Getting Started with NV_path_rendering

Mark J. Kilgard
NVIDIA Corporation

May 20, 2011

In this tutorial, you will learn how to GPU-accedé path rendering within your OpenGL
program. This tutorial assumes you are familiaghudpenGL programming in general
and how to use OpenGL extensions.

Conventional OpenGL supports rendering images (peaangles and bitmaps) and
simple geometric primitives (points, lines, polygpn

NVIDIA’s NV_pat h_r ender i ng OpenGL extension adds a new rendering paradigm,
known as path rendering, for rendering filled atrdkeed paths. Path rendering approach
is not novel—but rather a standard part of mosilit®n-independent 2D rendering
systems such as Adobe’s PostScript, PDF, and Rldishgsoft's TrueType fonts,
Direct2D, Office drawings, Silverlight, and XML PapSpecification (XPS); W3C'’s
Scalable Vector Graphics (SVG); Sun’s Java 2D; AjgpQuartz 2D; Khronos’s

OpenVG; Google’s Skia; and the Cairo open sourogept. Whais novel is the ability

to mix path rendering with arbitrary OpenGL 3D reridg and imaging, all with full

GPU acceleration.

With theNV_pat h_r ender i ng extension, path rendering becomes a first-clasgemnng
mode within the OpenGL graphics system that caarbgrarily mixed with existing
OpenGL rendering and can take advantage of Opergxlsing mechanisms for
texturing, programmable shading, and per-fragmepatations.

Unlike geometric primitive rendering, paths areciped on a 2D (non-projective) plane
rather than in 3D (projective) space. Even thailnghpath is defined in a 2D plane, every
path can be transformed into 3D clip space allovian@D view frustum & user-defined
clipping, depth offset, and depth testing in themsamanner as geometric primitive
rendering.

Both geometric primitive rendering and path renaigsupport rasterization of edges
defined by line segments; however, path renderisg a@lows path segments to be
specified by Bezier (cubic or quadratic) curvepaitial elliptical arcs. This allows path
rendering to define truly curved primitive boun@arunlike the straight edges of line and
polygon primitives. Whereas geometric primitivadering requires convex polygons
for well-defined rendering results, path rendemtigws (and encourages!) concave and
curved outlines to be specified. These paths\ag allowed to self-intersect and
contain holes.

When filling closed paths, the winding of pathsuterclockwise or clockwise)
determines whether pixels are inside or outsidd®path.

Paths can also be stroked whereby, conceptudilyead-width brush is pulled along the
path such that the brush remains orthogonal tgitaéient of each path segment.
Samples within the sweep of this brush are consdigrside the stroke of the path.

This extension supports path rendering throughyaesgce of three operations:

1. Path specification is the process of creating and updating a paticblpnsisting
of a set of path commands and a corresponding 28 wertices.

Path commands can be specified explicitly from gatmmand and
coordinate data, parsed from a string based owlatdrgrammars for
representing paths, or specified by a particulgplylof standard font
representations. Also new paths can be specifiaidighting one or more
existing paths so long as all the weighted pathe lcansistent command
sequences.

Each path object contains zero or more subpathsfigoeby a sequence of
line segments, partial elliptical arcs, and (cucjuadratic) Bezier curve
segments. Each path may contain multiple subph#ican be closed
(forming a contour) or open.

2. Path stenciling is the process of updating the stencil buffer dasea path's
coverage transformed into window space.

Path stenciling can determine either the filledtooked coverage of a path.
The details of path stenciling are explained witiie core of the specification.

Stenciling a stroked path supports all the standartellishments for path
stroking such as end caps, join styles, miter nrdashing, and dash caps.
These stroking properties specified are paramefgrath objects.

3. Path covering is the process of emitting simple (convex & plargggometry that
(conservatively) “covers” the path's sample coveriaghe stencil buffer. During
path covering, stencil testing can be configuredisgard fragments not within
the actual coverage of the path as determinediby path stenciling.

Path covering can cover either the filled or sttbkeverage of a path.

To render a path object into the color buffer, ppligation specifies a path object and
then uses a two-step rendering process. Firspdtieobject is stenciled whereby the
path object's stroked or filled coverage is raseatiinto the stencil buffer. Second, the
path object is covered whereby conservative bogngaometry for the path is
transformed and rasterized with stencil testingfigoned to test against the coverage
information written to the stencil buffer in thedi step so that only fragments covered by
the path are written during this second step. Alsong this second step written pixels
typically have their stencil value reset (so treng need for clearing the stencil buffer
between rendering each path).

Here is an example of specifying and then rendaifige-point star and a heart as a path
using Scalable Vector Graphics (SVG) path desaonipsiyntax:

GLuint pathObj = 42;
const char *svgPathString =
[l star
"M100,180 L40,10 L190,120 L10,120 L160,10 z"
/'l heart
"M300 300 C 100 400,100 200,300 100,500 200,500 4 00,300 300Z";
glPathStringNV (pathObj, GL_PATH_FORMAT_SVG_NV
(GLsizei) strl en(svgPathString), svgPathString);

Alternatively applications oriented around the Basipt imaging model can use the
PostScript user path syntax instead:

const char *psPathString =
/'l star
"100 180 moveto"
" 40 10 lineto 190 120 lineto 10 120 lineto 160 1 0 lineto closepath”
/'l heart
" 300 300 moveto"
" 100 400 100 200 300 100 curveto"
" 500 200 500 400 300 300 curveto closepath";
glPathStringNV (pathObj, GL_PATH_FORMAT_PS_NV
(GLsizei) strl en(psPathString), psPathString);

The PostScript path syntax also supports compatpeetise binary encoding and
includes PostScript-style circular arcs.

Or the path's command and coordinates can be mukeitplicitly:

static const GLubyte pathCommands[10] =
{ GL_MOVE_TO_NV GL_LINE_TO_NV, GL_LINE_TO NV, GL_LINE_TO_NV,
GL_LINE_TO_NV, GL_CLOSE_PATH_NV

‘™M, 'C,'C','Z'}; /I character aliases
static const GLshort pathCoords[12][2] =
{ {100, 180}, {40, 10}, {190, 120}, {10, 120}, {1 60, 10},

{300,300}, {100,400}, {100,200}, {300,100},
{500,200}, {500,400}, {300,300} };
glPathCommandsNV (pathObj, 10, pathCommands, 24, GL_SHORTpathCoords);

Before rendering to a window with a stencil bufigear the stencil buffer to zero and the
color buffer to black:

glClearStencil 0);

glClearColor (0,0,0,0);

glStencilMask (~0);
glClear (GL_COLOR_BUFFER_BIT GL_STENCIL_BUFFER_BIT);

Use an orthographic path-to-clip-space transformmap the [0..500]x[0..400] range of
the star's path coordinates to the [-1..1] clipcepaube:

gIMatrixLoadldentityEXT (GL_PROJECTIOM
gIMatrixOrthoEXT (GL_PROJECTIONO, 500, 0, 400, -1, 1);
gIMatrixLoadldentityEXT (GL_MODELVIEW

Stencil the path:
glStencilFillPathNV (pathObj, GL_COUNT_UP_N\OX1F);

Theox1F mask means the counting uses modulo-32 arithrmetprinciple the star's path
is simple enough (having a maximum winding numbet)ahat modulo-4 arithmetic
would be sufficient so the mask couldde. Or a mask of all 1's (~0) could be used to
count with all available stencil bits.

Now that the coverage of the star and the hearbees rasterized into the stencil buffer,
cover the path with a non-zero fill style (indicdiey theG._NOTEQUAL stencil function
with a zero reference value):

glEnable (GL_STENCIL_TEST);

glStencilFunc (GL_NOTEQUALO, 0x1F);

glStencilOp (GL_KEER GL_KEER GL_ZERQ,

glColor3f (1,1,0); /'l yellow

glCoverFillPathNV (pathObj, GL_BOUNDING_BOX_NV

The result is a yellow star (with a filled centar)the left of a yellow heart.

TheG._zERO stencil operation ensures that any covered sanipleaning those with
non-zero stencil values) are zeroed when the patéras rasterized. This allows
subsequent paths to be rendered without clearmgtdncil buffer again.

A similar two-step rendering process can draw aewvbiutline over the star and heart.

Before rendering, configure the path object witkidible path parameters for stroking.
Specify a wider 6.5-unit stroke and the round giyle:

glPathParameteriNV (pathObj, GL_PATH_JOIN_STYLE_NV GL_ROUND_NV
glPathParameterfNV (pathObj, GL_PATH_STROKE_WIDTH_N#¥.5);

Now stencil the path's stroked coverage into thaak buffer, setting the stencil to 0x1
for all stencil samples within the transformed path

glStencilStrokePathNV (pathObj, 0x1, ~0);

Cover the path's stroked coverage (with a hulltime instead of a bounding box; the
choice doesn't really matter here) while stenailitg that writes white to the color buffer
and again zero the stencil buffer.

glColor3f (1,1,1); /] white
glCoverStrokePathNV (pathObj, GL_CONVEX_HULL_NV

The rendering result is:

Ml Getting Started with NV_path,_rendering

In this example, constant color shading is usedhmitpplication can specify their own
arbitrary shading and/or blending operations, whettith Cg compiled to fragment
program assembly, GLSL, or fixed-function fragmpracessing.

More complex path rendering is possible such gpitlg one path to another arbitrary
path. This is because stencil testing (as wellegth testing, depth bound test, clip
planes, and scissoring) can restrict path steiggilin

Now let's render the word “OpenGL” atop the stadt beart.

First create a sequence of path objects for thehglyor the characters in “OpenGL”:

GLuint glyphBase = glGenPathsNV (6);
const unsi gned char *word = "OpenGL";
const GLsizei wordLen=(GLsizei)strl en(word);
const GLfloat emScale =2048; /'l match TrueType convention
GLuint templatePathObject = ~0; /'l Non-existant path object
glPathGlyphsNV (glyphBase,
GL_SYSTEM_FONT_NAME_N¥elvetica", GL_BOLD_BIT_NV,
wordLen, GL_UNSIGNED_BYTEword,
GL_SKIP_MISSING_GLYPH_NYVtemplatePathObject, emScale);
glPathGlyphsNV (glyphBase,
GL_SYSTEM_FONT_NAME_NMrial", GL_BOLD_BIT_NV,
wordLen, GL_UNSIGNED_BYTEword,
GL_SKIP_MISSING_GLYPH_NYVtemplatePathObject, emScale);
glPathGlyphsNV (glyphBase,
GL_STANDARD_FONT_NAME_NSans", GL_BOLD_BIT_NV,
wordLen, GL_UNSIGNED_BYTEword,
GL_USE_MISSING_GLYPH_NMemplatePathObject, emScale);

Glyphs are loaded for three different fonts in ptioorder: Helvetica first, then Arial,
and if neither can be loaded, use the standardssifdont which is guaranteed to exist.
If a priorgl Pat hd yphsNvV is successful and specifies the path object rahge,
subsequenil Pat h@ yphsNv commands silently avoid re-specifying the alreaxigtent
path objects.

Priority font loading in this manner is consisterth the font-family convention of
HTML where fonts are listed in priority order. Berse OpenGL loads the glyphs from
the system fonts, OpenGL applications can portabbess outline fonts for path
rendering. Letting the OpenGL driver manage th éutlines is smart because the
driver keeps the path data for the glyphs cachiclesftly on the GPU.

Now query thekerned glyph separations for the word “OpenGL” and acclateua
sequence of horizontal translations advancing sacbessive glyph by its kerning
distance with the following glyph.

GLfloat xtranslate[6+1]; /'l wordLen+1
xtranslate[0] = 0; /I Initial glyph offset is zero
glGetPathSpacingNV ~ (GL_ACCUM_ADJACENT_PAIRS_NV
wordLen+1, GL_UNSIGNED_BYTE,
"\000\001\002\003\004\005\005", /'l repeat |ast
/'l letter twce
glyphBase,
1.0f, 1.0f,
GL_TRANSLATE_X_NV
xtranslate+1);

Next determine the font-wide vertical minimum andximum for the font face by
guerying the per-font metrics of any one of thepbky from the font face.

GLfloat yMinMax[2];

glGetPathMetricRangeNV (GL_FONT_Y_MIN_BOUNDS_NGL_FONT_Y_MAX_BOUNDS_NV
glyphBase, [*count*/1,
2*sizeof(GLfloat),
yMinMax);

Use an orthographic path-to-clip-space transformap the word's bounds to the [-1..1]
clip space cube:
gIMatrixLoadldentityEXT (GL_PROJECTIOM
gIMatrixOrthoEXT ~ (GL_PROJECTION
0, xtranslate[6], yMinMax[0], yMin Max[1],
-1, 1);
gIMatrixLoadldentityEXT (GL_MODELVIEW

Stencil the filled paths of the sequence of glyfansOpenGL”, each transformed by the
appropriate 2D translations for spacing.

glStencilFillPathinstancedNV (6, GL_UNSIGNED_BYTE
"\000\001\002\003\004\ 005",
glyphBase,

GL_PATH_FILL_MODE_NYOXFF,
GL_TRANSLATE_X_NWtranslate);

Cover the bounding box union of the glyphs with 5@fay.

glEnable (GL_STENCIL_TEST);
glStencilFunc (GL_NOTEQUALO, OxFF);
glStencilOp (GL_KEER GL_KEER GL_ZERQ,

glColor3f (0.5,0.5,0.5); /'l 50% gr ay

glCoverFillPathinstancedNV (6, GL_UNSIGNED_BYTE
"\000\001\002\003\004\00 5",
glyphBase,

GL_BOUNDING_BOX_OF _BOUNDING_BOXHS,
GL_TRANSLATE_X_ N\translate);

Voila, the word “OpenGL” in gray is now stenciletto the framebuffer atop the star and
heart:

M Getting Started with NY_path_rendering |:J|EI|E

Instead of solid 50% gray, the cover operationaaply a linear gradient that changes
from green (RGB=0,1,0) at the top of the word “Opé&hto blue (RGB=0,0,1) at the
bottom of “OpenGL”:

const GLfloat rgbGen[3][3]={

{0, 0,0}, /l'red = constant zero
{0, 1,0}, /I green = varies with y from bottom (0) to top (1)
{0,-1,1} /I blue = varies with y from bottom (1) to top (0)

h
glPathColorGenNV (GL_PRIMARY_COLQR GL_PATH_OBJECT_BOUNDING_BOX_NV

GL_RGB &rghGen|[0][0]);

With the gradient applied, the result looks like:

M Getting Started with NY_path_rendering |:J |EHEJ

Instead of loading just the glyphs for the chanacie “OpenGL”, the entire character set
could be loaded. This allows the characters ofthag to be mapped (offset by the
gl yphBase) to path object names. A range of glyphs carobdédd like this:

const int numChars = 256; /1 1SO1EC 8859-1 8-bit character range
GLuint fontBase;

glyphBase = glGenPathsNV (numChars);

glPathGlyphRangeNV (fontBase,

GL_SYSTEM_FONT_NAME_NYelvetica", GL_BOLD_BIT_NV,
0, numChars,
GL_SKIP_MISSING_GLYPH_NVtemplatePathObject,
emScale);
glPathGlyphRangeNV (fontBase,
GL_SYSTEM_FONT_NAME_N¥rial", GL_BOLD_BIT_NV,
0, numChars,
GL_SKIP_MISSING_GLYPH_NVtemplatePathObject,
emScale);
glPathGlyphRangeNV (fontBase,
GL_STANDARD_FONT_NAME_,NSans", GL_BOLD_BIT_NV,
0, numChars,
GL_USE_MISSING_GLYPH_NMemplatePathObject,
emScale);

Given a range of glyphs loaded as path objectsimaatatedkerned spacing information
can now be queried for the string:

GLuint fontBase;

GLfloat kerning[6+1]; /l wordLen+1

fontBase = glGenPathsNV(numChars);

kerning[0] = 0; /I Initial glyph offset is zero

glGetPathSpacingNV ~ (GL_ACCUM_ADJACENT_PAIRS_NV
7, GL_UNSIGNED_BYTE'OpenGLL", /'l repeat L to get

/1l final spacing

fontBase,
1.0f, 1.0f,

GL_TRANSLATE_X_NV
kerning+1);

Using the range of glyphs, stenciling and covethmginstanced paths for “OpenGL” can
be done this way:

glStencilFillPathinstancedNV (6, fontBase,
GL_UNSIGNED_BYTE'OpenGL",
GL_PATH_FILL_MODE_NVYOXFF,
GL_TRANSLATE_X_NMKerning);

glCoverFillPathinstancedNV (6, fontBase,
GL_UNSIGNED_BYTE'OpenGL",
GL_BOUNDING_BOX_OF _BOUNDING_BOXES_NV
GL_TRANSLATE_X_NMkerning);

Path rendering is resolution-independent so simgsizing the window simply rescales
the path rendered content, including the text. id¢ahat resizing the window
automatically resizes the star, heart, and text.

Ml Getting Started with NV_path_rendering |DE|EI

More generally you can apply arbitrary transformmasi to rotate, scale, translate, and
project paths. This code performed prior to tretdnced stencil and cover operations to
render the “OpenGL” string cause the word to rotate

float center_x = (0 + kerning[6])/2;
float center_y = (yMinMaxFont[0] + yMinMaxFont[1])/2;

glMatrixTranslatefEXT(GL_MODELVIEW, center_x, cente r_y, 0);
glMatrixRotatefEXT(GL_MODELVIEW, angle, 0, 0, 1);
gIMatrixTranslatefEXT(GL_MODELVIEW, -center_x, -cen ter_y, 0);

This scene shows the text rotated by an angle oefdees:

M Getting Started with NV_path_rendering |Z]|E]®

Becausew_pat h_r ender i ng uses the GPU for your path rendering, the renderin
performance is very fast. Please consult the NXIBath Rendering SDK (NVpr SDK)
to find the ready-to-compiler-and-run source cautgliis example as well as many more
intricate examples demonstrating GPU-acceleratduneadering.

To resolve questions or issues, send emaiv-support@nvidia.com

