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Abstract 

This sample implements a technique for rendering a terrain surface using DirectX 
11 tessellation.  We show how to implement a crack-free surface with LOD that is 
adaptive in screen-space.  Tessellating the geometry on the GPU is highly efficient 
and rendering 1.5 million polygons at more than 100 FPS is easily possible on a 
GeForce GTX460. 

The technique is also easy to integrate with an existing terrain rendering engine.  We 
show how art assets from an existing engine can be reused and augmented with 
additional detail. 

This paper assumes a general familiarity with DirectX 11 tessellation.  For an 
introduction to tessellation see the recording of this GTC 2010 presentation 
(Cebenoyan, 2010) which also includes a discussion of this terrain technique. 

 

Figure 1: A typical view of our DirectX 11 sample.  



  

    

 

 

 

Figure 2: A similar terrain t echnique as used in Tom Clancyôs H.A.W.X. 2, 

courtesy of Ubisoft. 

How Does It Work? 

Mapping to the Tessellation 
Pipeline 

Figure 3 below shows how the technique maps onto the stages of the shader 
pipeline.  On the left are the various shader stages; on the right is an approximate 
sketch of the status of one patch at the corresponding pipeline stage. 



  

    

 

 

 

Figure 3: the shader pipeline stages, their tasks and a sketch of one patch, 
passing through the pipeline. 

The primitives are axis-aligned quad patches.  They are entirely flat: all the heights 
are zero.  The vertex data defines only the 2D extents of a patch.  Figure 4 shows 
the arrangement of patches.  They are grouped into tiles for top-level culling and 
rendering, with 8x8 patches per tile.  Patches are shown as a checkerboard pattern; 
whereas tiles are separated by thick green/yellow gaps.  (The tessellation factors are 
artificially low in these screenshots for illustration purposes.) 

 

Vertex Shader: pass through 

Hull Shader: LOD 

Tessellator: fixed fn 

Domain shader: displacement 

Pixel shader: normals & shading 
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Figure 4: A basic grid of uniform patches.  Terrain tiles are separated by the 

thick green/yellow lines; patches are shown by the checkerboard 
pattern (8x8 per tile).  

The vertex shader is almost entirely pass-through.  Its only task is to displace the 
quad patch corners.  This correctly places the patch vertices and edges in model 
space, ready for subsequent LOD calculations in the next stage. 

The primary task of the hull shader is to compute LOD and assign tessellation 
factors to the patch edges and centre.  Correct choice of tessellation factors is 
essential for generating a crack-free surface and this task dominates the hull shader, 
making it the most complex part of the system. 

Next, the fixed-function tessellator subdivides the patch into triangles, using the 
tessellation factors output by the hull shader. 

The domain shader samples the displacement map(s) and offsets each vertex 
vertically.  It then applies the world-view-projection matrix to transform the vertex 
into clip space.  The result of a simple displacement is shown in Figure 5. 

Finally, the pixel shader shades the surface in the usual manner. 

You may notice that the sample also includes a Geometry Shader.  This is only used 
for rendering the debug wireframe and is not a necessary part of the terrain 
rendering.  The òsolid wireframeó technique is described in (Samuel Gateau, 2007) 
and (Andreas Bærentzen, 2006). 

 

Figure 5: Patches displaced by seven octaves of fBm noise.  These are the same 
patches as shown in Figure 4. 

Hull Shader: Tessellation LOD 
We will first describe a simpler version of the hull shader (HS).  A more complex 
version that accounts for varying patch sizes will be discussed later.  From now on, 



  

    

 

 

when we refer to the hull shader, we mean the patch constant hull shader function.  
The per-vertex hull shader is a trivial pass through. 

Any partitioning scheme works for this simple version of the hull shader: integer, 
fractional, etc. 

The primary task of the basic hull shader is to compute LOD or tessellation factors.  
The inputs from the vertex shader are four patch control points.  These are also the 
corner vertices of the patch.  Recall that they have already been displaced vertically 
by the vertex shader.  This is important where displacements are high because the 
vertical offset can significantly affect the distance to the eye point.  For an example, 
compare the tessellation factors in figures Figure 4 and Figure 5.  The patches and 
the relative location of the view point are identical in both screenshots.  However, 
the tessellation factors increase slightly in Figure 5 because of the displacement 
upwards towards the eye. 

For each patch edge, the shader computes the edge length and then conceptually fits 
a sphere around it.  The sphere is projected into screen-space and its screen-space 
diameter is used to compute the tessellation factor for the edge.  See Figure 6 below.  
The algorithm targets a triangle width in pixels: 

tessellation factor = diameter / g_tessellatedTriSize;  

This calculation results in a triangle size that is uniform in screen-space (boundary 
conditions notwithstanding).  It is very scalable: it scales automatically with display 
resolution and the g_tessellatedTriSize  variable can be easily be tuned to 
achieve the best performance/detail trade-off. 

 

Figure 6: Screen-space-based computation of tessellation factors. 

An initial version of the screen-space algorithm projected the quad edges themselves 
into screen-space and then applied a similar calculation.  However, this fails when a 
quad with significant displacement is viewed edge-on, as shown in Figure 7.  The 
displaced quad edge is almost parallel to the view vector and thus has almost zero 
length in screen-space.  The result is a minimum tessellation factor and severe 
aliasing.  Projected spheres work far better.  The edge-based code has been left in 



  

    

 

 

the HS source and is commented-out; it could be enabled for illustration purposes.

 

Figure 7: Screen-space-based tessellation factors for a quad seen edge-on. 

The hull shader also performs view frustum culling on a per-patch basis.  Patches 
are culled by setting their tessellation factors to -1. 

Domain Shader: Displacement Mapping 

The domain shader does straightforward UV parameter interpolation ð itõs a square 
quad patch.  It sample two displacement maps at different scales.  The detail 
displacement is scaled by the inverse of the coarse displacement, in the usual ridge 
noise manner after (F. Kenton Musgrave, 2002). 

Pixel Shader & Normals 
The pixel shader unremarkably samples colour textures and lights the scene.  
However, it is important to note that the pixel shader alone computes surface 
normals in our sample. 

Normals can be computed in the domain shader and this might be more efficient 
than per-pixel normals.  But we prefer fractional_even partitioning because it leads 
to smooth transitions between tessellation factors.  Fractional portioning gives 
tessellated geometry that moves continuously.  If geometric normals are computed 
from the tessellated polygons, the shading aliases significantly. 

The tessellation can be designed such that the vertices and normals move less ð see 
the geo-morphing ideas in (Cantlay, 2008).  However, this would impose further 
constraints on an already-complex hull shader.  We prefer to limit the hull and 
domain shaders to geometry and LOD and place the shading in the pixel shader.  
Decoupling the tasks simplifies the whole. 

Crack-Free Tessellation 

For patches of uniform size, a crack-free surface is achieved by computing 
tessellation factors purely as a function of quad patch edges.  Since edges are shared, 
each patch arrives at a result that agrees with its neighborsõ edges.  This is 
implemented by the function SphereToScreenSpaceTessellation ; note that it 
only takes the edge vertices and edge diameter as arguments. 

It is quite easy to break the crack-free surface and create holes (especially the more 
complex version below).  Careful testing is essential during development ð see 
Debug Options below. 



  

    

 

 

(It is not strictly true to say that edges are shared between adjacent patches.  Patch 
vertices are constructed in the shader from a combination of the patch center and 
the system value VertexId .  See the ReconstructPosition  shader function.  
Theoretically, the values might differ.  It would be easy to convert this to vertices 
that are truly shared by placing vertex positions in a vertex buffer and indexing them 
with an index buffer.  However, it works in practice and far greater liberties are 
taken with adjacent patches when dealing with non-uniform patch sizes.) 

Non-Uniform Patch Sizes 

Motivation ï Range of Scales 
Terrain engines often support large world sizes (or level sizes in games).  For 
example, Tom Clancyõs H.A.W.X. 2 uses levels that are an impressive 128x128km.  
To render a world of this size and maintain a roughly constant triangle size in 
screen-space requires a huge range of triangle sizes in world space.  Triangles closest 
to the view-point may be only a few centimeters wide; the most distant triangles may 
be several kilometers across.  Figure 8 below is typical ð the foreground polygons 
are smaller than footprints, say 5cm, but the distant polygons are maybe hundreds 
of meters across.  And the view distance in this image is fairly short. 

DirectX 11 limits tessellation factors to the range 1 to 64.  This is not nearly 
sufficient to represent the range of scales required for a large, detailed world.  To 
continue the example above, the smallest polygons are 5cm.  If they are 
implemented with the finest tessellation factor of 64, the largest polygon can only be 
64 x 5 = 320cm.  Whereas terrain may require a range of scales like 5cm to 1km or 
20,000 to 1. 

The solution is of course to employ patches of differing sizes.  Terrain engines 
commonly implement LOD with tiles of differing sizes, for example (Ulrich, 2002).  
We apply this to our patch sizes, as shown in Figure 9.  Our TileRing  C++ class 
implements the varying size.  (Ring is not an entirely accurate term ð they are 
concentric squares.)  Recall that a tile is 8x8 patches.  Each successive TileRing  
increases the tile size by 2x; the 2x scaling considerably simplifies the crack-free 
algorithm below. 

 



  

    

 

 

 

Figure 8: The wide range of polygon sizes in a typical engine.  Note how the 
screen-space size is approximately constant. 

 

Figure 9: Non-uniform patch sizes. 

Implementation ï Adjacency of Different -Sized Patches 
The crack-free technique described above does not work for patches of different 
sizes.  The simpler version of the algorithm assumes that patches share edges.  But 
this is clearly not the case in Figure 9. 

It is necessary to add explicit information about a patchõs neighbors.  A relatively 
simple and concise description suffices: relative size.  The relative size is one float 
scalar that indicates the neighborõs size, relative to ours.  Figure 10 shows some 
example adjacency scales.  In practice, each patch has four adjacency scalars ð only a 






























