

March 2010

Hair

Sarah Tariq
stariq@nvidia.com

March 2010 ii

Document Change History

Version Date Responsible Reason for Change

 25/03/2010 Sarah Tariq Initial release

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Contents

Abstract ... 2

How Does It Work? .. 3

Overview ... 3

Rendering Hair Using Tessellation ... 3

Interpolated Hair Collisions ... 9

Simulating Hair ...12

LOD ...14

Additional Details ..16

Performance .. 17

Integration .. 17

Running the Sample... 18

Interaction ...18

Animation ...18

Hair Rendering ...18

LOD ...19

Hair Simulation ..19

References ... 19

March 2010 2

Abstract

Simulating and rendering realistic hair with tens of thousands of strands is
something that until recently was not feasible for games. However, with the
increasing programmability and power of Graphics Hardware not only is it possible
to simulate and render realistic hair entirely on the Graphics Processing Unit (GPU),
but it is also possible to do it at interactive frame rates. Furthermore, new hardware
features like the Tessellation and Compute Shaders make the creation and
simulation of hair easier and faster. This sample shows how to simulate and render
hair on the GPU using both D3D11‟s new shader stages (tessellation and compute
shader) and using older APIs like D3D10.

March 2010 3

How Does It Work?

Overview

In this sample we simulate a small number of hair strands (166 strands) and then
when rendering the final hair we interpolate between these strands to create many
more strands (over 18,000). Since the amount of final rendered hair is a lot larger
than the amount of simulated strands, this method saves the considerable cost of
having to simulate every final hair that is rendered while producing very acceptable
results. The creation of these additional strands can be done using the tessellation
engine, or can be done using other approaches as outlined in [Tariq 08] (code for
both paths is provided in the sample).

Rendering Hair Using
Tessellation

Generating Data on the GPU

Given the large amount of data that we are trying to render, it is more efficient to

generate this data directly on the GPU than to send it at each frame from the CPU

to the GPU. DirectX 11 introduce functionality to create large amounts of data

directly on the hardware; the tessellation engine. In this section we are going to be

talking about how to use the tessellation engine to easily and efficiently create hair

strands for rendering.

Note that functionality for creating data on the GPU existed even in D3D10, via the
Geometry Shader. However, the Geometry Shader is meant for only small amounts
of data expansion, for example for expanding a line into a quad. It is not meant for,
and is certainly not efficient at, creating the amounts of geometry that we would like
to create for all the hair strands.

There are a number of reasons why the tessellation engine is useful for creating hair
for rendering. The most important advantage is that it is faster to create data using
the tessellation engine than it is to create data on the CPU and then upload it to the
GPU, or in some cases even to render “dummy vertices” on the GPU and then
evaluate them in the Vertex Shader. It is also easier to create hair using the
Tessellation engine than using the dummy vertex method. Finally, using the
Tessellation engine we can have very fine grained and continuous control over the
level of detail.

March 2010 4

Hardware Tessellation Pipeline

The tessellation engine has three stages, two of them are programmable (the Hull

and Domain Shader) and one of them is fixed function (the Tessellator).

Figure 1 D3D11 Tessellation Pipeline

The Hull Shader is the first new stage and it comes after the vertex shader. The Hull

Shader takes as input a “patch” - an input primitive which is a collection of vertices

with no implied topology. In this stage we can compute any per patch attributes,

transform the input control points to a different basis, and compute tessellation

factors. Tessellation factors are floating point values which tell the hardware how

many new vertices you would like to create for each patch, and are necessary

outputs of the Hull Shader.

The next stage is the Tessellator, which is fixed function. The Tessellator only takes

as input the tessellation factors (specified by the Hull Shader) and the tessellation

domain (which can be quads, triangles or isolines) and it creates a semi-regular

tessellation pattern for each patch. Note that the Tessellator does not actually create

any vertex data – this data has to be calculated by the programmer in the Domain

Shader.

March 2010 5

The Domain Shader is the last stage in the tessellation engine, and it is at this point

that we actually create the vertex data for the tessellated surface. The Domain

Shader is run once for each final vertex. In this stage we get as input the parametric

uvw coordinates of the surface, along with any control point data passed from the

Hull shader. Using these inputs we can calculate the attributes of the final vertex.

To render hair we are going to be using the isoline tessellation domain. In this mode

the hardware Tessellator creates a number of isolines (connected line segments) with

multiple line segments per line. Both the number of isolines and the number of

segments per isoline can be specified by the programmer in the Hull Shader. The

actual positions and attributes of each tessellated vertex are evaluated using the

Domain Shader. The output from the Tessellation engine is a set of line segments

which can be rendered directly as lines, or they can be rendered as triangles by

expanding them to camera facing quads using the geometry shader.

Interpolation Methods

In the remainder of this section we are going to discuss how the tessellation engine

can be used to efficiently create new hair strands. We are going to be using two

methods of creating strands as example use cases (although the tessellation engine is

programmable enough to support other methods).

Figure 2
Single Strand
Based
Interpolation

Figure 3
Multi Strand
Based
Interpolation

March 2010 6

The first is Single Strand Based Interpolation. Using this interpolation each

interpolated strand is created by offsetting it from a single guide strand along that

strand‟s local coordinate frame. Each interpolated strand is assigned a random float2

to offset it along the x and z coordinate axes (y axis points along the length of the

hair).

The second type of interpolation is Multi Strand interpolation. Each interpolated
strand is created by linearly interpolating the attributes of three guide strands. The
guide strands for a given interpolated strand are rooted at the vertices of the scalp
triangle where the interpolated strand is created. Each interpolated Strand is
assigned a random float2 to use as interpolating weights.

 shows what the two interpolation modes are able to create for the same input data.

Each has a different look, but they are complementary. The Multi Strand

interpolation method creates a full and uniform look which can be a bit boring

sometimes. It also has problems with hair penetrating into collision obstacles (we

will deal with this issue and its solution in another section). The Single Strand based

interpolation method does not have significant collision issues, although sometimes

when the guide strands are relatively far from each other the resultant interpolated

hair can look like ropes.

Multi Strand Interpolation Single Strand Interpolation Combination

Figure 4 Different Interpolation Modes For Hair

March 2010 7

Single Strand Based Interpolation

Figure 5 shows an overview of a pass to create and render data using the tessellation

engine and the single strand based interpolation method.

Figure 5 Interpolation using the Tessellation Engine

Our input is a patch, which is a section of a guide strand. The hull shader computes

the tessellation factors for this patch, which are the number of isolines that we

would like, and the number of line segments per isoline. This data is passed to the

Tessellator. The Hull shader also calculates any per patch data which might be

needed by the Domain Shader. The Tessellator generates the topology requested by

the Hull shader. Finally the Domain Shader is invoked once per final tessellated

vertex. It is passed the parametric uv coordinates for the vertex, and all the data

output from the Hull Shader.

The input to our rendering pass is a set of guide strands that have been simulated

and tessellated (to make them smooth). The reason we choose to tessellate the

strands first is that we are going to be using these tessellated strands for creating

both types of final interpolated strands - computing this tessellated data once and

reusing it for both types of interpolation saves time.

The data that we have for each vertex includes its position, tangent, length (specified

as distance from the root in world space units) and local coordinate frames. This

data is stored on the GPU as buffers using structure of arrays format (we have

separate buffers for position, tangent etc).

Since we are going to be binding our data as texture buffers which can be sampled

in the Hull or Domain Shader we don‟t need to bind any data to the input assembler

March 2010 8

as vertex buffers (or for that matter index buffers or input layout). In addition, we

set the primitive topology to be a patch with a single control point.

After this we call draw with the total number of guide strands as input. We might
have to call this draw call more than one time depending on how many isolines and
line segments we want per patch.

We partition each guide strand into one or more patches. Then for each patch we
create new strands of hair which follow the guide strand. The number of new
strands created depends both on the LOD (based on distance of head from the
camera) and the local density of hair.

Ideally we would like to specify a patch to be one complete guide hair (and the

tessellation engine would then create the specified number of final hair for this

patch). However, there is a hardware limit of maximum 64 isolines per patch and

maximum 64 segments per isoline, so if we want to create more than 64 segments

per isoline or more than 64 isolines per guide strand we have to partition the guide

strand into multiple patches.

For each patch that we render the hardware will create a specified number of output

isolines. In our example the number of isolines created for a patch is based on two

factors – the floating point LOD specified globally (calculated based on the distance

of the head to the camera) and the local density of hair that an artist has created.

This local density is provided as a texture that is mapped to the scalp. Each guide

strand has texture coordinates that can be used to lookup the local density.

The Hull Shader is split into two parts, the main shader which operates once on

each input control point, and the patch constant function which is invoked once per

patch. In our implementation we are loading control point data for a patch from a

buffer, so the input to the hull shader is a dummy patch consisting of a single

control point. Since we have only one input control point we are using the patch

constant function for all of the computation and our main shader is null. The code

for the Patch Constant Function, which calculates the tessellation factors and other

data for each patch, can be found in the function InterpolateConstHSSingleStrand

in Hair.fx.

Output.Edges is the tessellation factors, its semantic is SV_TessFactor. Edges[0] is

the amount of isolines that we would like created for this patch, and Edges[1] is the

amount of segments that we would like in each line. As we mentioned before, the

number of isolines per patch and the number of segments per isoline cannot exceed

64, so the calculation of both Edges[0] and Edges[1] has to take this into account.

The Domain Shader is invoked for each final vertex that is created. As input to the

Domain Shader we get the patch constant data and the per patch control point data

that we had output in the Hull Shader. We also get as input a number of system

generated values, including SV_DomainLocation which gives the parametric uv

coordinates of the current vertex in the tessellated patch. We also get the id of the

patch that we are operating on (SV_PrimitiveID). Using these values we can figure

March 2010 9

out which vertex and which strand we are operating on. These indices can then be

used to look up the guide strand attributes and also the random offsets that we are

going to use to offset this generated strand from the input guide strand.

Interpolated Hair Collisions

As discussed previously, there are different methods available for interpolating hair
each with its own advantages. Interpolated hairs can be created along the length of a
single guide hair (single strand based interpolation), or they can be created by
combining multiple guide hair (for example interpolation between three guide hair).
The advantage of using the latter approach is that it provides a good coverage of the
scalp and hair volume with relatively few hairs. Unfortunately, one of the drawbacks
of this approach is that it is likely to produce interpolated hairs that penetrate the
body or other collision objects. This is demonstrated in below Figure 6.

Figure 6 Interpolated hair collisions arising from multi hair
Interpolation

As we see in Figure 6(a) the guide hairs avoid the collision obstacle since they are
explicitly simulated. The interpolated hairs on the other hand are only produced
using the positions of the guide hair and have no physical simulation. In Figure 6(b)
we see the results of interpolation using only a single guide hair to create a given
interpolated hair. The created interpolated hairs penetrate the collision object
slightly, but largely follow their guide hair. In Figure 6(c) however we see much
worse penetration of interpolated hair even though the guide hairs themselves are
not penetrating the object. This is because the interpolated hairs are created by
averaging the positions of many guide hair and this process gives us no guarantees
about the positions of the interpolated vertices – they might go straight through the
collision object, for example the head. In this section we describe a method for
efficiently detecting and avoiding cases where multi-guide hair interpolation leads to
hair penetration into objects. Figure 7 gives an example of such interpolation
artifacts which are obviously undesirable. Figure 8 shows the results after applying
our technique to detect and avoid these problems.

March 2010 10

Figure 7 Interpolated hair can intersect collision volumes

Figure 8 fixing the collisions without extra simulation

Technique

We first detect strands where multi-strand interpolation leads to penetration and

then we switch the interpolation mode of such strands to single-strand

interpolation. It is important to note that it is not sufficient to address only those

vertices in the interpolated hair strands that actually undergo a penetration; altering

their positions necessitates that we alter the positions of all vertices beneath them

(and some above them) as well. This is demonstrated in Figure 9. If, as in figure

Figure 9(b), we only change the interpolation method of those vertices directly

undergoing a collision the remaining hair strand below the modified vertices looks

un-natural in its original position. Instead, we need to modify the interpolation

mode of all vertices that are undergoing a collision or are below such vertices, as in

Figure 9(c).

March 2010 11

Figure 9 Correctly modifying penetrating hair

In order to identify hair vertices that are below other object-penetrating vertices we

need to do a pre-pass. In this pre-pass we render all the interpolated hair to a

texture; all vertices of an interpolated hair strand are rendered to the same pixel. For

each hair vertex we output its ID (number of vertices that separate the current

vertex from the hair root) if that vertex collides with a collision object. Otherwise

we output a large constant. To test if a vertex is inside a collision obstacle we

perform a single lookup into a 3D texture of obstacles, which we create once per

frame (for a sufficiently high number of obstacles such as in this demo we have

found that pre-voxelizing the obstacles into a texture is faster than evaluating for

each vertex whether it is undergoing a collision).This rendering pass is performed

with minimum blending. The result of the pass is a texture that encodes for each

interpolated hair strand whether any of its vertices intersect a collision object, and if

they do, what is the first vertex that does so.

We can then use this texture to correctly switch the interpolation mode of

interpolated hair when we are creating them. When we calculate the interpolated

hair position we look up into the texture to determine if the current vertex is above

or below the first intersecting vertex of the strand. If the current vertex is below the

first intersecting vertex we use the single strand interpolation method to calculate its

position. We also employ a blending zone of several vertices above the first

intersecting vertex to slowly blend between the two interpolation modes hence

avoiding a sharp transition.

March 2010 12

Simulating Hair

In order to keep our simulation simple and also parallel we simulate the hair as a
Particle Constraint System:

 Hair vertices are simulated as particles

 Links between hair vertices are treated as distance constraints – these
constraints maintain the length of the hair, preventing it from stretching or
compressing

 Angular forces and angular constraints help maintain the shape of the hair

 Collision constraints keep the hair outside of collision obstacles

One time step of the simulation looks something like this:

 Simulate wind force (using fluid simulation, see [Tariq07] for more details)

 Add external forces and integrate using verlet integration

 Repeat for num_iterations

o Apply distance constraints

o Apply angular constraints

o Apply collision constraints

 Example: Distance Constraints.
A distance constraint DC(P, Q) between two particles P and Q is enforced by
moving them away or towards each other so that they are at exactly a pre-
specified distance apart:

Figure 10 A Distance Constraint between two particles

Since a given particle can be affected by two distance constraints (one to the hair
particle above it, and the other to the one below) we cannot apply all distance
constraints in parallel. Instead we split the hair particles into two groups and apply
the distance constraints in two steps:

March 2010 13

Figure 11 Applying Distance Constraints in Parallel

The code sample provides two methods of simulating hair; using D3D11‟s Compute
Shader and using Streamout.

Using the compute shader has several advantages – the code is easier to write, and
can be faster. We can satisfy all constraints in a single function call by using Shared
Memory (all vertices of a single strand are in the same thread group). The code for
the compute shader is given in HairSimulateCS.hlsl. All the simulation for the hair is
encapsulated in a single function, UpdateParticlesSimulate.

In order to simulate hair without using the Compute Shader we use traditional
GPGPU ping-ponging techniques – every time we update particle attributes that
have to be read by other particles we write out the attributes to a buffer. For
example, in order to satisfy distance constraints we write the positions of the
particles in a vertex buffer, and satisfy the distance constraint in the Geometry
Shader, and then stream out this data to another vertex buffer. In the next iteration
we swap these buffers and repeat the process:

March 2010 14

Figure 12 Satisfying Distance Constraints using Stream Out

LOD

Being able to dynamically reduce the complexity of the rendered hair (and thus
increase the performance) is very important for real time applications. The level of
detail for hair can be based on the distance of the hair/head from the camera, the
importance of the character, the probable occlusion of the patch or any other factor.
Using the tessellation engine we can change the LOD per patch by changing the
number iso-lines or the number of segments per line.

Figure 13 Hair at full Level of Detail

March 2010 15

Figure 14 Hair at lower Level of Detail

Figure 15 Hair at lower LOD, zoomed in

In the figures above we are showing how hair LOD can be scaled as the character
moves further away, by reducing the amount of hair that we create. Figure 13 and
Figure 14 show the same hair style under two levels of detail. At the top we have the
hair rendered at full LOD, and at the bottom we have scaled down the rendering
and increased performance by 2x. In this case we are creating and rendering less hair
strands, although we are making the strands a bit wider so that there is no visible
reduction in the density of hair. Figure 15 shows what that lower level of detail
would look like if you zoomed in.

Instead of linearly decreasing the amount of hair strands as LOD decreases we can
also have an artist create density and thickness maps for different discrete LODs,
and then blend between them to determine the amount of hair and its thickness for
a particular LOD. This way we can use the computational resources available (the
limited number of hair that we can create) in the region where the artists feel they
will have the highest impact.

In addition to rendering LOD we can also change the simulation cost of the hair. In
this demo we have implemented a very simple LOD system for simulation – at full
LOD we simulate the hair at each frame, and as LOD decreases we simulate only
once every n frames (where n is inversely proportional to the LOD).

March 2010 16

Additional Details

Curly Hair

In order to create curly or wavy hair we pre-create and encode additional curl offsets
into constant buffers or textures. These offsets are then added to the clump offsets
when creating the final interpolated hair. In this demo the curl offsets are being
created procedurally, but we can also have artists create example curls and the
offsets can be derived from those. This process of creating curly hair lets us retain
the relatively simple hair simulation scheme that we have which will not work well if
the simulated hair is actually curly.

Random Variations

Figure 16
No variations

Figure 17
with random
variations

An important part of creating realistic hair is having randomness between hair
strands. Without this we get a look that is too smooth and synthetic, as shown in
Error! Reference source not found.. Adding randomness to strands gives a more
natural look, Error! Reference source not found.. Since our model for rendering
hair is based on interpolating many children hair from a small set of guide hair, we
need to introduce this randomness at the interpolated hair level. The method we use
is similar to that presented by [Choe and Ko 2005]. We pre-compute a small set of
smooth random deviations and apply these to the interpolation coordinates of the
interpolated hair.

March 2010 17

We create two types of deviations for the hair. The first, applied to a large number
of the hair strands, is small deviations near the tips. In our images we have applied
this deviation to 30% of the hair strands. The second, applied to only a small
percent of the hair strands (for example 10%), is deviation all along the strands. This
second type of deviation is what you see highlighted in the red box Error!
Reference source not found..

Performance

Default performance of the demo on GTX 480.

 Using
Tessellation
Engine and

Compute Shader

Not using Tessellation engine and
using Dx10 simulation

Hair rendering
and simulation
with wind

57 fps 44 fps

Just hair
rendering, no
hair simulation

77 fps 60 fps

Just hair
simulation, no
hair rendering

720 fps 624 fps

Hair rendering
and simulation
with wind, far
away (with
LOD)

930 fps 77 fps*

*note that this frame rate is
exceptionally low because no rendering

LOD has been implemented in this
path

Integration

In order to integrate this demo the most important files to look at are Hair.cpp
(functions RenderInterpolatedHair, StepHairSimulation, and
OnD3D11FrameRender), HairSimulateCS.hlsl (shaders for hair simulation using the
compute shader), and Hair.fx (techniques for hair rendering and simulation). Some
useful techniques in Hair.fx are InterpolateAndRenderM_HardwareTess (render
hair using multistrand interpolation), InterpolateAndRenderS_HardwareTess
(render hair using single strand based interpolation) and

March 2010 18

InterpolateAndRenderCollisions_HardwareTess (pass to render multi strand hair to
a texture in order to find colliding vertices).

In addition, you have to create and import a hair cut into the application. For this
demo we have used a default haircut available in Maya, exported it as points and
parsed and massaged in LoadHairFile.cpp.

Please note that a number of the parameters used for hair rendering and simulation
are specific to this hair cut and the dimensions of our scene, and will have to be
modified to fit different hair models and scenes.

Running the Sample

In the default start up mode the sample exhibits hair being simulated using the
compute shader and rendered using hardware tessellation. To reset all the options to
the default use the “Reset” button near the top.

Interaction

Camera: Use left mouse drag to move the camera, and mouse wheel to zoom the
camera.

Light: To move the light use SHIFT + left mouse drag (the light is indicated by a
white arrow)

Model: To move the model use right mouse drag. To rotate the model drag the
middle mouse button / mouse wheel.

Wind: Use SHIFT + right mouse drag to move the direction of the wind (shown by
the green arrow)

 Animation

The sample provides a way to move the head in a pre-animated motion (note that
hair is still simulated in real time), which can be turned on by the “Play Animation”
check box, and looped with the “Loop Animation” check box.

Hair Rendering

There are a number of ways to change the look of the hair, including changing its
color using the provided combo box, and making it short or curly using checkboxes.

To choose the type of interpolation to be used, Single Strand or Multi Strand, use
the check boxes “Render M Strands” and “Render S Strands”.

March 2010 19

The checkbox “Hardware Tessellation” allows you to toggle between using D3D11
Tessellation for rendering the hair, or rendering them using D3D10 style “instanced
tessellation” (se Tariq08).

LOD

By default the sample uses dynamic LOD for the hair rendering, so that as you
zoom the camera in or out different amount of hair are rendered. The dynamic
LOD level is indicated by the slider under the “Dynamic LOD” checkbox – note
that as you zoom the camera the LOD and Hair Width sliders changes their values,
indicating current LOD. If you wish to use manual LOD you can uncheck the
“Dynamic LOD” checkbox and manually adjust the number of hairs and the width
of each hair using the two sliders.

Hair Simulation

By default the hair is simulated using the Compute Shader. In order to disable this
you can uncheck the “Compute Shader” checkbox, in which case the sample uses
multipass simulation on the vertex/geometry shader.

“Simulation LOD” allows the sample to drop the rate of simulation to once every n
frames based on the LOD. In order to disable Simulation LOD, uncheck the
checkbox. When simulation LOD is disabled you have the option of pausing the
simulation using the “Simulate” checkbox.

The “Show Collision” checkbox allows the user to visualize the collision implicits
that are being used in the hair simulation.

Wind is being applied to the simulation, which can be turned off using the “Add
Wind Force” checkbox, or by pressing „k‟. The “Wind Strength” slider directly
below this checkbox allows the user to adjust the amount of wind force.

References

Bertails, F., Menier, C., and Cani, M.-P. 2005. A Practical Self-Shadowing Algorithm for

Interactive Hair Animation. In proceedings of Graphics Interface 2005, 71-78.

Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Leveque, J.L. 2006. Super-

Helices for Predicting the Dynamics of Natural Hair. In Proceedings of ACM Transactions on

Graphics (Proceedings of the SIGGRAPH conference).

Plante, E., Cani, M.-P., and Poulin, P. 2001. A layered wisp model for simulating interactions

inside long hair. In EG CAS ’01, Springer, Computer Science, 139–148.

March 2010 20

Choe, B., and Ko, H.-S. 2005. A Statistical Wisp Model and Pseudophysical Approaches for

Interactive Hairstyle Generation. In proceedings of IEEE Transactions on Visualization and

Computer Graphics, vol. 11, no. 2, PP. 160–170, march 2005

Tariq, S and Bavoil, L 2008. Real Time Hair Simulation and Rendering on the GPU. Technical

talk, SIGGRAPH 2008

Tariq, S and Llamas, I. Smoke. NVIDIA Direct3D10 Sample.

http://developer.download.nvidia.com/SDK/10/direct3d/samples.html

March 2010 21

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2010 NVIDIA Corporation. All rights reserved.

