

February 2009Fe

January 2011

DirectX 11 Terrain
Tessellation

Iain Cantlay
icantlay@nvidia.com

Document Change History

Version Date Responsible Reason for Change

1.0 21/01/11 IAC Initial release

Contents

Abstract ... 2

How Does It Work? .. 3

Mapping to the Tessellation Pipeline .. 3

Hull Shader: Tessellation LOD ... 5

Domain Shader: Displacement Mapping .. 7

Pixel Shader & Normals ... 7

Crack-Free Tessellation ... 7

Non-Uniform Patch Sizes .. 8

Motivation – Range of Scales .. 8

Implementation – Adjacency of Different-Sized Patches .. 9

Advisability of Adjacent, Different-sized Patches ...12

Multiple Displacement Maps ...13

Upgrade Path for Game Assets ..15

Performance .. 16

Rendering Efficiency ...16

Tessellation LOD Targets ..18

Tessellation Level Histograms ..19

Displacement Map Sampling and Aliasing ..21

Scrolling in Displacement Map Generation ..21

Running the Sample... 22

Debug Options...22

Appendices .. 22

Real Star Rendering ...22

Lunar Data ..22

Bibliography ... 23

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Figures

Figure 1: A typical view of our DirectX 11 sample. ... 2

Figure 2: A similar terrain technique as used in Tom Clancy’s H.A.W.X. 2, courtesy of Ubisoft. 3

Figure 3: the shader pipeline stages, their tasks and a sketch of one patch, passing through the
pipeline. ... 4

Figure 4: A basic grid of uniform patches. Terrain tiles are separated by the thick green/yellow lines;
patches are shown by the checkerboard pattern (8x8 per tile). ... 5

Figure 5: Patches displaced by seven octaves of fBm noise. These are the same patches as shown in
Figure 4. .. 5

Figure 6: Screen-space-based computation of tessellation factors. .. 6

Figure 7: Screen-space-based tessellation factors for a quad seen edge-on. ... 7

Figure 8: The wide range of polygon sizes in a typical engine. Note how the screen-space size is
approximately constant. ... 9

Figure 9: Non-uniform patch sizes. ... 9

Figure 10: Adjacency size relationships between non-uniform patches. ...10

Figure 11: Identifying edges that require adjacency adjustment within a tile. The larger tile is shown
divided into its 8x8 patches. ..10

Figure 12: Reconstructing the edge of a patches larger neighbor. ..11

Figure 13: fractional_even partitioning across a boundary between different-sized patches.11

Figure 14: fixing boundaries with non-square patches. ..13

Figure 15: Adding detail to an Australia model from (Fournier, 1982). ..14

Figure 16: Our fBm detail noise displacement map. ..14

Figure 17a: The low resolution displacement map alone (above) and Figure 18b the result of adding
detailed displacement (below). ..15

Figure 19: Different displacement detail scales used in Tom Clancy’s H.A.W.X 2, courtesy of Ubisoft.
 ..16

Figures 20a-c: The effect of target triangle size on FPS and total triangle count.18

Figure 21: Performance of the tessellation LOD and its visual effect on triangle size.19

Figure 22: Terrain triangle size distribution histograms measured for Tom Clancy’s H.A.W.X. 2.
Triangle count (vertical) vs. triangle size buckets (horiz). ...20

Abstract

This sample implements a technique for rendering a terrain surface using DirectX
11 tessellation. We show how to implement a crack-free surface with LOD that is
adaptive in screen-space. Tessellating the geometry on the GPU is highly efficient
and rendering 1.5 million polygons at more than 100 FPS is easily possible on a
GeForce GTX460.

The technique is also easy to integrate with an existing terrain rendering engine. We
show how art assets from an existing engine can be reused and augmented with
additional detail.

This paper assumes a general familiarity with DirectX 11 tessellation. For an
introduction to tessellation see the recording of this GTC 2010 presentation
(Cebenoyan, 2010) which also includes a discussion of this terrain technique.

Figure 1: A typical view of our DirectX 11 sample.

Figure 2: A similar terrain technique as used in Tom Clancy’s H.A.W.X. 2,

courtesy of Ubisoft.

How Does It Work?

Mapping to the Tessellation
Pipeline

Figure 3 below shows how the technique maps onto the stages of the shader
pipeline. On the left are the various shader stages; on the right is an approximate
sketch of the status of one patch at the corresponding pipeline stage.

Figure 3: the shader pipeline stages, their tasks and a sketch of one patch,
passing through the pipeline.

The primitives are axis-aligned quad patches. They are entirely flat: all the heights
are zero. The vertex data defines only the 2D extents of a patch. Figure 4 shows
the arrangement of patches. They are grouped into tiles for top-level culling and
rendering, with 8x8 patches per tile. Patches are shown as a checkerboard pattern;
whereas tiles are separated by thick green/yellow gaps. (The tessellation factors are
artificially low in these screenshots for illustration purposes.)

Vertex Shader: pass through

Hull Shader: LOD

Tessellator: fixed fn

Domain shader: displacement

Pixel shader: normals & shading

2.1

4.5

3.7

1.9

Figure 4: A basic grid of uniform patches. Terrain tiles are separated by the

thick green/yellow lines; patches are shown by the checkerboard
pattern (8x8 per tile).

The vertex shader is almost entirely pass-through. Its only task is to displace the
quad patch corners. This correctly places the patch vertices and edges in model
space, ready for subsequent LOD calculations in the next stage.

The primary task of the hull shader is to compute LOD and assign tessellation
factors to the patch edges and centre. Correct choice of tessellation factors is
essential for generating a crack-free surface and this task dominates the hull shader,
making it the most complex part of the system.

Next, the fixed-function tessellator subdivides the patch into triangles, using the
tessellation factors output by the hull shader.

The domain shader samples the displacement map(s) and offsets each vertex
vertically. It then applies the world-view-projection matrix to transform the vertex
into clip space. The result of a simple displacement is shown in Figure 5.

Finally, the pixel shader shades the surface in the usual manner.

You may notice that the sample also includes a Geometry Shader. This is only used
for rendering the debug wireframe and is not a necessary part of the terrain
rendering. The “solid wireframe” technique is described in (Samuel Gateau, 2007)
and (Andreas Bærentzen, 2006).

Figure 5: Patches displaced by seven octaves of fBm noise. These are the same
patches as shown in Figure 4.

Hull Shader: Tessellation LOD
We will first describe a simpler version of the hull shader (HS). A more complex
version that accounts for varying patch sizes will be discussed later. From now on,

when we refer to the hull shader, we mean the patch constant hull shader function.
The per-vertex hull shader is a trivial pass through.

Any partitioning scheme works for this simple version of the hull shader: integer,
fractional, etc.

The primary task of the basic hull shader is to compute LOD or tessellation factors.
The inputs from the vertex shader are four patch control points. These are also the
corner vertices of the patch. Recall that they have already been displaced vertically
by the vertex shader. This is important where displacements are high because the
vertical offset can significantly affect the distance to the eye point. For an example,
compare the tessellation factors in figures Figure 4 and Figure 5. The patches and
the relative location of the view point are identical in both screenshots. However,
the tessellation factors increase slightly in Figure 5 because of the displacement
upwards towards the eye.

For each patch edge, the shader computes the edge length and then conceptually fits
a sphere around it. The sphere is projected into screen-space and its screen-space
diameter is used to compute the tessellation factor for the edge. See Figure 6 below.
The algorithm targets a triangle width in pixels:

tessellation factor = diameter / g_tessellatedTriSize;

This calculation results in a triangle size that is uniform in screen-space (boundary
conditions notwithstanding). It is very scalable: it scales automatically with display
resolution and the g_tessellatedTriSize variable can be easily be tuned to
achieve the best performance/detail trade-off.

Figure 6: Screen-space-based computation of tessellation factors.

An initial version of the screen-space algorithm projected the quad edges themselves
into screen-space and then applied a similar calculation. However, this fails when a
quad with significant displacement is viewed edge-on, as shown in Figure 7. The
displaced quad edge is almost parallel to the view vector and thus has almost zero
length in screen-space. The result is a minimum tessellation factor and severe
aliasing. Projected spheres work far better. The edge-based code has been left in

the HS source and is commented-out; it could be enabled for illustration purposes.

Figure 7: Screen-space-based tessellation factors for a quad seen edge-on.

The hull shader also performs view frustum culling on a per-patch basis. Patches
are culled by setting their tessellation factors to -1.

Domain Shader: Displacement Mapping

The domain shader does straightforward UV parameter interpolation – it’s a square
quad patch. It sample two displacement maps at different scales. The detail
displacement is scaled by the inverse of the coarse displacement, in the usual ridge
noise manner after (F. Kenton Musgrave, 2002).

Pixel Shader & Normals
The pixel shader unremarkably samples colour textures and lights the scene.
However, it is important to note that the pixel shader alone computes surface
normals in our sample.

Normals can be computed in the domain shader and this might be more efficient
than per-pixel normals. But we prefer fractional_even partitioning because it leads
to smooth transitions between tessellation factors. Fractional portioning gives
tessellated geometry that moves continuously. If geometric normals are computed
from the tessellated polygons, the shading aliases significantly.

The tessellation can be designed such that the vertices and normals move less – see
the geo-morphing ideas in (Cantlay, 2008). However, this would impose further
constraints on an already-complex hull shader. We prefer to limit the hull and
domain shaders to geometry and LOD and place the shading in the pixel shader.
Decoupling the tasks simplifies the whole.

Crack-Free Tessellation

For patches of uniform size, a crack-free surface is achieved by computing
tessellation factors purely as a function of quad patch edges. Since edges are shared,
each patch arrives at a result that agrees with its neighbors’ edges. This is
implemented by the function SphereToScreenSpaceTessellation; note that it
only takes the edge vertices and edge diameter as arguments.

It is quite easy to break the crack-free surface and create holes (especially the more
complex version below). Careful testing is essential during development – see
Debug Options below.

(It is not strictly true to say that edges are shared between adjacent patches. Patch
vertices are constructed in the shader from a combination of the patch center and
the system value VertexId. See the ReconstructPosition shader function.
Theoretically, the values might differ. It would be easy to convert this to vertices
that are truly shared by placing vertex positions in a vertex buffer and indexing them
with an index buffer. However, it works in practice and far greater liberties are
taken with adjacent patches when dealing with non-uniform patch sizes.)

Non-Uniform Patch Sizes

Motivation – Range of Scales
Terrain engines often support large world sizes (or level sizes in games). For
example, Tom Clancy’s H.A.W.X. 2 uses levels that are an impressive 128x128km.
To render a world of this size and maintain a roughly constant triangle size in
screen-space requires a huge range of triangle sizes in world space. Triangles closest
to the view-point may be only a few centimeters wide; the most distant triangles may
be several kilometers across. Figure 8 below is typical – the foreground polygons
are smaller than footprints, say 5cm, but the distant polygons are maybe hundreds
of meters across. And the view distance in this image is fairly short.

DirectX 11 limits tessellation factors to the range 1 to 64. This is not nearly
sufficient to represent the range of scales required for a large, detailed world. To
continue the example above, the smallest polygons are 5cm. If they are
implemented with the finest tessellation factor of 64, the largest polygon can only be
64 x 5 = 320cm. Whereas terrain may require a range of scales like 5cm to 1km or
20,000 to 1.

The solution is of course to employ patches of differing sizes. Terrain engines
commonly implement LOD with tiles of differing sizes, for example (Ulrich, 2002).
We apply this to our patch sizes, as shown in Figure 9. Our TileRing C++ class
implements the varying size. (Ring is not an entirely accurate term – they are
concentric squares.) Recall that a tile is 8x8 patches. Each successive TileRing
increases the tile size by 2x; the 2x scaling considerably simplifies the crack-free
algorithm below.

Figure 8: The wide range of polygon sizes in a typical engine. Note how the
screen-space size is approximately constant.

Figure 9: Non-uniform patch sizes.

Implementation – Adjacency of Different-Sized Patches
The crack-free technique described above does not work for patches of different
sizes. The simpler version of the algorithm assumes that patches share edges. But
this is clearly not the case in Figure 9.

It is necessary to add explicit information about a patch’s neighbors. A relatively
simple and concise description suffices: relative size. The relative size is one float
scalar that indicates the neighbor’s size, relative to ours. Figure 10 shows some
example adjacency scales. In practice, each patch has four adjacency scalars – only a

few are show for the sake of clarity. Setting the adjacency scalars per-tile is one of
the primary jobs of the TileRing class. See the AssignNeighbourSizes function.

Figure 10: Adjacency size relationships between non-uniform patches.

Note that the adjacency information is per-instance vertex data; one instance is one
tile. Thus all the patches and vertices within a tile share the same adjacency.
Boundary patches and edges must be identified on a finer granularity. It is also
necessary to know which patch is being processed within the tile/instance:

Figure 11: Identifying edges that require adjacency adjustment within a tile. The

larger tile is shown divided into its 8x8 patches.

Figure 11 shows the central tile from Figure 10 in more detail. The larger tile has
been subdivided into its constituent quad patches. The patches that are adjacent to
smaller tiles are hatched green and, within the patches, the adjacent edges are red.

The code to detect these edges forms a large part of the hull shader – the eight if
statements in TerrainScreenspaceLODConstantHS. The basic tessellation LOD
is computed at the top of the hull shader, then the if statements detect edges that
have different-sized neighbors. Note that one patch can trigger multiple if
statements where it is on a tile corner.

Having detected an edge that is adjacent to a different-sized tile, it is then necessary
to adjust its tessellation factor to match the neighbor. There are three main parts to
this:

1. Duplicating the neighbor’s LOD calculation.
2. Clamping to integer tessellations.
3. As a work-around, clamping to power-of-2 tessellations.

In more detail:

2x

1x

0.5x1x

0.5x

Firstly, one side of the unequal size difference must calculate its neighbor’s LOD
(they don’t both need to adjust). We arbitrarily chose to alter the smaller patch’s
LOD when it has a larger neighbor; adjusting the larger patch would probably work
equally well. Some simple vector math is used to reconstruct the larger neighbor’s
vertices:

Figure 12: Reconstructing the edge of a patches larger neighbor.

The edge reconstruction of Figure 12 is implemented by the function
LargerNeighbourAdjacencyFix. The patch corner vertices have also been
displaced. So it is necessary to also fix the height of the new p1 in the function
MakeVertexHeightsAgree. (See the source code for a discussion of a bug work-
around.) The smaller tile’s tessellation factor is then half of its larger neighbor’s.

Figure 13: fractional_even partitioning across a boundary between different-sized

patches.

The smaller patch’s tessellation factor is now exactly one half of its larger
neighbor’s. However, the tessellation will not match due to our choice of
fractional_even partitioning. This is best illustrated with an example showing the
actual tessellation patterns - Figure 13. One large patch is shown with two smaller
adjacent neighbors. The larger patch has a tessellation factor of about 6.8 and the

p0

p1

p1 moved

small patches thus have 6.8/2 = 3.4. But the even partitioning divides each of these
tessellation values into symmetric patterns. They do not match and purple cracks
are visible.

The fix is to round each tessellation factor to an integer value and additionally
ensure that the larger patch has an even value. To avoid losing detail, we round the
values up. So to continue the example in Figure 13, the larger patch rounds up to
the nearest even value of 8 and the small patches round up to 4. This is
implemented in the functions SmallerNeighbourAdjacencyClamp and
LargerNeighbourAdjacencyClamp.

These functions must also take into account that their neighbors will hit the
hardware limits on tessellation factors, namely 2 and 64 (for even partitioning). So a
small patch with a larger neighbor cannot exceed 64/2=32 and a larger patch cannot
go below 2*2=4.

Finally, we implement a work-around. It appears that even if adjacent different-
sized patches have the correct integer tessellations (say, 8 and 2x 4 to continue the
above example), the tessellation patterns only seem to match in practice if the values
are powers of two. We can’t really explain this result, except to say that we should
not strictly expect adjacent different-sized patches to work at all. The situation is
analogous to T-junctions in triangle meshes.

Advisability of Adjacent, Different-sized Patches
Putting different-sized patches next to each other takes big liberties with the
correctness of the crack-free result:

1. The vector math in Figure 12 is not guaranteed to produce a bit-wise
accurate reconstruction of the neighbor’s vertex.

2. Nothing in the specification guarantees that simply choosing the
numerically correct tessellation levels will result in the exact same vertices
on either side of the boundary.

The need for the power-of-2 workaround is a clear demonstration of the second
point: on a purely numerical basis, one would expect and edge with 12 to match 2
edges of 6.

Our algorithm probably works only because the fixed-function tessellator stage is
required to interpolate in 16-bit precision. But it does work on every
implementation currently available, including the Direct3D 11 reference rasterizer.

If the algorithm breaks, say on a future Direct3D implementation, we suggest that it
could be fixed by adding non-square patches at the boundary as in Figure 14.

Figure 14: fixing boundaries with non-square patches.

Multiple Displacement Maps

Our technique uses two displacement maps, applied at different scales. The coarse
displacement map is a 1024x1024 texture that covers the entire world. It defines the
broad, overall shape of the landscape: the hills and valleys. In our sample, the
coarse displacement map is generated procedurally from fractals. After (F. Kenton
Musgrave, 2002), we create a “hybrid” terrain from a combination of ridge noise
and fBm noise. This is rendered to a texture whenever the viewpoint moves.

The detailed displacement map is a repeating, generic map containing 5 octaves of
fBm noise. The detail map was also created by a version of our sample in order to
give noise characteristics that are similar to the coarse map. It was manually edited
in Photoshop to make it tile. The detail map is also a 1024x1024 map in our sample
and is shown in Figure 16.

The use of detail displacement was inspired by Figure 15 from (Fournier, 1982).
(However, the Australia diagram shows stochastic subdivision, rather than
displacement mapping.)

Upsample Detail

Figure 15: Adding detail to an Australia model from (Fournier, 1982).

Detail displacement mapping is very efficient. Storage requirements are minimal,
but the perceived level of detail is very high. As Figure 17b shows, the most detailed
displacements are only slightly larger than footprints. (The footprint is a simple 2D
colour texture, not a displacement.) The shape of the distant mountains and valleys
is defined by the coarse map and can be unique at each location. The limited
resolution of the coarse map is shown in Figure 17a.

Figure 16: Our fBm detail noise displacement map.

Figure 17a: The low resolution displacement map alone (above) and Figure 18b
the result of adding detailed displacement (below).

Upgrade Path for Game Assets
It is often time-consuming to make changes to game assets and/or a content
production process. This is often a barrier to adoption of new technology.
However, our technique can provide an easy upgrade path to DirectX 11 tessellation

for existing game assets. This was exploited in Tom Clancy’s H.A.W.X. 2 from
Ubisoft.

Prior to adding DirectX 11, the H.A.W.X. 2 engine used a similarly low-resolution
height map to define the world; 1025x1025 samples covered each entire game level
of 128x128km. The height maps in H.A.W.X. 2 were authored by artists to
represent specific real locations in the world. Our sample generates the equivalent
displacements procedurally, using fractal ridge noise. But the two lower-resolution
maps are similar in their scale, content and relationship to the detailed displacement
map. In H.A.W.X. 2, the existing low-resolution height maps were used – unaltered
– for the DirectX 11 version. The height maps were re-sampled with bi-cubic
magnification to 4096x4096 and detailed displacement was added, exactly as in this
sample. As Figure 19 shows, the result is highly detailed and realistic. No new
assets were required, apart from the 5 octave fBm texture.

Figure 19: Different displacement detail scales used in Tom Clancy’s H.A.W.X 2,
courtesy of Ubisoft.

Performance

Rendering Efficiency

Creating geometry on the GPU with hardware tessellation is highly efficient. The
GPU takes on most LOD calculations. On a mid-range GeForce GTX460, at

1920x1200 resolution, our sample runs at 92 FPS for the default view. The target
triangle size defaults to 3 pixels wide and at this setting the default view contains 2.5
million triangles.

Some of this cost is due to the non-terrain objects and the complex pixel shader.
Without the sky box and stars and with a trivial pixel shader, the terrain on its own
runs at 102 FPS. The pixel shader is deliberately quite complex because this is
representative of many terrain engines in games.

Our arrangement of tiles, patches and instancing is also highly efficient in its use of
the Direct3D API. Only one draw call is executed per tile ring. So the entire 2.5
million polygon terrain – including sophisticated adaptive LOD – requires a mere
three draw calls.

The table below shows how the performance and number of triangles varies with
target triangle size.

Tris size FPS # Tris

1 35 14,546,300

2 68 4,736,714

3 94 2,465,020

4 114 1,569,450

5 131 1,106,962

6 143 841,350

7 152 683860

8 162 570924

9 169 484,998

10 175 414,516

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

FPS vs target triangle width

Figures 20a-c: The effect of target triangle size on FPS and total triangle count.

Tessellation LOD Targets

Careful choice of triangle size is important for maximum GPU rendering efficiency.
Rendering too many triangles that are very small can negatively impact rasterizer
efficiency (Demers, 2010). On the other hand, we wish to render many small
triangles to produce a highly-detailed, natural terrain with no visible straight edges.

The tessellation LOD algorithm presented here allows easy control over these
factors. The hull shader attempts to render triangles at a constant target size in
screen-space which is exactly what is required for the best trade-off between
rasterizer efficiency and geometric detail. A game can easily adjust the target triangle
size to match the capabilities of the user’s hardware.

Figure 21 shows the visual result of the algorithm in wireframe. The target triangle
size is artificially large to make the visualization of the polygons clearer. The triangle
size is approximately constant, irrespective of distance from the view point or quad
patch size (the checkerboard pattern). However, some areas of under- and over-
tessellation are shown. The algorithm may fail to achieve the target triangle size for
several reasons:

1. The hardware imposes limits and the tessellation factor can only vary
between 1 and 64. The upper limit often affects quads close to the eye-
point. The non-uniform patches attempts to address this. But the size
distribution is not guaranteed to avoid the limits.

2. The screen-space LOD algorithm contains multiple approximations. To
avoid aliasing, the quad patch edges are enclosed by bounding spheres to
deliberately avoid any dependence on the orientation of the edge. Also, the
displacement is only approximately taken into account – by displacing the
quad patch corners. There is often significant displacement within a patch
that is not accounted for. The LOD calculation can be improved by adding

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

1 2 3 4 5 6 7 8 9 10

Number of triangles vs target width

more knowledge of the patch shape after displacement. More sophisticated
LOD calculations are discussed in (Cantlay, 2008).

3. Using fractional partitioning results in smaller sliver triangles within a patch
that correspond to the fractional part of the tessellation pattern. This can
only be avoided by using integer partitioning which results in small pops
between tessellation factors.

Figure 21: Performance of the tessellation LOD and its visual effect on triangle

size.

Tessellation Level Histograms
Tom Clancy’s H.A.W.X. 2 from Ubisoft uses a very similar terrain technique. The
value of g_tessellatedTriSize used by the game is 6 which should result in
triangles of 18 pixels in area. We have done some detailed analysis on how well the
technique meets that target in H.A.W.X. 2.

Average triangle size was computed by adding Direct3D queries. For each draw
call, we measured both the number of primitives rasterized (using
D3D11_QUERY_DATA_PIPELINE_STATISTICS::CInvocations) and the result
of an occlusion query with the depth test set to ALWAYS. Hence, the figures are
averages per draw call or 8x8 patches.

Figure 22: Terrain triangle size distribution histograms measured for Tom
Clancy’s H.A.W.X. 2. Triangle count (vertical) vs. triangle size buckets (horiz).

The histograms in Figure 22 show the distribution of triangle size at three
representative points in the game. The first two graphs show that the algorithm is
often perfectly on-target for 18-pixel triangles. The third graph shows that larger
numbers of small polygons can be generated in some view points. The third graph
corresponds to a low-altitude view-point, close to the ground. Although the third
histogram is not ideal according to our own triangle-size goal, the game still runs at
127 FPS at this point on a mid-range GeForce GTX460.

0

200000

400000

600000

800000

1000000

1200000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

50000

100000

150000

200000

250000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Displacement Map Sampling
and Aliasing

Displacement mapping from a texture is a sampling operation. It can alias like any
texturing. Almost nothing in our sample explicitly addresses aliasing – there is no
MIP-mapping of the displacement maps and our choice of tessellation levels does
not attempt to observe the Nyquist rate.

Moreover, our choice of fractional partitioning causes the tessellated vertices to
continuously slide through the patches. This is bound to exacerbate any aliasing as
the sample positions are constantly in motion. See (Sylvan, 2010) for a discussion of
displacement map aliasing with DirectX 11 tessellation.

Yet our sample does not suffer from obvious aliasing. Tom Clancy’s H.A.W.X. 2
takes the same approach and also works extremely well. We believe that aliasing is
minimized for several reasons:

1. The high tessellation levels often result in sampling frequencies that are
high relative to the coarse displacement map. So it is mostly over-sampled.

2. The fine tessellation and the screen-space adaptive LOD means that any
aliasing is small in screen-space. Hence, it is visually insignificant.

3. The fractal construction of the displacement maps minimizes high
frequencies: the higher frequencies are added with successively smaller
amplitudes. A detail map that contains ridge noise does not work so well
because it contains sharp edges and large-amplitude high frequencies.

Aliasing can be seen. It is most obvious in the detail displacement map, especially if
the displacement amplitude is increased.

MIP-mapping and careful choice of vertex locations can eliminate aliasing.

Scrolling in Displacement Map Generation
To implement an infinite landscape, we keep the terrain tiles and quad patches fixed
relative to the eye and move the displacement map as the view point moves in the
horizontal plane. When the view point moves, the coarse displacement map is
regenerated by a render-to-texture on the GPU. This implementation is only
possible because the sample uses purely procedural terrain.

Aliasing is much more visible if the displacement map is allowed to move
continuously, relative to the eye. To avoid this, we snap the translation of the
displacement map co-ordinates. The displacement map only moves in multiples of
the largest patch size. Thus, the positions of the patch corner vertices remain
constant, relative to the contents of the coarse displacement map. The snapping fix
can be disabled by setting SNAP_GRID_SIZE to zero in TerrainTessellation.cpp
(comment out its initialization).

This source of aliasing is only present because of our procedural generation of the
generic, coarse displacement map. More commonly in terrain engines and games,
the coarse displacement would be generated offline to represent specific real-world
or game locations, with specific features such as mountains and valleys. The
necessary work-around is not likely to be necessary in such implementations.

Running the Sample

Most controls and GUI elements should be obvious. Press F1 for some on-screen
description of the controls.

Hardware tessellation can be disabled with a check-box. Note that the non-
tessellated rendering simply renders each quad patch as two triangles and displaces
the vertices in the vertex shader. No attempt is made to make a crack-free non-
tessellated surface.

In wireframe mode, the line colour approximately indicates the tessellation level.
However, actual tessellation level is set per edge and patch center, whereas the line
colours are set at patch corners and interpolated across the patch. So it the colour is
not an exact indication of tessellation level.

Debug Options

For a crack-free surface, careful checking and debugging is essential. To assist
testing, it is best to disable the sky dome and set the background to a bright,
contrasting colour.

The sample also has useful debug camera controls. It maintains two view-points.
One is used for the tessellation LOD calculations; the other is the centre of
projection. Usually, they are both altered together by the movement controls (“Eye
& LOD” radio button). But it is possible to freeze one and move only the other. If
you select the “Eye only” radio button, the centre of projection moves and the
LOD stays frozen. This is very useful for finding cracks and examining LOD
behavior close-up. Many of the screenshots in this document use the “Eye only”
view. The “LOD only” button does the obvious converse – fix the centre of
projection and move the “eye” position used for LOD.

Appendices

Real Star Rendering

The files Stars.cpp and Stars.fx implement rendering of stars as individual polygons,
based on real-world star data. Although we also draw a background cube-map, its
resolution is not nearly sufficient to render pixel-sized stars.

Lunar Data

Our sample uses lunar data and shows an alien world, rather than something earth-
like. We choose this for several reasons:

1. We use basic fractal terrain. The lack of an erosion model is accurate and
realistic for the moon.

2. The result is not likely to suffer from the “uncanny valley” problem – being
almost realistic, but not quite correct and disconcertingly odd. As an alien
world, it is intended to be odd and eerie.

3. Plenty of NASA photographs are available free of copyright.

The use of the technique in Tom Clancy’s H.A.W.X. 2 as seen in Figure 2 and Figure
19 demonstrates that it is very applicable to real-world art assets.

Bibliography

Andreas Bærentzen, S. L. (2006). Single-Pass Wireframe Rendering. Siggraph . ACM.

Cantlay, I. (2008, August). Siggraph 2008. Retrieved from NVIDIA Developer Zone:
http://developer.nvidia.com/object/siggraph-2008-terrain.html

Cebenoyan, C. (2010). DirectX 11 Overview. Retrieved from GPU Technlogy
Conference: http://nvidia.fullviewmedia.com/gtc2010/0920-a5-2157.html

Demers, E. (2010, November 29). Tessellation for All. Retrieved from AMD Blogs:
http://blogs.amd.com/play/2010/11/29/tessellation-for-all/

F. Kenton Musgrave, D. S. (2002). Texturing and Modeling, Third Edition: A Procedural
Approach. Morgan Kaufmann.

Fournier, F. &. (1982). Computer Rendering of Stochastic Models. Communications of
the ACM .

Samuel Gateau. (2007). Solid Wireframe. Retrieved from NVIDIA Developer Zone:
http://developer.download.nvidia.com/SDK/10.5/direct3d/Source/SolidWirefram
e/Doc/SolidWireframe.pdf

Sylvan, S. (2010, April 18). The problem with tessellation in DirectX 11. Retrieved from A
Random Walk Through Geek-Space:
http://sebastiansylvan.wordpress.com/2010/04/18/the-problem-with-tessellation-
in-directx-11/

Ulrich, T. (2002). Rendering Massive Terrains using Chunked Level of Detail
Control. Siggraph.

Walbourn, C. (2010, October 27). June 2010 HLSL Compiler Issue with Tessellation.
Retrieved from MSDN Blogs:
http://blogs.msdn.com/b/chuckw/archive/2010/10/27/june-2010-hlsl-compiler-
issue-with-tessellation.aspx

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and NVIDIA Quadra are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2010 NVIDIA Corporation. All rights reserved.

