NV _path_rendering Frequently Asked Questions

NVIDIA Corporation
June 13, 2011

The document collects answers to frequently askedtegpns about NVIDIA’s
NV_path_rendering OpenGL extension for GPU-accederpath rendering.

1. Whatis NV_path_rendering?

NV_path_rendering is an OpenGL extension suppdiyeGUDA-capable NVIDIA
GPUs to GPU-accelerate path rendering.

2. What is path rendering?

Path rendering is a well-established resolutiorepehdent approach to 2D computer
graphics characterized by the specification of iegpobjects apaths. These paths,
sometimes calledutlines, specify an object to render as a sequence of @dsnfor
drawing connected lines, curves, and arcs. Thade pnay be concave, may self-
intersect, can contain holes, and may be arbyraamplex.

Salient features of path rendering systems incthdebility to both fill and stroke paths
(see the figure below), to apply constant coloasgvell as color gradients, restricting
the rendering of one path to the region within heotrbitrary so-called clipping path,
arranging the rendering of paths into a hierardngbgects with nested transformations,
arranging paths into layers and blending amongettegers, and embellishing the
process of stroking paths with support for end cpgis styles, and dashing.

Filling only

Filling with Stroking

Figure 1: Example of how filling and stroking together comipla scene.

3. What existing standards support path rendering?

Numerous standards incorporate path renderingryEwee you open a PDF document
or visit a web site relying on Flash or Silverlighou are using path rendering. Drawings

in applications such as Adobe lllustrator or PoveamPare represented in the resolution-
independent manner of path rendering. PostSdnpeType, and OpenType fonts all
define the glyphs in fonts with paths. The latd$ML 5 standard for the web

incorporates support for and Scalable Vector Gap(BVG) standard and “canvas”
rendering.

Document Resolution- Immersive 2D Graphics Office
Printing and Independent Web Programming Productivity
Exchange Fonts Experience Inte rfaces Applications

Java 2D c 2
memd @ Flash :; P
}, Java Offlce

OpenType : ——
< W« [Q[f\)g/;”' OpenOfficeory
A @ Sieright

Adobe PostScript
Scalable
TrueType Vector Qua 7 2D

GrapthS IIIIIIII
Mac OS X 2D API

Adobe lllustrator

7
|

o @) -
D L JperVG e

Open XML =~ 2 HTML 5 Khropnos API Open Source

Paper (XPS) Inkscape

Figure2: Various software standards based on path rendirinarious categories.

4. |Is NV_path_rendering yet another standard for pa th
rendering?

No, instead NV _path_rendering is a means to GPlate existing path rendering
standards on NVIDIA GPUs. Implementations of erggstandards can re-target their
path rendering to benefit from the substantial ifgppahd performance benefits of GPU-
acceleration. For example, a web browser couldnipéemented to render SVG through
NV_path_rendering to achieve immersive web expegsrat higher resolutions and
quality levels than possible with only CPU-basethpandering.

Through study of the requirements of existing patidering standards,
NV_path_rendering provides the full gamut of pathdering functionality.

5. What drivers support NV_path_rendering?
Support for NV_path_rendering first appeared inRetease 275.33 drivers in June 2011.

All CUDA-capable NVIDIA GPUs support NV_path_rentey so GeForce 8 and later
GPUs can all GPU-accelerate path rendering witleitension. GeForce 7 and earlier
GPUs do not support NV_path_rendering.

NV_path_rendering supports Windows XP, Windows &i$¥/indows 7, Linux,
FreeBSD, and Solaris. Both 32-bit and 64-bit oppegesystems are supported.

6. Is there example source code demonstrating
NV_path_rendering?

Yes. Download the NVIDIA Path Rendering SDK\pr SDK .zip) that contains full
source code for over a dozen interesting path remglexamples. Included in the SDK is
an extended examplesvpr_svg) that demonstrates GPU-accelerated SVG content
compared to standard CPU-based path renderingAlsas Cairo, Skia, Qt, and
OpenVG as well as Direct2D.

7. Is there a tutorial to help understand the NVIDI A Path
Rendering SDK examples?

Yes, read theGetting Started with NV_path _rendering” whitepaper which walks
through the SDK’swpr_whitepaper example.

8. Are pre-compiled versions of the NVIDIA Path Ren dering
SDK examples available?

Yes. Download th&lVprDEM Os.zip for pre-compiled 32-bit Windows binaries, ready
to run on XP, Vista, or Windows 7.

9. How does NV_path_rendering work?

The NV_path_rendering OpenGL extension provides ABlvcommands for specifying
path objects. Each path object is a sequence alr@aing commands and their
associated coordinates. Additional path paramébersach path object specify values
for the stroke width, end cap style, line join styind various dashing parameters.

Once a path is specified, the path is renderedigiir@ combination of “stencil” and
“cover” commands. Used in sequence, these commarmdement a “stencil, then
cover” (StC) method for rendering paths. Theretareflavors of stencil and cover
operations: filling and stroking.

The “stencil fill” step can identify all the samgtecations within the framebuffer that are
“inside” the filled region of an indicated pathhd stencil samples of such locations are
modified to indicate the location is within thddidl path. The “stencil fill” operation

only modifies the stencil state of the framebuffes;color values are updated during the
“stencil fill” step.

Next a subsequent “cover fill” step colors the Bxaithin the filled path based on the
stencil information generated by the “stencil féfep. The standard OpenGL stencil test
is used to restrict the pixel coloring to the regwaithin the filled path. This cover step
can also reset the stencil values back to theit'siencil fill” state so the StC method can
be repeated for any additional paths to be rendefée cover step gets its name because
the cover step guarantees covering enough of #meefouffer to guarantee any pixels

with stencil values modified by the “stencil” stejfil be tested and colored as necessary
by the cover step.

The “stencil stroke” and “cover stroke” operatiaerate in a similar manner, but the
stencil values updated by the “stencil stroke” stepthe points contained in the stroked
region of the indicated transformed path. Likewtbe “cover stroke” step guarantees
the rasterization of covering geometry that coretrely covers that stroked region.

The GPU's ability to alternate rapidly between stencil and cover operations is vital to
the ability of NVIDIA GPUs to implement the NV_pattendering StC approach. In
some cases, the GPU is over 100 times faster gblearpath rendering than CPU-based
path rendering approaches.

Other commands in the NV_path_rendering APIs supmditional functionality such as
geometric queries on paths, stenciling or covebatghes of path objects in a single
command, and managing path object names.

10. How is shading performed with NV_path_rendering ?

During the cover step, the current OpenGL fragnpeotessing is performed. This could
be fixed-function processing or programmable shgagerformed by a programmable
shader written in Cg, GLSL, or even assembly.

In conventional path rendering, shading is typichfhited to solid coloring, color
gradients, or image textures. With NV_path_rendgrihere are no limitations on what
kind of programmable shading for path renderingassible. For example, the image
below from thenvpr_shaders example shows a Cg shader applying a bump-mapped
shader effect to path rendered text.

Figure 3: Path rendered text with a bump mapped shader aygpbgr-pixel lighting.

11. Can NV_path_rendering mix with 3D rendering?

Yes. Path rendered content can be depth testa@tydbe stencil and cover steps. This
makes it possible to seamlessly mix conventional=3tJ rendering with GPU-
accelerated path rendering.

The image below from thevpr_tiger 3d example shows how a 3D wire-frame teapot
can be mixed with path rendered content. The tsitehen cover” approach of
NV_path_rendering makes the mixing 3D and pathegnd straightforward.

Figure4: 3D rendering of a teapot mixed with path rendeigek$ and overlaid path rendered text.

12. Can NV_path_rendering clip path rendering to ot her arbitrary
paths?

Yes. The images below from thepr_svg example show how a tiger can be clipped to a
heart path. By stenciling the clipping path irtte stencil buffer first, and then

performing stencil testing of the “stencil, therved' steps to render the tiger,
NV_path_rendering makes arbitrary path clippingigtitforward and extremely efficient.

unclipped tiger tiger with pink background clipped to heart

Figure5: Clipping a complex path scene to an arbitrary dtiggpath.

13. How does NV _path_rendering fit into the existin g OpenGL
graphics pipeline?

Traditionally OpenGL has had a vertex pipelinerBrdering geometric primitives such
as triangles and a pixel pipeline for texture davaals and drawing images.
NV_path_rendering adds a third path rendering pipeb complement the existing
vertex and pixel pipelines as shown in this figure.

Pixel pipeline Vertex pipeline Path pipeline

Application
| | L Path specification
¥
N Transform control
Pixel assembly Vertex assembly points
(unpack)
Vertex operations
transform
feedback P
Primitive assembly

Pixel operations Primitive operations Fill/Stroke
Covering
Pixel pack

Texture
memory

Rasterization

Fragment operations

Fill/Stroke
Raster operations Stenciling
7

Framebu@—) Display
Figure6: How the NV_path_rendering pipeline fits into theeD®L API.

read
back

Application

14. Does NV_path_rendering support arbitrary projec tive
transformations of paths?

Conventional OpenGL supports arbitrary projectramsformations of 3D content,
however most path rendering standards constraiaupporting range of transformations
of paths to 2D transformations for rotation, tratisin, scaling, and shearing, but not
projection. NV_path_rendering extends the rangavaflable transformation to the full
variety of3D transformationsncluding projection. This is one of the reasons
NV_path_rendering can mix seamlessly with arbit@byOpenGL rendering.

Just as shading computations performed on the GPBI rendering are naturally
perspective-correct, shading computations donkarcover step of NV_path_rendering
usage is also fully perspective-correct.

Figure 7. Examples of projective path rendering.

15. How are transformations specified with NV_path_ rendering?

The standard OpenGL modelview and projection medrand their associated matrix
stacks control the transformation of paths for kb#stencil and cover steps.

16. Does NV_path_rendering support vertex, geometry , or
tessellation shaders?

No. Path objects are not specified with vertexgsdéther with control points and other
path coordinates corresponding to distinct pathroands so these programmable
shaders operating on vertexes do not make semspdth rendering context.

This situation is not unique to NV_path_rendering tather reflects the rendering
paradigm encompassed by path rendering generally.

17. If there is no vertex shader, how do colors and texture
coordinates for shading get generated?

NV_path_rendering has commands to generate caéxtsire coordinates, and the fog
coordinate as a linear combination of the pathrdimate space. Consistent with other
path rendering standards such as SVG, the genevaliges can be a function either of
path space or a normalized bounding box coordisdee and can further be a
transformed version of this coordinate system.sTésimilar in approach to OpenGL’s
fixed-function texture coordinate generation fagili.e. glTexGenfv, etc.). This process
includes user-defined clip plane processing (uSpgnGL’s existing gIClipPlane
facility) and view frustum clipping.

Path object-space coordinates

object (xy.0,1)

Modelview eye-space coordinates

color/fog/tex matrix (xe,ye,ze,we) + attributes l
coordinates

color/fog/tex User-defined
Object-space ’W clip planes

color/fog/tex Eye-space
generation color/fog/tex
generation

clipped eye-space coordinates

| (xe,ye,ze,we) + attributes

R h " clipped clip-space to p ath
Projection clip-space coordinates View-frustum coordinates L
——————» stenciling

; . ——»
matrix (xc,yc,ze,we) + attributes C|Ip p|anes (xc,ye,zc,we) + attributes ;
or covering

Figure8: NV_path_rendering’s path transformation, clippiagd coordinate generation
pipeline.

18. So paths rendered by NV_path _rendering can be ¢ lipped by
OpenGL clip planes?
Yes. And this clipping is fully consistent withethivay 3D geometry is clipped by

frustum and user-defined clip planes. Clip plaress be used to discard rendering that is
trivially outside a clipping path or to restrichidering to an arbitrarily transformed box.

The image below shows how a path rendering scambealipped by every combination
of 6 user defined clip planes.

Figure9: Scene showing a Welsh dragon clipped to all 6dlioations of 6 clip planes
enabled & disabled.

19. How are path objects specified in NV_path_rende ring?
Path objects can be specified in one of five ways:

* With a text strings conforming to a standard gramtoalescribe a path.
NV_path_rendering supports both the SVG path syatekkthe complete
PostScript user path construction grammar.

e From data supplied by an array of path commands avitorresponding array of
path coordinates.

* By naming ranges of Unicode character points fragspexified font. The font
can be named by its system name (“Palantino”),fdemame of a TrueType or
PostScript font file (pala.ttf), or a standard foame (“Sans”) guaranteeing the
same glyphs outlines on every operating systematipg NV_path_rendering.

* By linear combination of two or more existing pathjects with the same path
command sequence.

* By linear transformation of an existing path object new coordinate system.
20. So does NV_path_rendering provide first-classr esolution-
independent font support?

Yes.

Basic glyph metrics can be queried from a pathatlgeeated from a Unicode character
point of a specified font.

NV_path_rendering provides additional stencil aoder commands fdnstanced path
rendering where a sequence of path objects, edblthair own independent
transformation, can be either stenciled togetheowered together by a single API
command. This provides efficient rendering of &dny text. The sequence of path
objects to rendered in an instanced batch candmfigal in multiple formats including
UTF-8 and UTF-16 strings.

NV_path_rendering provides a query for kerning s&f@ans suited to return an array of
transformations suitable for rendering properlynegl instanced path objects for a string
of text.

21. What specific glyph metrics does NV_path_render ing
provide?
Per-glyph metrics and aggregate per-font face ose#iie provided corresponding to the

horizontal and vertical metrics provided by theeArgpe?2 library as shown in the image
below:

bearingX o
origin

xMin— xMax Glaph Metrics ———— T >
4p owidth | y M1 gL,
; T yMax
bearingX bearingy height
height
advance
: yMin - P
orgin | [| R 2 yMin Y S o
N : i
’ xcMen xcMax
advance :
Horizontal metrics Vertical metrics

Figure 10: Available glyph metrics to query (image credit; &Ffgpe 2 Tutorial).

22. Does NV_path_rendering use font hinting such as TrueType
hints?

No, glyph outlines are generated simply from eddracter’'s master outline.

TrueType hinting is a process of improving the gy of an outline given knowledge
of the underlying device grid geometry. TrueTyjp&ihg makes sense when the
mapping to device coordinates is known, fixed, artbographic such as in a terminal
window, word processor, or dialog box. The primgogl of font hinting is to optimize
legibility, particularly when rendering to relatiyecoarse pixel grids; this forces a trade-
off with geometric accuracy. NV_path_renderingésigned to render paths, including
paths representing glyphs, under arbitrary tramsé&bions with excellent geometric
accuracy.

Increasing screen density and resolution and higliitg antialiasing diminishes the need
for TrueType hinting. Apple has recognized thisagng almost all font hints in Mac OS
X. If your application puts a premium on font leijty for small point sizes,
NV_path_rendering may not deliver sufficient legti However if you require
dynamically moving text under arbitrary transforroas, NV_path_rendering is very
well suited to fast font rendering.

Rather than assuming font hinting is a mandataguirement for legible font rendering,
evaluate the font rendering quality of NV_path_renmg with a sufficient number of
samples per pixel (8 or more) and judge for yodirsel

23. Can a path object be modified once created?
Yes.

glPathCoordsNV replaces the complete set of pathdomates of a specified path object
with a new set. glPathSubCoordsNV replaces a anber of path coordinates with a new
set. glPathSubCommandsNV deletes a specified nuafil®@mmands and their
corresponding coordinates and replaces them withwa(potentially different sized) set
of path commands and corresponding coordinates.

Path parameters can also be modified once a pghtab created.

24. Can all the application-specified state of a pa th object be
queried?

Yes.

25. Does NV _path_rendering support all the standard stroking
embellishments?

Yes.

NV_path_rendering supports round, square, flatt(pand triangular end and dash caps.
Distinct initial and terminal caps can be specified

NV_path_rendering supports round, bevel, non-existeostScript-style mitered, and
SVG-style mitered join styles with a configurablé@enlimit.

NV_path_rendering supports dashing with both a @asty (supporting both even and
odd dash array lengths) and a dash offset. An @@estyle dash offset reset parameter
specifies whether a ®WETO command resets the dash offset or simply contithess
current dash pattern. Consistent with SVG, a tlemgth parameter scales the dash
array based on ratio of the client length to thi pength computed by
NV_path_rendering.

10

26. Does NV_path_rendering support cubic Bezier pat h
commands?

Yes. Both conventional and smooth cubic Beziehgate supported.

Cubic Bezier commands have both absolute andvelfitivors.

27. Does NV_path_rendering support partial elliptic al arc path
commands?

Yes. Both SVG-style and OpenVG-style partial eitigl arcs are supported.
SVG-style arcs use an end-point parameterizatisedan seven coordinates.

OpenVG-style arcs use an end-point parameterizaaged on five coordinates where
the clockwise/counter-clockwise and large/smalifergs are folded into the path
command.

Partial elliptical arc commands have both abscnig relative flavors.

28. Does NV_path_rendering support PostScript-style circular
arc path commands?

Yes. NV_path_rendering supports path commandgsponding to the PostScrigrc,
ARCN, andARCT path commands.

29. What is the sub-pixel quality of the resulting path rendering?

Modern GPUs maintain color, stencil, and depthestait several samples per pixel
through a technique known as multisampling. NVhpegndering exploits GPU
multisampling to render antialiased paths. Theisigsnumber of samples per pixel is
determined by the application. Maintaining 8 orshénples per pixel provides path
rendering quality comparable to CPU-based patheiend. NVIDA GPUs support
rendering to 32 samples per pixel as well.

Varying the number of samples per pixel providésdeoff between rendering quality
and performance (and memory consumption). High&@Rds can often support 16 and
32 samples per pixel with nominal performance deagian.

NVIDIA GPUs are designed to scatter the sampletjppos within a pixel (sometimes
called jittered sampling). CPU-based path rendengaically rely on regular sample
grids to minimize complexity and thereby improvefpemance. Jittered sampling grids
are widely acceptable to provide better qualitydesmg results.

Requesting 4, 2, or even just 1 sample per pixebo possible. GPUs are also flexible
in their ability to render to off-screen surfacesise the accumulation buffer to further
improve the quality of path rendering.

Conventional CPU-based path renderers often maijuat a single color value per pixel.
This leads to a host of quality artifacts. Amohgge is an artifact known as conflation
where coverage information is conflated with opatiformation leading to color

11

bleeding. NV_path_rendering is renders withoutfledion artifacts because coverage is
maintained independently and accurately for evaby@ixel color sample.

Cairo, Qt, Skia,
and Direct2D
rendered
shows dark
cracks artifacts
due to conflating
coverage with
opacity, notice
background
bleeding

|Z| flawless conflated

Figure 11: Conflation-free rendering with NV_path_renderingrgaared to other renderers.

30. What is the numerical quality of the path filli ng?

NV_path_rendering performs direct per-sample arcalytvinding number computations.
The path outline is never approximated or tessallatto linear segments. This results in
an extremely accurate determination of the pathrgling number with respect to a given
stencil location.

31. What is the numerical quality of the path strok ing?

NV_path_rendering performs direct per-sample arglypoint containment
computations with respect to linear strokes andicptec Bezier strokes and round
features such as end caps or cusps. Stroked ¢gels are never approximated or
tessellated into linear segments. Cubic Beziemeeds and partial elliptical arcs are
approximated to a high degree of accuracy to sexpsenf analytically accurate quadratic
Bezier segments.

The image below shows the kind of stroking inacciespresent in two widely used path
rendering APIs compared to results rendered by Nth gendering and the OpenVG
reference implementation.

12

GPU-accelerated OpenVG reference

q 1 q M
Cairo Qt

N N

Stroking with tight end-point curve

Figure 12: Stroking quality comparison.

32. Does NV _path_rendering fully accelerate path re ndering into
the sRGB color space?

Yes. Core OpenGL since version 3.0 supports lR@GBtextures and framebuffers. All
NVIDIA GPUs supporting NV_path_rendering supportzRcorrect blending and

texture filtering. CPU-based path rendering systeimnot typically properly correct
blending and filtering because of the prohibitixpense, but SRGB correct rendering has
a negligible cost for GPU-accelerated path rendeniith NV_path_rendering. The

image below shows the perceptually linear colopoese achieved by rendering with a
sRGB-corrected color space.

® linear RGB M sRGB

transition between saturated perceptually smooth
red and saturated blue has transition from saturated
dark purple region red to saturated blue

Figure 13: Radial color gradient transitioning between satdatd and saturated blue.

33. How do | implement complex blend modes?

Path rendering systems often support complex hiendes such asoBTLIGHT or
CoLorDoDGE that cannot be implemented with the standard Glebdmng functionality.

With “stencil, then cover” path rendering, theseral modes can be implemented within
a programmable fragment shader that directly ré@&lsample’s color value from
framebuffer as a texture. While such access isdjly undefined in OpenGL,

NVIDIA’s NV_texture_barrier extension provides welkkfined behavior under the
specific conditions that are guaranteed by “stettodn cover” path rendering. This is
because a glTextureBarrierNV operation can be pedd prior to each “cover” step
when drawing a path. What the texture barrier afp@n guarantees is that all caches and

13

pipelines within the GPU that might hold textureframebuffer data have been flushed.
Execution of the glTextureBarrierNV command is fiiped so is relatively inexpensive
in the overall execution of your path renderingou¥ shader still has to guarantee you
read just the color value corresponding to thenfraigt shader execution.

All drivers supporting NV_path_rendering also suppdv_texture barrier.

34. If | use Direct3D in my application, howdo lu se
NV_path_rendering?

While NV_path_rendering is an OpenGL extension, DIMI provides a set of DirectX
interoperability extensions allowing OpenGL rendgrio be directed into Direct3D
surfaces as well as allowing OpenGL to texture fidinect3D textures. See the OpenGL
WGL_NV_DX_interop extension for more details.

35. Is doing the two-step “stencil, then cover” pro cess slow?

No; it's actually quite efficient and faster thather approaches. When the driver
implementation is optimized for this pattern, th@{step “stencil, then cover” process is
extremely efficient.

NVIDIA GPUs in particular are designed to doubleithrasterization throughput when
performing simple stencil-only rendering. NVIDIAR®Es are also extremely efficient at
discarding shading and further fragment processimgn the stencil test fails.

If you play with thenvpr_svg example in the NVprDEMOs.zip, you'll find that
NV_path_rendering is typically many times (in a feases even 100x faster) than other
well-known path renderers. This includes evenudet Direct2D.

36. Still couldn’t one step be faster than two?

The process of rendering path really is a two-pregess. Determining the coverage for
an arbitrarily complex path constructed from cureedes that may or may not self-
intersect or form holes is a difficult task. Segiang this task from the distinct shading
task (performed during the cover step) makes teasting processor array of CUDA
cores in an NVIDIA GPU operate very coherently.eThPU can pipeline stenciling and
covering steps within the GPU so they operateua parallel for maximum performance.

For applications that wish to minimize applicatmrerhead, the stencil and cover
commands to render a particular path object casidpday listed in OpenGL. NVIDIA’s
OpenGL driver is optimized for multi-core systenogtisat when a multi-core system
executes a display list, the driver effort can dmevhrded to a second thread of execution.
If you play with toggling display listing in thevpr_svg example, you can observe as
much as a further 20% speed-up over non-displgsdigath rendering.

There are secondary benefits from decoupling threrege determination for path
rendering (the “stencil” step) from the shading(thover” step). Rendering a path that
is clipped to an arbitrary path is straightforwaiou stencil the clipping path into the
stencil buffer, cover the clipping path to (insteddhading) transfer the net clipping
result to the high-bit of the stencil buffer, th&encil the rendered path into the stencil

14

buffer’s lower bits while testing against the higit- When the rendering path is covered,
you'll skip shading the clipped pixels.
37. Why is Direct2D slower if it also uses the GPU?

While Direct2D does leverage the GPU to accelgratk rendering, the standard
Direct2D path rendering algorithm remains CPU-leoiticked.

With the NV_path_rendering approach, path objeastaaked” into a resolution-
independent form once and then path rendered gnoinethe GPU from that point on.
This allows the NV_path_rendering approach to ddpweare fully on the GPU for its
acceleration.

38. How do | get my specific questions about
NV_path_rendering answered?

Send email tevpr-support@nvidia.com

15

