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Abstract 

 

 

Simulating and rendering realistic hair with tens of thousands of strands is 
something that until recently was not feasible for games. However, with the 
increasing programmability and power of Graphics Hardware not only is it possible 
to simulate and render realistic hair entirely on the Graphics Processing Unit (GPU), 
but it is also possible to do it at interactive frame rates. Furthermore, new hardware 
features like the Tessellation and Compute Shaders make the creation and 
simulation of hair easier and faster. This sample shows how to simulate and render 
hair on the GPU using both D3D11‟s new shader stages (tessellation and compute 
shader) and using older APIs like D3D10.  
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How Does It Work? 

Overview 

In this sample we simulate a small number of hair strands (166 strands) and then 
when rendering the final hair we interpolate between these strands to create many 
more strands (over 18,000). Since the amount of final rendered hair is a lot larger 
than the amount of simulated strands, this method saves the considerable cost of 
having to simulate every final hair that is rendered while producing very acceptable 
results. The creation of these additional strands can be done using the tessellation 
engine, or can be done using other approaches as outlined in [Tariq 08] (code for 
both paths is provided in the sample).  

 

Rendering Hair Using 
Tessellation 

Generating Data on the GPU 

Given the large amount of data that we are trying to render, it is more efficient to 

generate this data directly on the GPU than to send it at each frame from the CPU 

to the GPU. DirectX 11 introduce functionality to create large amounts of data 

directly on the hardware; the tessellation engine. In this section we are going to be 

talking about how to use the tessellation engine to easily and efficiently create hair 

strands for rendering.  

Note that functionality for creating data on the GPU existed even in D3D10, via the 
Geometry Shader. However, the Geometry Shader is meant for only small amounts 
of data expansion, for example for expanding a line into a quad. It is not meant for, 
and is certainly not efficient at, creating the amounts of geometry that we would like 
to create for all the hair strands.  

There are a number of reasons why the tessellation engine is useful for creating hair 
for rendering. The most important advantage is that it is faster to create data using 
the tessellation engine than it is to create data on the CPU and then upload it to the 
GPU, or in some cases even to render “dummy vertices” on the GPU and then 
evaluate them in the Vertex Shader. It is also easier to create hair using the 
Tessellation engine than using the dummy vertex method. Finally, using the 
Tessellation engine we can have very fine grained and continuous control over the 
level of detail.  
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Hardware Tessellation Pipeline 

The tessellation engine has three stages, two of them are programmable (the Hull 

and Domain Shader) and one of them is fixed function (the Tessellator). 

  

Figure 1 D3D11 Tessellation Pipeline 

 

The Hull Shader is the first new stage and it comes after the vertex shader. The Hull 

Shader takes as input a “patch” - an input primitive which is a collection of vertices 

with no implied topology. In this stage we can compute any per patch attributes, 

transform the input control points to a different basis, and compute tessellation 

factors. Tessellation factors are floating point values which tell the hardware how 

many new vertices you would like to create for each patch, and are necessary 

outputs of the Hull Shader. 

The next stage is the Tessellator, which is fixed function. The Tessellator only takes 

as input the tessellation factors (specified by the Hull Shader) and the tessellation 

domain (which can be quads, triangles or isolines) and it creates a semi-regular 

tessellation pattern for each patch. Note that the Tessellator does not actually create 

any vertex data – this data has to be calculated by the programmer in the Domain 

Shader. 
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The Domain Shader is the last stage in the tessellation engine, and it is at this point 

that we actually create the vertex data for the tessellated surface. The Domain 

Shader is run once for each final vertex. In this stage we get as input the parametric 

uvw coordinates of the surface, along with any control point data passed from the 

Hull shader.  Using these inputs we can calculate the attributes of the final vertex.  

To render hair we are going to be using the isoline tessellation domain. In this mode 

the hardware Tessellator creates a number of isolines (connected line segments) with 

multiple line segments per line. Both the number of isolines and the number of 

segments per isoline can be specified by the programmer in the Hull Shader. The 

actual positions and attributes of each tessellated vertex are evaluated using the 

Domain Shader. The output from the Tessellation engine is a set of line segments 

which can be rendered directly as lines, or they can be rendered as triangles by 

expanding them to camera facing quads using the geometry shader. 

Interpolation Methods 

In the remainder of this section we are going to discuss how the tessellation engine 

can be used to efficiently create new hair strands. We are going to be using two 

methods of creating strands as example use cases (although the tessellation engine is 

programmable enough to support other methods).   

 

 
 

Figure 2  
Single Strand 
Based 
Interpolation 

 

Figure 3  
Multi Strand 
Based 
Interpolation 
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The first is Single Strand Based Interpolation. Using this interpolation each 

interpolated strand is created by offsetting it from a single guide strand along that 

strand‟s local coordinate frame. Each interpolated strand is assigned a random float2 

to offset it along the x and z coordinate axes (y axis points along the length of the 

hair). 

The second type of interpolation is Multi Strand interpolation.  Each interpolated 
strand is created by linearly interpolating the attributes of three guide strands. The 
guide strands for a given interpolated strand are rooted at the vertices of the scalp 
triangle where the interpolated strand is created. Each interpolated Strand is 
assigned a random float2 to use as interpolating weights. 

 shows what the two interpolation modes are able to create for the same input data. 

Each has a different look, but they are complementary. The Multi Strand 

interpolation method creates a full and uniform look which can be a bit boring 

sometimes. It also has problems with hair penetrating into collision obstacles (we 

will deal with this issue and its solution in another section). The Single Strand based 

interpolation method does not have significant collision issues, although sometimes 

when the guide strands are relatively far from each other the resultant interpolated 

hair can look like ropes. 

 

Multi Strand Interpolation                    Single Strand Interpolation       Combination 

Figure 4 Different Interpolation Modes For Hair 
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Single Strand Based Interpolation 

Figure 5 shows an overview of a pass to create and render data using the tessellation 

engine and the single strand based interpolation method.  

 

Figure 5 Interpolation using the Tessellation Engine 

 

Our input is a patch, which is a section of a guide strand. The hull shader computes 

the tessellation factors for this patch, which are the number of isolines that we 

would like, and the number of line segments per isoline. This data is passed to the 

Tessellator. The Hull shader also calculates any per patch data which might be 

needed by the Domain Shader. The Tessellator generates the topology requested by 

the Hull shader. Finally the Domain Shader is invoked once per final tessellated 

vertex. It is passed the parametric uv coordinates for the vertex, and all the data 

output from the Hull Shader.   

The input to our rendering pass is a set of guide strands that have been simulated 

and tessellated (to make them smooth). The reason we choose to tessellate the 

strands first is that we are going to be using these tessellated strands for creating 

both types of final interpolated strands - computing this tessellated data once and 

reusing it for both types of interpolation saves time. 

The data that we have for each vertex includes its position, tangent, length (specified 

as distance from the root in world space units) and local coordinate frames. This 

data is stored on the GPU as buffers using structure of arrays format (we have 

separate buffers for position, tangent etc). 

Since we are going to be binding our data as texture buffers which can be sampled 

in the Hull or Domain Shader we don‟t need to bind any data to the input assembler 
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as vertex buffers (or for that matter index buffers or input layout). In addition, we 

set the primitive topology to be a patch with a single control point. 

After this we call draw with the total number of guide strands as input. We might 
have to call this draw call more than one time depending on how many isolines and 
line segments we want per patch. 

We partition each guide strand into one or more patches. Then for each patch we 
create new strands of hair which follow the guide strand. The number of new 
strands created depends both on the LOD (based on distance of head from the 
camera) and the local density of hair. 

Ideally we would like to specify a patch to be one complete guide hair (and the 

tessellation engine would then create the specified number of final hair for this 

patch). However, there is a hardware limit of maximum 64 isolines per patch and 

maximum 64 segments per isoline, so if we want to create more than 64 segments 

per isoline or more than 64 isolines per guide strand we have to partition the guide 

strand into multiple patches. 

For each patch that we render the hardware will create a specified number of output 

isolines. In our example the number of isolines created for a patch is based on two 

factors – the floating point LOD specified globally (calculated based on the distance 

of the head to the camera) and the local density of hair that an artist has created. 

This local density is provided as a texture that is mapped to the scalp. Each guide 

strand has texture coordinates that can be used to lookup the local density. 

The Hull Shader is split into two parts, the main shader which operates once on 

each input control point, and the patch constant function which is invoked once per 

patch. In our implementation we are loading control point data for a patch from a 

buffer, so the input to the hull shader is a dummy patch consisting of a single 

control point. Since we have only one input control point we are using the patch 

constant function for all of the computation and our main shader is null. The code 

for the Patch Constant Function, which calculates the tessellation factors and other 

data for each patch, can be found in the function InterpolateConstHSSingleStrand 

in Hair.fx.  

Output.Edges is the tessellation factors, its semantic is SV_TessFactor. Edges[0] is 

the amount of isolines that we would like created for this patch, and Edges[1] is the 

amount of segments that we would like in each line. As we mentioned before, the 

number of isolines per patch and the number of segments per isoline cannot exceed 

64, so the calculation of both Edges[0] and Edges[1] has to take this into account.  

The Domain Shader is invoked for each final vertex that is created. As input to the 

Domain Shader we get the patch constant data and the per patch control point data 

that we had output in the Hull Shader. We also get as input a number of system 

generated values, including SV_DomainLocation which gives the parametric uv 

coordinates of the current vertex in the tessellated patch. We also get the id of the 

patch that we are operating on (SV_PrimitiveID). Using these values we can figure 
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out which vertex and which strand we are operating on. These indices can then be 

used to look up the guide strand attributes and also the random offsets that we are 

going to use to offset this generated strand from the input guide strand. 

Interpolated Hair Collisions 

As discussed previously, there are different methods available for interpolating hair 
each with its own advantages. Interpolated hairs can be created along the length of a 
single guide hair (single strand based interpolation), or they can be created by 
combining multiple guide hair (for example interpolation between three guide hair). 
The advantage of using the latter approach is that it provides a good coverage of the 
scalp and hair volume with relatively few hairs. Unfortunately, one of the drawbacks 
of this approach is that it is likely to produce interpolated hairs that penetrate the 
body or other collision objects. This is demonstrated in below Figure 6.  

 

Figure 6 Interpolated hair collisions arising from multi hair 
Interpolation 

As we see in Figure 6(a) the guide hairs avoid the collision obstacle since they are 
explicitly simulated. The interpolated hairs on the other hand are only produced 
using the positions of the guide hair and have no physical simulation. In Figure 6(b) 
we see the results of interpolation using only a single guide hair to create a given 
interpolated hair. The created interpolated hairs penetrate the collision object 
slightly, but largely follow their guide hair. In Figure 6(c) however we see much 
worse penetration of interpolated hair even though the guide hairs themselves are 
not penetrating the object. This is because the interpolated hairs are created by 
averaging the positions of many guide hair and this process gives us no guarantees 
about the positions of the interpolated vertices – they might go straight through the 
collision object, for example the head. In this section we describe a method for 
efficiently detecting and avoiding cases where multi-guide hair interpolation leads to 
hair penetration into objects. Figure 7 gives an example of such interpolation 
artifacts which are obviously undesirable. Figure 8 shows the results after applying 
our technique to detect and avoid these problems.     
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Figure 7 Interpolated hair can intersect collision volumes 

 

Figure 8 fixing the collisions without extra simulation 

 

Technique 

We first detect strands where multi-strand interpolation leads to penetration and 

then we switch the interpolation mode of such strands to single-strand 

interpolation. It is important to note that it is not sufficient to address only those 

vertices in the interpolated hair strands that actually undergo a penetration; altering 

their positions necessitates that we alter the positions of all vertices beneath them 

(and some above them) as well. This is demonstrated in Figure 9. If, as in figure 

Figure 9(b), we only change the interpolation method of those vertices directly 

undergoing a collision the remaining hair strand below the modified vertices looks 

un-natural in its original position. Instead, we need to modify the interpolation 

mode of all vertices that are undergoing a collision or are below such vertices, as in 

Figure 9(c). 
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Figure 9 Correctly modifying penetrating hair 

 

In order to identify hair vertices that are below other object-penetrating vertices we 

need to do a pre-pass. In this pre-pass we render all the interpolated hair to a 

texture; all vertices of an interpolated hair strand are rendered to the same pixel. For 

each hair vertex we output its ID (number of vertices that separate the current 

vertex from the hair root) if that vertex collides with a collision object. Otherwise 

we output a large constant. To test if a vertex is inside a collision obstacle we 

perform a single lookup into a 3D texture of obstacles, which we create once per 

frame (for a sufficiently high number of obstacles such as in this demo we have 

found that pre-voxelizing the obstacles into a texture is faster than evaluating for 

each vertex whether it is undergoing a collision).This rendering pass is performed 

with minimum blending. The result of the pass is a texture that encodes for each 

interpolated hair strand whether any of its vertices intersect a collision object, and if 

they do, what is the first vertex that does so.  

We can then use this texture to correctly switch the interpolation mode of 

interpolated hair when we are creating them. When we calculate the interpolated 

hair position we look up into the texture to determine if the current vertex is above 

or below the first intersecting vertex of the strand. If the current vertex is below the 

first intersecting vertex we use the single strand interpolation method to calculate its 

position. We also employ a blending zone of several vertices above the first 

intersecting vertex to slowly blend between the two interpolation modes hence 

avoiding a sharp transition. 
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Simulating Hair  

In order to keep our simulation simple and also parallel we simulate the hair as a 
Particle Constraint System: 

 Hair vertices are simulated as particles 

 Links between hair vertices are treated as distance constraints – these 
constraints maintain the length of the hair, preventing it from stretching or 
compressing 

 Angular forces and angular constraints help maintain the shape of the hair 

 Collision constraints keep the hair outside of collision obstacles 

One time step of the simulation looks something like this: 

 Simulate wind force (using fluid simulation, see [Tariq07] for more details) 

 Add external forces and integrate using verlet integration 

 Repeat for num_iterations 

o Apply distance constraints 

o Apply angular constraints 

o Apply collision constraints 

 

 Example: Distance Constraints. 
A distance constraint DC(P, Q) between two particles P and Q is enforced by 
moving them away or towards each other so that they are at exactly a pre-
specified distance apart: 

 

Figure 10 A Distance Constraint between two particles 

 

Since a given particle can be affected by two distance constraints (one to the hair 
particle above it, and the other to the one below) we cannot apply all distance 
constraints in parallel. Instead we split the hair particles into two groups and apply 
the distance constraints in two steps: 
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Figure 11 Applying Distance Constraints in Parallel 

  

The code sample provides two methods of simulating hair; using D3D11‟s Compute 
Shader and using Streamout.  

Using the compute shader has several advantages – the code is easier to write, and 
can be faster. We can satisfy all constraints in a single function call by using Shared 
Memory (all vertices of a single strand are in the same thread group). The code for 
the compute shader is given in HairSimulateCS.hlsl. All the simulation for the hair is 
encapsulated in a single function, UpdateParticlesSimulate.  

In order to simulate hair without using the Compute Shader we use traditional 
GPGPU ping-ponging techniques – every time we update particle attributes that 
have to be read by other particles we write out the attributes to a buffer. For 
example, in order to satisfy distance constraints we write the positions of the 
particles in a vertex buffer, and satisfy the distance constraint in the Geometry 
Shader, and then stream out this data to another vertex buffer. In the next iteration 
we swap these buffers and repeat the process: 
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Figure 12 Satisfying Distance Constraints using Stream Out 

LOD  

Being able to dynamically reduce the complexity of the rendered hair (and thus 
increase the performance) is very important for real time applications. The level of 
detail for hair can be based on the distance of the hair/head from the camera, the 
importance of the character, the probable occlusion of the patch or any other factor. 
Using the tessellation engine we can change the LOD per patch by changing the 
number iso-lines or the number of segments per line. 

 

 

Figure 13 Hair at full Level of Detail 
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Figure 14 Hair at lower Level of Detail 

 

Figure 15 Hair at lower LOD, zoomed in 

In the figures above we are showing how hair LOD can be scaled as the character 
moves further away, by reducing the amount of hair that we create. Figure 13 and 
Figure 14 show the same hair style under two levels of detail. At the top we have the 
hair rendered at full LOD, and at the bottom we have scaled down the rendering 
and increased performance by 2x. In this case we are creating and rendering less hair 
strands, although we are making the strands a bit wider so that there is no visible 
reduction in the density of hair. Figure 15 shows what that lower level of detail 
would look like if you zoomed in. 

Instead of linearly decreasing the amount of hair strands as LOD decreases we can 
also have an artist create density and thickness maps for different discrete LODs, 
and then blend between them to determine the amount of hair and its thickness for 
a particular LOD. This way we can use the computational resources available (the 
limited number of hair that we can create) in the region where the artists feel they 
will have the highest impact. 

In addition to rendering LOD we can also change the simulation cost of the hair. In 
this demo we have implemented a very simple LOD system for simulation – at full 
LOD we simulate the hair at each frame, and as LOD decreases we simulate only 
once every n frames (where n is inversely proportional to the LOD).  

 



  

    

 

 

March 2010  16  

Additional Details 

Curly Hair 

In order to create curly or wavy hair we pre-create and encode additional curl offsets 
into constant buffers or textures. These offsets are then added to the clump offsets 
when creating the final interpolated hair. In this demo the curl offsets are being 
created procedurally, but we can also have artists create example curls and the 
offsets can be derived from those. This process of creating curly hair lets us retain 
the relatively simple hair simulation scheme that we have which will not work well if 
the simulated hair is actually curly. 

 

Random Variations 

 

  

Figure 16 
No variations 

 

Figure 17  
with random 
variations 

 

 

An important part of creating realistic hair is having randomness between hair 
strands. Without this we get a look that is too smooth and synthetic, as shown in 
Error! Reference source not found.. Adding randomness to strands gives a more 
natural look, Error! Reference source not found.. Since our model for rendering 
hair is based on interpolating many children hair from a small set of guide hair, we 
need to introduce this randomness at the interpolated hair level. The method we use 
is similar to that presented by [Choe and Ko 2005]. We pre-compute a small set of 
smooth random deviations and apply these to the interpolation coordinates of the 
interpolated hair.   
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We create two types of deviations for the hair. The first, applied to a large number 
of the hair strands, is small deviations near the tips. In our images we have applied 
this deviation to 30% of the hair strands. The second, applied to only a small 
percent of the hair strands (for example 10%), is deviation all along the strands. This 
second type of deviation is what you see highlighted in the red box Error! 
Reference source not found..   

Performance 

Default performance of the demo on GTX 480. 

 Using 
Tessellation 
Engine and 

Compute Shader 

Not using Tessellation engine and 
using Dx10 simulation 

Hair rendering 
and simulation 
with wind 

57 fps 44 fps 

Just hair 
rendering, no 
hair simulation 

77 fps 60 fps 

Just hair 
simulation, no 
hair rendering 

720 fps 624 fps 

Hair rendering 
and simulation 
with wind, far 
away (with 
LOD) 

930 fps 77 fps* 

*note that this frame rate is 
exceptionally low because no rendering 

LOD has been implemented in this 
path  

 

Integration 

In order to integrate this demo the most important files to look at are Hair.cpp 
(functions RenderInterpolatedHair, StepHairSimulation, and 
OnD3D11FrameRender), HairSimulateCS.hlsl (shaders for hair simulation using the 
compute shader), and Hair.fx (techniques for hair rendering and simulation). Some 
useful techniques in Hair.fx are InterpolateAndRenderM_HardwareTess (render 
hair using multistrand interpolation), InterpolateAndRenderS_HardwareTess 
(render hair using single strand based interpolation) and 
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InterpolateAndRenderCollisions_HardwareTess (pass to render multi strand hair to 
a texture in order to find colliding vertices). 

 

In addition, you have to create and import a hair cut into the application. For this 
demo we have used a default haircut available in Maya, exported it as points and 
parsed and massaged in LoadHairFile.cpp. 

Please note that a number of the parameters used for hair rendering and simulation 
are specific to this hair cut and the dimensions of our scene, and will have to be 
modified to fit different hair models and scenes. 

Running the Sample 

In the default start up mode the sample exhibits hair being simulated using the 
compute shader and rendered using hardware tessellation. To reset all the options to 
the default use the “Reset” button near the top.  

Interaction  

Camera: Use left mouse drag to move the camera, and mouse wheel to zoom the 
camera.  

Light: To move the light use SHIFT + left mouse drag (the light is indicated by a 
white arrow)  

Model: To move the model use right mouse drag. To rotate the model drag the 
middle mouse button / mouse wheel. 

Wind: Use SHIFT + right mouse drag to move the direction of the wind (shown by 
the green arrow) 

 Animation 

The sample provides a way to move the head in a pre-animated motion (note that 
hair is still simulated in real time), which can be turned on by the “Play Animation” 
check box, and looped with the “Loop Animation” check box. 

Hair Rendering 

There are a number of ways to change the look of the hair, including changing its 
color using the provided combo box, and making it short or curly using checkboxes. 

To choose the type of interpolation to be used, Single Strand or Multi Strand, use 
the check boxes “Render M Strands” and “Render S Strands”. 
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The checkbox “Hardware Tessellation” allows you to toggle between using D3D11 
Tessellation for rendering the hair, or rendering them using D3D10 style “instanced 
tessellation” (se Tariq08). 

LOD 

By default the sample uses dynamic LOD for the hair rendering, so that as you 
zoom the camera in or out different amount of hair are rendered. The dynamic 
LOD level is indicated by the slider under the “Dynamic LOD” checkbox – note 
that as you zoom the camera the  LOD and Hair Width sliders changes their values, 
indicating current LOD. If you wish to use manual LOD you can uncheck the 
“Dynamic LOD” checkbox and manually adjust the number of hairs and the width 
of each hair using the two sliders. 

 

Hair Simulation 

By default the hair is simulated using the Compute Shader. In order to disable this 
you can uncheck the “Compute Shader” checkbox, in which case the sample uses 
multipass simulation on the vertex/geometry shader. 

“Simulation LOD” allows the sample to drop the rate of simulation to once every n 
frames based on the LOD. In order to disable Simulation LOD, uncheck the 
checkbox. When simulation LOD is disabled you have the option of pausing the 
simulation using the “Simulate” checkbox. 

The “Show Collision” checkbox allows the user to visualize the collision implicits 
that are being used in the hair simulation.  

Wind is being applied to the simulation, which can be turned off using the “Add 
Wind Force” checkbox, or by pressing „k‟. The “Wind Strength” slider directly 
below this checkbox allows the user to adjust the amount of wind force. 
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