these screenshots for illustration purposes.)

Vertex Shader: pass through

Hull Shader: LOD

Tessellator: fixed fn

Domain shader: displacement

Pixel shader: normals & shading

2.1

4.5

3.7

1.9

Figure 4: A basic grid of uniform patches. Terrain tiles are separated by the

thick green/yellow lines; patches are shown by the checkerboard
pattern (8x8 per tile).

The vertex shader is almost entirely pass-through. Its only task is to displace the
quad patch corners. This correctly places the patch vertices and edges in model
space, ready for subsequent LOD calculations in the next stage.

The primary task of the hull shader is to compute LOD and assign tessellation
factors to the patch edges and centre. Correct choice of tessellation factors is
essential for generating a crack-free surface and this task dominates the hull shader,
making it the most complex part of the system.

Next, the fixed-function tessellator subdivides the patch into triangles, using the
tessellation factors output by the hull shader.

The domain shader samples the displacement map(s) and offsets each vertex
vertically. It then applies the world-view-projection matrix to transform the vertex
into clip space. The result of a simple displacement is shown in Figure 5.

Finally, the pixel shader shades the surface in the usual manner.

You may notice that the sample also includes a Geometry Shader. This is only used
for rendering the debug wireframe and is not a necessary part of the terrain
rendering. The òsolid wireframeó technique is described in (Samuel Gateau, 2007)
and (Andreas Bærentzen, 2006).

Figure 5: Patches displaced by seven octaves of fBm noise. These are the same
patches as shown in Figure 4.

Hull Shader: Tessellation LOD
We will first describe a simpler version of the hull shader (HS). A more complex
version that accounts for varying patch sizes will be discussed later. From now on,

when we refer to the hull shader, we mean the patch constant hull shader function.
The per-vertex hull shader is a trivial pass through.

Any partitioning scheme works for this simple version of the hull shader: integer,
fractional, etc.

The primary task of the basic hull shader is to compute LOD or tessellation factors.
The inputs from the vertex shader are four patch control points. These are also the
corner vertices of the patch. Recall that they have already been displaced vertically
by the vertex shader. This is important where displacements are high because the
vertical offset can significantly affect the distance to the eye point. For an example,
compare the tessellation factors in figures Figure 4 and Figure 5. The patches and
the relative location of the view point are identical in both screenshots. However,
the tessellation factors increase slightly in Figure 5 because of the displacement
upwards towards the eye.

For each patch edge, the shader computes the edge length and then conceptually fits
a sphere around it. The sphere is projected into screen-space and its screen-space
diameter is used to compute the tessellation factor for the edge. See Figure 6 below.
The algorithm targets a triangle width in pixels:

tessellation factor = diameter / g_tessellatedTriSize;

This calculation results in a triangle size that is uniform in screen-space (boundary
conditions notwithstanding). It is very scalable: it scales automatically with display
resolution and the g_tessellatedTriSize variable can be easily be tuned to
achieve the best performance/detail trade-off.

Figure 6: Screen-space-based computation of tessellation factors.

An initial version of the screen-space algorithm projected the quad edges themselves
into screen-space and then applied a similar calculation. However, this fails when a
quad with significant displacement is viewed edge-on, as shown in Figure 7. The
displaced quad edge is almost parallel to the view vector and thus has almost zero
length in screen-space. The result is a minimum tessellation factor and severe
aliasing. Projected spheres work far better. The edge-based code has been left in

the HS source and is commented-out; it could be enabled for illustration purposes.

Figure 7: Screen-space-based tessellation factors for a quad seen edge-on.

The hull shader also performs view frustum culling on a per-patch basis. Patches
are culled by setting their tessellation factors to -1.

Domain Shader: Displacement Mapping

The domain shader does straightforward UV parameter interpolation ð itõs a square
quad patch. It sample two displacement maps at different scales. The detail
displacement is scaled by the inverse of the coarse displacement, in the usual ridge
noise manner after (F. Kenton Musgrave, 2002).

Pixel Shader & Normals
The pixel shader unremarkably samples colour textures and lights the scene.
However, it is important to note that the pixel shader alone computes surface
normals in our sample.

Normals can be computed in the domain shader and this might be more efficient
than per-pixel normals. But we prefer fractional_even partitioning because it leads
to smooth transitions between tessellation factors. Fractional portioning gives
tessellated geometry that moves continuously. If geometric normals are computed
from the tessellated polygons, the shading aliases significantly.

The tessellation can be designed such that the vertices and normals move less ð see
the geo-morphing ideas in (Cantlay, 2008). However, this would impose further
constraints on an already-complex hull shader. We prefer to limit the hull and
domain shaders to geometry and LOD and place the shading in the pixel shader.
Decoupling the tasks simplifies the whole.

Crack-Free Tessellation

For patches of uniform size, a crack-free surface is achieved by computing
tessellation factors purely as a function of quad patch edges. Since edges are shared,
each patch arrives at a result that agrees with its neighborsõ edges. This is
implemented by the function SphereToScreenSpaceTessellation ; note that it
only takes the edge vertices and edge diameter as arguments.

It is quite easy to break the crack-free surface and create holes (especially the more
complex version below). Careful testing is essential during development ð see
Debug Options below.

(It is not strictly true to say that edges are shared between adjacent patches. Patch
vertices are constructed in the shader from a combination of the patch center and
the system value VertexId . See the ReconstructPosition shader function.
Theoretically, the values might differ. It would be easy to convert this to vertices
that are truly shared by placing vertex positions in a vertex buffer and indexing them
with an index buffer. However, it works in practice and far greater liberties are
taken with adjacent patches when dealing with non-uniform patch sizes.)

Non-Uniform Patch Sizes

Motivation ï Range of Scales
Terrain engines often support large world sizes (or level sizes in games). For
example, Tom Clancyõs H.A.W.X. 2 uses levels that are an impressive 128x128km.
To render a world of this size and maintain a roughly constant triangle size in
screen-space requires a huge range of triangle sizes in world space. Triangles closest
to the view-point may be only a few centimeters wide; the most distant triangles may
be several kilometers across. Figure 8 below is typical ð the foreground polygons
are smaller than footprints, say 5cm, but the distant polygons are maybe hundreds
of meters across. And the view distance in this image is fairly short.

DirectX 11 limits tessellation factors to the range 1 to 64. This is not nearly
sufficient to represent the range of scales required for a large, detailed world. To
continue the example above, the smallest polygons are 5cm. If they are
implemented with the finest tessellation factor of 64, the largest polygon can only be
64 x 5 = 320cm. Whereas terrain may require a range of scales like 5cm to 1km or
20,000 to 1.

The solution is of course to employ patches of differing sizes. Terrain engines
commonly implement LOD with tiles of differing sizes, for example (Ulrich, 2002).
We apply this to our patch sizes, as shown in Figure 9. Our TileRing C++ class
implements the varying size. (Ring is not an entirely accurate term ð they are
concentric squares.) Recall that a tile is 8x8 patches. Each successive TileRing
increases the tile size by 2x; the 2x scaling considerably simplifies the crack-free
algorithm below.

Figure 8: The wide range of polygon sizes in a typical engine. Note how the
screen-space size is approximately constant.

Figure 9: Non-uniform patch sizes.

Implementation ï Adjacency of Different -Sized Patches
The crack-free technique described above does not work for patches of different
sizes. The simpler version of the algorithm assumes that patches share edges. But
this is clearly not the case in Figure 9.

It is necessary to add explicit information about a patchõs neighbors. A relatively
simple and concise description suffices: relative size. The relative size is one float
scalar that indicates the neighborõs size, relative to ours. Figure 10 shows some
example adjacency scales. In practice, each patch has four adjacency scalars ð only a

