Mixing Path Rendering and 3D

Mark J. Kilgard
NVIDIA Corporation

June 20, 2011

In this whitepaper, you will learn how to mix com¢é®nal 3D rendering with GPU-
accelerated path rendering within your OpenGL mogusing the NV_path_rendering
extension. NV_path_rendering is supported by BIDB-capable NVIDIA GPUs with
Release 275 and later drivers. This whitepapamass you are familiar with OpenGL
programming in general and how to use OpenGL eiiBss

If you are not familiar with NV_path_rendering dirstudy theetting Started with
NV_path _rendering whitepaper.

Normally path rendering and 3D rendering have &amil-water relationship for a lot of
reasons:

» 3D rendering relies on depth buffering to resolizedpaque occlusion; path
rendering explicitly depends on the rendering oaddayers. Conventional path
rendering has no notion of a depth buffer.

» 3D rendering renders on simple primitives withigina(linear) edges such as
points, lines, and polygons; path rendering prietican be arbitrarily complex,
contain holes, self-intersections, and have cuedges.

» 3D rendering uses programmable shading for pert-pikects, typically written
in a high-level shading language such as Cg; mattaring relies on artists to
layer paths and add filter effects to achieve famsylts.

» 3D rendering is typically drawn using projective 8idwing transformations;
path rendering typically restricts its drawing tbree 2D transformations.

» 3D rendering is off-loaded from the CPU to GPU4 #dra extremely fast; path
rendering is traditionally performed by slower CBaked rendering.

The last reason is probably the most frustratingy di 3D rendering happens on the
GPU in video memory while path rendering is donghgyCPU is system memory
buffers, it is very hard to “mix” the two types @ndering. Even when there are APIs,
such as OpenVG or Direct2D designed to be GPU exateld, these APIs do not
naturally allow 3D and path rendering to mix inirsgte depth-buffered 3D scene.

Mixing means more than just compositing a path-eeed image into a framebuffer
containing 3D rendering. Mixing means the 3D remdpand path rendering should
depth test with respect to each other while nahgpthe blended layering effects crucial
to path rendering. Mixing also means the samerpromable fragment shaders (also
known as pixel shaders) used to shade 3D rendeainglso shade path rendering.



NV_path_rendering makes path rendering a firstscteadering option within the
OpenGL graphics system so now you really can ngkmerformance path rendering
and 3D in the same scene.

Mixing first-class 3D rendering and path render@mgbles a whole new level of user
interface approaches. Once 3D and path rendenxdely, there’s no need to separate
2D and 3D API elements. For example, both typeserhents can seamlessly co-exist
in a stereo environment.

Motivational Images

Figure 1 shows an example of four instances otkassic PostScript tiger arranged in a
3D scene with the one equally classic 3D teapatticd that not only is the teapot
properly occluding the tigers, but the tigers argually occluding each othand
occluding the teapot.

Figure 1: Depth-buffered 3D scene of classic path rendereiSeoipt tigers surrounding the
Utah teapot.

The tigers are not simply images of the tiger stonea texture. As shown in Figure 2,
the eye lashes of the tiger (indeed all the detaiésach tiger) are drawn from resolution-
independent curved paths. You can zoom into atgilde the scene and without ever
getting pixilated results.



]

Figure2: Zoomed view demonstrating the resolution-indepenhdature of the tigers

Depth Buffering Both 3D Rendering and Path Rendering

Rendering these scenes above is simpler than yglt muess.

Framebuffer Configuration

The scene is depth buffered so the example mustzaadt a depth buffer and clear it every
frame. The scene also uses “stencil, then coweti pendering using
NV_path_rendering so the framebuffer configuratdso needs a stencil buffer. The
scene is also antialiased using multisampling @igamples per pixel. The GLUT
command below allocates such a framebuffer is

glutinitDi splayString("rgb depth stencil ~4 doubl e sanpl es~8");

(The tilde operator in the string above says atled least the following number of
stencil bits or sample but favor framebuffer coafafions as close as possible to the
requested number.)

Clear Configuration and Clearing

The example sets the values to clear the colothdepd stencil values:

glCearColor(0.1, 0.3, 0.6, 0.0); // nice blue background
gl C earDepth(1.0);
gl dearStencil (0);

Every frame requires clearing the color and depiifelbs. However the stencil buffer

only needs clearing if the window has been reshapeldmaged. Assuming a Boolean
variable called orce_stenci | _cl ear, indicating when a stencil clear is necessary, this
code clears the buffers before each frame:



if (force_stencil_clear) {
gl G ear (G._COLOR BUFFER BI T |
G._STENCI L_BUFFER BI T |
G._DEPTH_BUFFER BI T);
force_stencil _clear = fal se;
} else {
gl G ear (G._COLOR BUFFER BI T |
GL_DEPTH_BUFFER BI T) ;
}

Initial Viewing Conditions

NV_path_rendering uses the same OpenGL modelvielpasjection matrix state used
for conventional fixed-function vertex processir§o you can manipulate these
transformations the same way you would manipulaentfor 3D rendering.

First, a GLUT reshape callback (called when thedai is first realized and when
resized) establishes a conventional 3D viewingtfnasand viewport

static void reshape(int w, int h)

{
gl Viewport (0,0, w, h);
wi ndow wi dth = w;
wi ndow_hei ght = h;
float aspect_ratio = wi ndow_w dt h/ wi ndow_hei ght;
gl Matri xLoadl denti t yEXT( GL_PRQIECTI ON) ;
float near = 1,
far = 1200;
gl Matri xFrust unEXT( G._PRQIECTI ON, -aspect_ratio, aspect_rati o,
1, -1, near,far);
force_stencil _clear = true;

}

This frustum contains everything in eye-space fooomit from the eye to 1,200 units
from the eye. Our 3D scene with the tigers angddewill be positioned within this
viewing frustum.

(gl Mat ri xLoadl dent i t yEXT andgl Mat ri xFr ust unEXT are selector-free versions of

gl Loadl dent i ty andgl Frust umintroduced by the EXT_direct_state access extansio
uses these commands avoids mistakenly dependitigegarior matrix mode selector set
by gl mat ri xMode. EXT_direct_state_access is always available when
NV_path_rendering is supported.)

When we initialize OpenGL rendering state, we tiaesthe camera location down the
negative Z axis so we can view the scene centerbe arigin in world space:

gl Matri xLoadl denti t yEXT( GL_MODELVI EW ;
gl Matri xTransl at ef EXT(G._MODELVI EW 0, 0, ztrans);

ztrans is initially -150 units.



3D Transformations can transform Path Object Render  ing

Further 3D modeling transformations will be configdi when rendering the teapot and
each tiger instance. These additional per-objBctr&@nsformations can be concatenated
onto the projection and modelview transformationsfigured above.

Each path making up the tiger is lies in a plarg smis fundamentally 2D. In other
words, each path is “flat” in the sense that thib pspecified with 2DX)y) positions,
without a Z axis or any sense of 3D. Yet thesg2¥) positions can be treated as 3D
homogeneous positions by simply reinterpreting tlasn§,y,0,1) positions. This is
similar to the way you can ugeVer t ex2f (x, y) andgl Vertex2f(x,y, 0, 1)
interchangeably. By promoting the coordinate spdqeath objects from 2D positions to
homogeneous 3D positions, paths can be transfobyadbitrary 3D projective
transformations.

Such 3D transformations of paths treated this wexegate Z values that can be
transformed into window-space depth coordinatesdamth tested with respect to any
other geometric primitives (or paths!) renderechvidpenGL 3D rendering. These paths
can also be clipped by clip planes. Varying wineggpace W coordinate values also
facilitate perspective-correct interpolations dfibtites such as colors and texture
coordinates.

Rendering State Configuration

Depth buffering provides the proper 3D occlusioresable depth testing:
gl Enabl e( GL_DEPTH_TEST) ;

For NV_path_rendering, stencil testing is needethduhe “cover” steps when drawing
the tiger paths. In expectation of using sterastihg, configure the stencil testing state
so that zero acts as a neutral stencil value fordiand stroking operations:

gl Stenci | Func(G._NOTEQUAL, 0, OxFF);
gl Stenci | Op( G._KEEP, G._KEEP, GL_ZERO);

In other words, if the cover operations identifynrero stencil values in the framebuffer,
these correspond to color samples within the fibtooke of the path and so are rendered
(instead of being discarded). Such rendered sanapéealso reset to a stencil value of
zero in expectation of the next path to be rendered

Configuring a Depth Offset for Path Stenciling

All the steps so far have are quite ordinary. Wstemciling the paths that make up each
tiger instance, 3D transformations will generatadaw-space depth values that can be
depth tested against previously rendered depttesalu

But path-rendered objects, such as the tigerdypreally made up of many layers and
this introduces a potential issue. Each tigeea@ly 140 paths layers, with each one
layered atop the prior path. In the terminologylepth testing, these layers would all be
approximately co-planar when transformed into windpace ahead of depth testing.
This will result in ambiguous depth testing resaksdifferent paths of the tiger wind up



slightly in front or slightly behind other pathsealto numerical differences in the
transformation of each path.

OpenGL has a mechanism knownrdagth offset, more commonly known gmlygon
offset, for dealing with similar problems with co-plarard nearly co-planar triangles.
Essentially OpenGL can bias forward or backwardhlgplues based on depth offset
state consisting of an integer bias term specifiathits of depth precision and an
additional floating-point terms based on the maximXiand Y slope of the polygonal
primitive in window space. Th# Pol ygonCOf f set command configures this state.

For path rendering, NV_path_rendering introducesftamhal depth offset state that
applies to stenciling paths objects. The pathciag depth offset is configured like
this:

GLfl oat sl ope = -0.05;

GLint bias = -1;
gl Pat hSt enci | Dept hOFf f set NV( sl ope, bi as);

The depth offset state set fiyPol ygonf f set only applies to rendering polygonal
primitives in OpenGL (as its name implies); howetrer depth offset set by

gl Pat hSt enci | Dept hOf f set NV applies only to stenciled paths. The reason &oiry a
special depth offset for path stenciling will bea when the entire 3D rendering process
for paths is explained.

Notice only a very small slope offset (-0.05) arslragle unit of bias offset (-1) are
needed to ensure proper 3D rendering of paths.

Keep in mind that during the path stencil operatjonly the stencil buffer is going to be
updated. While the depth test is performed dupiaitly stencil, the depth buffernst

being written. The depth test can only restrietdlacessibility of the samples to be
updated by stenciling of the path. If the depth fi@iés for a given framebuffer stencil
sample otherwise covered by the filled or stroleglon of a path, the depth test is going
to discard these stencil updates. The path stegakepth offset therefore is simply
offsetting the interpolated depth value at a sarppktion which could change the depth
test result, but it is not ever going to write tb#fset depth value into the depth buffer.
Importantly, the depth offset can allow the dejgi$t to pass during a path stencil
operation when the path’s plane in 3D space islangp with prior paths rendered into
the same plane.

Configuring a Depth Function for Path Covering

During path stencil operations, such as performeNW_path_rendering’s

gl Stenci | Fi I | Pat hNV andgl St enci | St r okePat hNV commands, the standard OpenGL
depth test is applied, if enabled througlEnabl e( G._DEPTH_TEST), using the standard
depth test function set lyy Dept hFunc.

For reasons that will make sense upon further egpian, the cover step for rendering
paths, such as performed by the&over Fi | | Pat hNv andgl St enci | Fi | | Pat hNV
commands, has its own depth function for depthrtgshat is distinct from the standard
depth function used for path stenciling and remdgall other OpenGL rendering. For



rendering the tiger paths in 3D, the depth functarpath covering should be first
specified as:

gl Pat hCover Dept hFuncNV( GL_ALVWAYS) ;

This means whether or not the depth test pasdadduring the path covering step,
always pass the depth teand write the depth value (when the depth test is kexidb

Eureka: 3D Path Rendering!
So why does this enable 3D path rendering?

Think about what happens when we perform the tepssof “stencil, then cover” path
rendering with the following state configured:

gl Enabl e( GL_DEPTH_TEST) ;

gl Enabl e( GL_STENCI L_TEST) ;

gl Stenci | Func( G._NOTEQUAL, 0, OxFF);

gl Stenci | Op( G._KEEP, G._KEEP, GL_ZERO);
GLfl oat sl ope = -0.05;

Aint bias = -1;

gl Pat hSt enci | Dept hOf f set NV( sl ope, bi as);
gl Pat hCover Dept hFuncNV( GL_ALVWAYS) ;

During the path stenciling step, the depth tepei$ormed but using an interpolated
depth value offset based on thepe andbi as values above. If the depth test fails at a
sample, that means there is no stencil updatdéosample location. This is crucial
because if there is no change in the stencil valiecovered stencil location, the stencil
test configured during the path cover step is matgto update the location’s color value.

But if the stencil test does pass (implying thexsiletest passed in the prior “stencil” step
for the path), that means the enabled depth tedsasgoing to pass during the following
path “cover” step (because the path coverage dapttion iSGL_ALWAYS S0 it cannot
fail). This means the depth value of the covermde passing the stencil test is going
to be written. Notice this isot an “offset” version of the depth value, but a &tu
interpolated depth value that is written to thetbelue.

This is desirable because the offset depth valunetiseally correct, but simply offset
enough to avoid co-planar depth testing artifagts.we layer all 140 layers of each tiger,
different depth values will be written (all essafiti co-planar), but no offset depth
values are written. Even if 10,000 layers werenrdt isn’t going to “advance forward”
the depth of the path rendered layers.

This also means the generated depth values coulddukefor other purposes such as
constructing shadow maps or performing constructolal geometry (CSG) operations.
The point is an accurate depth buffer is being grd through the described 3D path
rendering process.

Is This Really Necessary?

To help appreciate that this really works, it helpsee what happens if you render the
scenewithout the crucialyl Pat hSt enci | Dept hOf f set \v. command as shown in Figure



3. Each tiger becomes a mess of co-planar degithirig because the depth testing
during the stencil steps is ambiguous after thet kyer is rendered.

Figure 3: Scene rendered with (left) and without (right) siestep’s proper depth offset.

Drawing the Tigers

Here is the code fragment to draw the four tigers:

fl oat separation = 60;
gl Enabl e( GL_STENCI L_TEST) ;
int nuniligers = 4;
for (int i=0; i<nunTigers; i++) {
float angle = i*360/nunili gers;
gl Matri xPushEXT( GL_MODELVI EW ; {
gl Rotatef(angle, 0,1,0);
gl Transl atef (0, 0, -separation);
gl Scal ef (0.3, 0.3, 1);
renderTiger(filling, stroking);
} gl Matri xPopEXT( GL_MODELVI EW ;
}

Notice that each tiger is drawn with a differentdalyiew matrix transformation
(rotate/translate/scale) pushed on the modelviaeksb draw each tiger.

Ther ender Ti ger routine is not special. The samsnder Ti ger routine can draw a
simple 2D version of the PostScript tiger as shawiigure 4. It simply loops over the
140 paths that make up the tiger performing pdixg 6t enci | Fi | | Pat hNv and

gl Cover Fi | | Pat hNV operations for each path and, if the path is sisuked,

gl St enci | StrokePat hNv andgl Cover St r okePat hNV for each such stroked path.



Figure4: Tiger rendered byender Ti ger with a simple 2D orthographic view by the
nvpr _ti ger example in the NVIDIA Path Rendering SDK.

Drawing the Teapot

So far, the state configuration and drawing has lbeerendering the path-rendered
tigers. This is primarily because nothing, exaeptembering to not leave the stencil test
enabled, is required to render conventional 3Daibjsuch as the teapot into the scene.

The following code draws the teapot:

gl D sabl e( GL_STENCI L_TEST) ;
gl Col or3f (0,1, 0);

gl Matri xPushEXT( GL_MODELVI EW ; {
gl Scal ef (1,-1,1);
if (wreframe_teapot) {
gl ut WreTeapot (t eapot Si ze);
} else {
gl Enabl e( GL_LI GHTI NG ;
gl Enabl e( GL_LI GHTO) ;
gl ut Sol i dTeapot (t eapot Si ze) ;
gl Di sabl e(GL_LI GHTI NG) ;

}
} gl Mat ri xPopEXT( GL_MODELVI EW ;

The code draw the teapot as a solid object wittventional lighting applied or draw the
teapot in green wireframe. Figure 5 shows a sueetiea green wireframe teapot.



Figure5: An enlarged green wireframe teapot protruding tghoan arrangement of
five tigers to show how depth testing is correctrefor complicated wireframe geometry.

Notice that the teapot and tigers both have vadiotld values in the OpenGL window’s
single depth buffer. This makes it possible fou yo mix any conventional 3D rendering
with any NV_path_rendering-based path renderiniger@ is no performance penalty for
mixing the two rendering paradigms.

Because depth testing is order-independent, tieest@nd teapot could be rendered in an
arbitrary order and the scene would be renderaecity.

Overlaid Path Rendered Text

And you do not have to limit yourself to depth-ezkpath rendering mixed with the 3D
objects. You can use path rendering to overlagyfaasolution-independent text too.
Figure 6 shows how you can do this. When rendehadext, depth testing is simply
disabled by callingl Di sabl e( G._DEPTH_TEST). The text shown has a linear color
gradient applied to the filling while each lettsralso highlighted by an underlying stroke
version of each glyph in gray.

10



Figure6: Teapot and tigers scene with fancy text using gr&A&venue BT TrueType
font and drawn with a 2D projective transform amderlining.

NV_path_rendering supports an “instanced” API tensiling or covering multiple path
objects, typically glyphs, in a single APl commarnihese instanced commands support
various per-object transforms of different typesluding arbitrary projective 3D
transforms.

Programmable Fragment Shading

The discussion so far has discussed how to mix @dgierated path rendering with 3D
rendering using a single projective 3D view and)&rdepth buffer but has not addressed
programmable shading.

Conventional Path Rendering Shading is Simple and N on-
programmable
The tiger artwork is simple in its shading. Eaélhe 140 layered paths that make up the

tiger uses constant color shading; but arbitrardgnplex shading of path rendered
content is also possible with “stencil, then coveath rendering.

Conventional path rendering also uses linear adidlraolor gradients and image
texturing as demonstrated in Figure 7. While treesamples may appear 3D, they are
really creations of a skilled 2D artist rather thiary 3D.

11



Figure 7. Examples of path rendering content relying on lireead radial color gradients.

Using Arbitrary Programmable Fragment Shadersto Co  ver
Paths

NV_path_rendering allows the same 3D shaders taiermodern 3D scenes so visually
rich also available for shading path renderinge €kact same fragment shader that you
use for 3D content can be applied to path rendedag How you author the shader is
totally up to you. You can use Cg, GLSL, assengsifgnsions, or fixed-function
fragment processing; the choice is yours.

Figure 8 shows a simple example of applying a pezttpump mapping fragment shader,
written in Cg, to some path rendered text. Thédays “Brick wall!” so it makes sense
to shade the text with a fragment shader that eplinormal map texture encoding the
brick-and-mortar surface variations of a brick wallface. The diffuse lighting on the
wall responds to a circling light source. Flatiogg of the normal map are shaded red
while bumpy regions are shaded white. The yellowidl the scene indicates the light
source position. Notice how the diffuse lightisgliarker further away from the light
source.

12



Figure 8: Path rendered brick wall with bump map brick fragtnghader applied.

Zooming into the scene, we can highlight the ddfere in shading when the light source
is nearby versus when it is far away as showngurei 9.

Figure9: Left zoomed scene shows nearby light; right scéoevs far away light.

With the “stencil, then cover” approach of NV_pattndering, configuring a fragment
shader is simple. During the “cover” step, howedpenGL is currently configured for
fragment shading determines how the covered pathaded.

13



Brick Wall Bump Map Shader Example

For this particular example, the Cg fragment shaler

fl oat3 expand(float3 v)

{
return (v-0.5)*2; // Expand a range-conpressed vector
}
voi d bunpmap(fl oat2 normal MapTexCoord : TEXCOORDO,
float3 lightDir : TEXCOORD1,
out float4 color : COLCR
uni form fl oat3 |ight Pos,
uni f orm sanpl er 2D nor mal Map)
{
/'l Normalizes light vector with nornalization cube map
float3 Iight = normalize(lightPos - float3(normal MapTexCoord, 0));
/'l Sampl e and expand the normal map texture
fl oat 3 normal Tex = tex2D( nor mal Map, nor mal MapTexCoord) . xyz;
float3 normal = expand(normal Tex);
/1 Diffuse lighting
float diffuse = dot(normal,light);
/'l Decide the brick color based on how flat (red)
/'l or angled (red) the surface is.
float3 red = float3(1,0,0);
float3 white = float3(1,1,1);
float3 brick = normal.z > 0.9 ? red : white;
color = float4(brick*diffuse, 1);
}

The brick wall normal map pattern accessed bytheal Map sampler is stored in the a
2D texture such that the signed normal vectorgsarge-compressed into unsigned RGB
color values as shown in

Figure 10.

Figure 10: Normal map texture image.

14



Configuring the Shader for “Stencil, then Cover” Pa th Rendering
This application code renders the filled glyphsisgyBrick Wall!”:

const char *message = "Brick wall!"; /* the nmessage to show */
nmessagelLen = strlen(nessage);
gl Stenci |l Fill Pat hl nst ancedNV( (GLsi zei ) nessagelLen,
GL_UNSI GNED _BYTE, nessage, gl yphBase,
GL_PATH_FI LL_MODE_NV,
~0, [/* Use all stencil bits */
GL_TRANSLATE_X NV, xtranslate);

const GL.float coeffs[2*3] = { 10,0,0, 0,1,0 };
gl Pat hTexGenNV( G._ TEXTUREO,
GL_PATH_OBJECT_BOUNDI NG_BOX_NV, 2, coeffs);

cgG.Bi ndPr ogr am( myCgFr agment Pr ogr am ;
cgGLEnabl eText ur ePar anet er ( myCgFr agnent Par am nor mal Map) ;
cgG.Enabl eProfil e(myCgFragment Profile);

gl Cover Fi |l | Pat hl nst ancedNV( ( G.si zei ) mnessagelLen,
GL_UNSI GNED_BYTE, message, gl yphBase,
GL_BOUNDI NG_BOX_OF_BOUNDI NG_BOXES_NvV,
GL_TRANSLATE X NV, xtranslate);

cgG.Di sabl eProfil e(myCgFragnent Profile);

ThecgG.-prefixed routines are part of the Cg Runtime A®ldonfiguring the Cg
fragment shader for use during OpenGL rendering.

Thegl Stenci | Fi | | Pat hl nst ancedNV andgl Cover Fi | | Pat hl nst ancedNV commands
take the string message as an array of path obyjante offsets. These offsets, each
corresponding to an ASCCI character, will be adied yphBase to generate a sequence
of path objects corresponding to a range of glyphaded for a standard sans-serif font.
(The initialization of these glyph path objects i@ shown here but in the example code.)
The arrayt r ansl at e is an array of GLfloat values that indicates thsaute X
translation of each glyph from the next in the sggpe. NV_path_rendering includes a
querygl Get Pat hSpaci ngNV to make it easy to compute a set of kerned glyfsets for

a string of characters. (For more details aboutrendering with NV_path_rendering,
see theGetting Sarted with NV_path_rendering whitepaper.)

Generating Texture Coordinates for the Cover Step

Unlike 3D rendering, path rendering does not useexdevel shading operations because
paths are not specified with vertices. (Instedtigpare specified with path commands
and their associated coordinates. Technicallyth ppecifies a 2D trajectory or contour
on a logical 2D plane so the kind of vertex-leveétions such as vertex, geometry, and
tessellation shading applied to meshed polygonaingdry are not applicable to paths.)

Without conventional vertex processing and thesoagmted per-vertex attributes, there
needs to be some other way to generate linearlyngaattributes such as colors, texture
coordinate sets, and the fog coordinate over d9#llled or stroked region.
NV_path_rendering includes a set of commands temge¢a such attributes from linear

15



functions of the object-space, eye-space, or bagnolox coordinates of the paths being
rendered.

In the example code above, tlePat hTexGenNV command, similar in spirit to the
conventionall TexGenf v command, computes the texture coordinates foretheering
as a function of the bounding box of the instangaith objects. This command
configures the texture coordinate generation:

const GL.float coeffs[2*3] = { 10,0,0, 0,1,0 };
gl Pat hTexGenNV( G._ TEXTUREO,
GL_PATH OBJECT_BOUNDI NG BOX_NV, 2, coeffs);

With path texture coordinate generation configurgdhis command, theandt texture
coordinates are computed based on the linear c@efts in thecoef f s array as

s=10%+0xy+0
t=0xx+1xy+0

wherex andy are positions within the normalized [0,1] rangehe bounding box. This
scales the [0,1] x[0,1] square to a [0,10] x[Ogdion. This mapping is because the text
“Brick Wall'” has about a 10-to-1 aspect ratio. iFmeans the normal map texture tiles
(repeats) ten times horizontally.

Alternative attribute generation modesao PATH_OBJECT_BOUNDI NG_BOX_Nv are
GL_OBJECT_LI NEAR andGL_EYE_LI NEAR to generate attributes as a linear combination of
object-space object coordinates or eye-space (podelview matrix transform)
coordinates.

Easy to Modify Shading and Font Choices

Once the shading of path rendered content is ymdgrammable control, it becomes
much easier to modify and control the resultindigahdering. By modifying the Cg
shader, the text coloration is easy to change.ekample, these alternative lines modify
how thebri ck color is computed:

float3 green = float3(0,1,0);

float3 nmagenta = float3(1,0,1);
float3 brick = normal.z > 0.9 ? green : magent a;

Figure 11 shows the result of using this modifigdsBader and picking the standard
“Serif” font.

16



@g

B

Figure 11: Rendering result with a modified shader and difiiefent choice.

More Information

The source code for the examples shown is freaylae in the NVIDIA Path

Rendering SDK.nvpr _ti ger 3d is the example rendering the tigers and teapotshio
Figure 1, Figure 2, Figure 3, Figure 5, and Figuravpr _ti ger is the simple 2D

example shown in Figure 4vpr _shader s is the programmable shading example shown
in Figure 8, Figure 9, and Figure 11.

To resolve questions or issues, send email/p-support@nvidia.com

17



