<3

NVIDIA.

DirectX 11 Terrain
Tessellation

lain Cantlay
icantlay@nvidia.com

January 2011

Document Change History

Version | Date Responsible Reason for Change
1.0 21/01/11 IAC Initial release
Contents
N 011 1 =T PP PPUPPP 2
HOW D0ES [t WOTK? o es et e e es aeaaaaa s s 3
Mapping to the @ssellation PIipeline...........oooi oo erme e e 3
Hull Shader: Tessellation LOD..........cccoiiiiiieeeeiiiieeee e ecmee e mmneeeeeeeas 5
Domain Shader: Displacement Mapping............cceeeieeeeeeeerniiiiieeeeeeesssesseeeseneeeeeeeesssne v
Pixel Shader & NOIMI@IS........oiuiiiiiiii e ceeeeee e e e e e e e 7.
(O = Tt =Tl o TS = = Lo o N 7..
NON-UNIfOrM PAtCN SIZES........ciiiiiiiiiii et e e e e 8....
Motivationd Range Of SCAlES...........cooiiiiiiieeeeeee e 8..
Implementatio® Adjacency of Differerbized PatChes.............cooovvvieecceriiieeieiiiiiiiieaee 9.
Advisability of Adjacent, Differesized Patches................coo oo ieeeeeeeei e, 12
Multiple DiSplacemMeEnt MapS..........cuuieiiiiieeemiiii e et mmme et e e e e st emmeeeee e e e e e ane 13.
Upgrade Path for Game ASSELS........ooiiiiiiiii e e eeeeeee e 15
PerformanCe ..ot e e .. 16
[y oo [T g aTo TN i o =T o xSRI 16
Tessellation LOD TargelS.......c.uuuiiiiiiiiieeeeeea ittt e e e s eeesmm e e e e e s mmmne e e e e e e aannes 18..
Tessellation Level HiStOgrams............ooooi i iiiiieeeiiieeeeeeeeeee e e 19
Displacement Map Sampling and AlASINGcoiiiiiieeeeeee i 21...
Scrolling in Displacement Map GENEIatiON..........uuvueriieeccee e eeeeieee e ieerreee e e e e e aaeeas 21.
Running the Sample . e e 22
D=1 o1 T @] o] 1 o] o K- SRR 22
APPENAICES oo ettt eereree e e e e e e e e e v 22
T LIRS = Ll =T [0 [T 1o 22
LUNGE DATAL.....uiiiiiiiii et eeeece et mee e e e e et e e e et aaeenam e e e etta s e e e eebas snmmmeebaa e eas 22.

Bibliography oo s e .. 23

Figures

Figure 1: A typical view of our DirectX 11 Sample..........oeveeiiicccciiii e 2...

Figure 2A similar terrain technique as usétbirm C 1 a n c y dcsurtésy oAUbMOftX....3 2

Figure 3: the shader pipeline stages, their tasks and a sketch of one patch, passing through the

011 0= 11 1= PP PPPERPR 4..

Figure 4: A basic grid of uniform patches. Terrain tiles are separated by the thick green/yellow lines;
patches are shown by the checkerboard pattern (8x8 per.tile).............cceeveeervvvvveeenen. 5.

Figure_ 5: Patches displaced by seven octaves of fBm noise. These are the same patches as shown in
0 [|3 PPN 5.

Figure 6: Screapacebased computation of tessellation factars.............ccvvccceriiiiieiiiiinnee. G....

Figure 7: Screapacebased tessellation factors for a quad seemedge...........ccvvvvvvveceecennnnn. 7.

Figure 8: The wide rangkpmlygon sizes in a typical engine. Note how the spaes size is
APPrOXIMALENY CONSTANT.......eeiiiiiiiiiieecceree et e ettt emrrree e e e s e e e e s ereeeee e s s e annnneeeeeas Q...

Figure 9: NOAUNIfOrM PAtCh SIZES........uuiiiiiiiiiiitceereee e e e e e e e eeeeeee e e ee e e e e e e e e e e e s mmmnneaaneanes Q..

Figure 10: Adjacency size relationships betweamifionm patCches...............occvvvimeeeennnnnn. 10

Figure 11: Identifying edges that require adjacency adjustment within a tile. The larger tile is shown
divided iNto itS 8X8 PALCNES.........uuiiiiiii e mee e 10

Figure 12: Reconstructing the edge of a patches larger neighhar...........oceeeeeeiiiiiiiinnnnn, 11..

Figure 13: fractional_even partitioning across a boundary between-sitttedtches.......... 11

Figurel4: fixing boundaries with reqQUAare PatChes.............ccvvviiicemmeee e 13

Figure 15: Adding detail to an Australia model from (Fournier,.1982).............cccccceervvnnnns 14

Figure 16: Our fBm detail noise displacement.map..............cuicemmmeeieeiiiiiiiiiieee e ereeeee e 14

Figure 17a: The low resolution displacement map alone (above) and Figure 18b the result of adding
detailed displacement (DEIOW)............oeiiiiii i 15

Figure 19: Different displacement detail scales ubemlim C | a n c vy, Gosirtedy ofAJbiSlgfI. X 2
.. 1

Figures 20a: The effect of target triangle size on FPS and total triangle.count............... 18

Figure 21: Performance of the tessellation LOD and its visual effect on triangle.size......19..

Figure 22: Terrain triangle size distribution histograms measufied far Cl ancy d6s H. A.
Triangle count (vertical) vs. triangle size buckets (horiz)...........ccooeeeeeeerl 20.

NVIDIA.

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

www.nvidia.com

Abstract

This sample implementstechnique for rendering a terrain surface [BHegtX
11tessellation. We show how to implement a-freelsurface with LOD that is
adaptive in screapace.Tessellating the geometry on the GPU is highly efficient
and rendering.3 million polygons atore thanl00 FPS is s#dy possible on a
GeForce GTX46.

The technique is also easy to integrate with an existing terrain rendering engine.
show how art assets from an existing engine can be reused and awdthented
additional detail.

This paper assumes a general familiarity DingictX 11 tessellation. For an
introduction to tessellation sé®e recording of this GTQ010 presentation
(Cebenoyan, 201@hich also includes a distois®f this terrain teclue

Figure 1: A typical view of our DirectX 11 sample.

Eliminate enemy aircraft

[DAMAGE]

Figure 2: A similar terrain technique as usedin Tom C/ #.A.WXKAE2s
courtesy of Ubisoft.

How Does It Work?

Mapping to the Tessellation
Pipeline

Figure 3 below shows how the techniqgue maps onto the stages of the shader
pipeline. On the left are the various shader stagetheoright is an approximate
sketch of the status of one patch at the corresponding pipeline stage.

Figure 3: the shader pipeline stages, their tasks and a sketch of one patch,
passing through the pipeline.

The primitives arexs-aligned quad patche$hey are entirely flat: all the heights

are zero. The vertex data defines only the 2D extents of aFigtole4 shows

the arrangement of patches. They are grouped into tiles-feveiopulling and
rendering, with 8x8 patches per tile. Patches are shown as a checkerboard pattern;
whereasiles are separated by thick green/yellow dape. tessellation factase
artificiallylow in these screenshots for illustration purposes.)

Figure 4: A basic grid of uniform patches. Terrain tiles are separated by the
thick green/yellow lines; patches are shown by the checkerboard
pattern (8x8 per tile).

The vertex shader is almost entirely-thasagh. Its only task is to displace the
guad patch cornersThis correctly places the patch vertices and edges in model
space, ready for subsequent LOD calculations in the next stage.

The primary tas of the hull shader is to compute LOD and assign tessellation
factors to the patch edges and cent@errect choice of tessellation factors is
essential for generating a cifagk surface and this task dominates the hull shader,
making it the most congy part of the system.

Next, the fixedunction tessellator subdivides the patch into triangles, using the
tessellation factors output by the hull shader.

The domain shader samples the displacement map(s) and offsets each vertex
vertically. It then appsighe worldviewprojection matrix to transform the vertex
into clip spaceThe result of a simple displacement is showigumeb.

Finally, the pixel shader shatiessurface in the usual manner.

You may natice that the sample also includes a Geometry Shader. This is only used

for rendering the debug wireframe and is not a necessary part of the terrain
rendering. The 0 s odescribed wibameef Gatean,e2607)t e c hni
and(Andreas Beerentzen, 2006)

Figure 5: Patches displaced by seven octaves of fBm noise. These are the same
patches as shown in Figure 4.

Hull Shader. Tessellation LOD

We will first describe a simpler version of the hull sfid8¢r A more complex
version that accounts for varying patch sizes will be discussed later. From now on,

when we refer to the hull shades, mwean the patch constant hull shader function.
The pervertex hull shader is a trivial pass through.

Any partitioning scheme works for this simple version of the hull shader: integer,
fractional, etc.

The primary task of the basic hull shader is to ¢erb@D or tessellation factors.

The inputs from the vertex shader are four patch control points. These are also the
corner vertices of the patcRecall that they have already been displaced vertically
by the vertex shader. This is important wher&adespents are high because the
vertical offset can significantly affect the distance to the eyeHmoiah example,
compareahe tessellation factorsfiguresFigure4 andFigureb5. The patches and

the relative location of the view point are identical in both screenshots. However,
the tessellation factors increase slighthigare5 becausef the displacement
upwards towards the eye.

For each patch edge, the shader computes the edge length eonttdpnally fits
a sphere around it. The sphere is projected into-spa@@and its scregpace
diameter is used to compute the tessell&ctor for the edgesed-igure6 below
The algorithm targets a tiggen width in pixels:

tessellation factor = diameter / g_tessellatedTriSize;

This calculation results in a triangle size that is uniform insgaeen(boundary
conditions notwithstanding). It is very scalable: it scales automatically with display
resoltion and theg_tessellatedTriSize variable can be easily be tuned to
achieve the best performance/detail taftie

O\)‘aé;"
Screen e

1l Projected
H sphere
7 j| diameter

N

Figure 6: Screen-space-based computation of tessellation factors.

An initial version of the screspace algorithm projected the quad edges themselves
into screerspace and then applied a similar calculation. However, this fails when a
quad with significant displacement is viewedadges shown ifigure7. The

displaced quad edge is almost parallel to the view vector and thus has almost zero
length in screespace. The result is a minimum tessellation factor and severe
aliasing.Projectedspheres work far bettefhe edgdased code has been left in

the HS source and is commertet it could be enabled for illustration purposes.

Isplaced terrai

Displaced quad

Quad edge

Figure 7: Screen-space-based tessellation factors for a quad seen edge-on.

The hull shader also performs view frustum culling onpajoér basis. Patches
are culled by setting their tessellation factets to

Domain Shader: Displacement Mapping

The domain shader does straightforward UV parameter interpditdicn a s quar e
quad patch. It sample two displacement maps at different scales. The detall
displacement is scaled by the inverse of the coarse displacement, in the usual ridge
noise manner aft@f. Kenton Musgrave, 2002)

Pixel Shader & Normals

The pixel shadeunremarkablysamples colour textsrend lights the scene.
However, it is important to note that the pixel shatmmrecomputes surface
normals in our sample.

Normals can be computed in the domain shadehanthightbe more efficient
thanperpixel normals. But we prefer fractional_even partitioning because it leads
to smooth transitions between tessellation factors. Fractional portioning gives
tessellated geometry that moves continuously. If geometric normatsparted

from the tessellated polygons, the shading aliases significantly.

The tessellation can be designed such thatrtites@nd normals move léssee

the geemorphing ideas ifCantlay, 2008)However, this would impose further
constraints on an alreadymplex hull shaderWe prefer to limit the hull and
domain shaders to geometry and LOD and place the shading in the pixel shader.
Decoupling the tasks simplifies the whole.

Crack-Free Tesselation

For patches of uniform size, a crlele surface is achieved by computing
tessellation factors purely as a function of quad patch edges. Since edges are shared,
each patch arrives at a result t hat agr
implemated by the functiorsphereToScreenSpaceTessellation ; note that it

only takes the edge vertices and edge diameter as arguments.

It is quite easy to break the crlieke surface and create holes (especially the more
complex version below)Careful testings essential during \@dopmentd see
Debug Optiondelow

(It is notstridy true to say that edges are shared between adjacent patches. Patch
vertices are constructed in the shader from a combination of the patch center and
the system valueertexid . Seethe ReconstructPosition shader functian
Theoretically, the values hiigliffer. It would be easy to convert this to vertices

that are truly shared by placing vertex positions in a vertex buffer and indexing them
with an index buffer. However, it works in practice and far greater liberties are
taken with adjacent patchdsendealing with noniniform patch sizes.)

Non-Uniform Patch Sizes

Motivation i Range of Scales

Terrain engines often support large world goretevel sizes in gameskFor
exampleTom CIl ancy ases IéVelsAtha\areXan im@ressive 128x128km.

To render a world of this size and maintain a roughly constant triangle size in
screerspace requires a huge range of triangle sizes in world space. Triangles closest
to the viewpoint may benly a few ceitheters widethe most distant triangles may

be several kilometers acroBgggure8 belowis typicab the foreground polygons

are smaller than footprints, say 5cm, but the distant polygons are maybe hundreds
of meters across. And the view distance in this image is fairly short.

DirectX 11 limits tessellation factors to thegeal to 64. This is not nearly
sufficient to represent the range of scales required for a large, detailed world. To
continue the examplabove the smallest polygons are 5cm. If they are
implemented with the finest tessellation factor of 64, the [aotyg®n can only be

64 x 5 = 320cm. Whereasrain mayequire a range of scales like 5cm to 1km or
20,0000 1.

The solution is of course to employ patches of differing sizes. Terrain engines
commonly implement LOD with tiles of differing sitesexamplgUIrich, 2002)

We apply this to our patch sizes, as shoWwigime9. OurTieRing C++ class
implements the varying size.in¢Ris not an entirely accurate térthey are
concentric squares.) Recall that a tile is 8x8 patehels.successivieRing

increases the tile size by 2x; the 2x scatingiderably simplifies the créree
algorithm below.

Figure 8: The wide range of polygon sizes in a typical engine. Note how the
screen-space size is approximately constant.

Figure 9: Non-uniform patch sizes.

Implementation 7 Adjacency of Different-Sized Patches

The cracKree technique described above does not work for patches of different
sizes. The simpler version of the algorithm assumes that patches share edges. But
this is clearly not the casé-igure9.

It is necessary to add explicit i nfor mat |
simple and concise description suffices: relative size. The relative size is one float
scal ar t hat i ndi clativeets ours.FigureX0showshstneer 6 s si z

example adjacency scales. In practice, each patch has four adjacedonlycalars

