Generating Displacement from Normal Map for use in 3D Games

Kirill Dmitriev
Evgeny Makarov
NVIDIA
Adding Geometric Detail to the Game
Displacement vs. Bump or POM

- Can be done using HW Tessellation
- Silhouettes
- Occlusion and self shadowing
- Correct parallax
- Works with multisampling
Full Artistic Pipeline

- Design coarse model
- Subdivide and add details
- Calculate displacement as mesh difference
Shortcut possible?

- Have only coarse model and normal map
- Want to compute displacement
Computing Displacement in 1D

- Normal per texel is known
- Texel world size is known
Depth Difference Map (DDM)

- Preprocess normal map to build DDM
- DDM stores height delta when crossing the texel
Computing Displacement in 1D

- Get displacement map by integrating depth difference map
Get displacement map by integrating depth difference map
Computing Displacement in 1D

- Get displacement map by integrating depth difference map
Computing Displacement in 1D

- Get displacement map by integrating depth difference map
2D DDM stores two height deltas: for horizontal and vertical directions.
Computing Displacement in 2D

- Integrate DDM starting from the corner
- Integrate DDM starting from multiple points
Errors will occur ...

- Depending on the route to a point we can get different results:

 height(route a) ≠ height(route b)
Normal Map is Lossy

- Stores average per texel. Can’t reconstruct exact normal in every point
- Does not have information about discontinuities
- Stored in low precision
- All those errors accumulate
Uniform Approach

- Compute every texel independently
- No preferred points or directions

Depth Difference Map
Uniform Approach

- Starting from zero depth integrate depth over circle
- Shoot N rays uniformly distributed over 360 °
Integrating Height

- Height is reconstructed from DDM on the fly and added to integration sum
- Integration in polar coordinates!

$$\text{height}(B) = \text{height}(A) + \text{DDM}(x,y) \times \text{float2}(\Delta x, \Delta y)$$
Uniform Approach

- Target zero displacement on average
- Offset texel by computed average
Before

After
Results
Results
Summary

- Fully automatic solution
- Works reasonably well even on ‘painted’ normal maps
- Getting good looking displacement is not the whole story…
Displacement Problems

- Cracks
 - Texture coordinates discontinuities
 - Multiple materials assigned to sub-meshes

- Stretching
Texture Coordinates Discontinuities

- Use adjacency information in Domain Shader to stitch the crack
- Each vertex gets assigned 3 extra coordinates
 - 1 for dominant corner
 - 2 for dominant edge
Reducing discontinuities on the seams

For each texel

- Using adjacency, average height value of connected texels
- Blend smoothly displacement to the border
Multi Materials

- Mark material seams
- Zero displacement on the seam
Stretching

- 2-pass approach
 - Calculate displacement as usual
 - Measure stretching on real model
 - Reduce weight of texels causing stretching on the second pass
Geometry Collision and Separation

- Displacement changes object sizes
 - Objects may collide or separate from each other
 - Characters flying over tessellated terrain
 - Billboards pierced by tessellated walls

- Zero average displacement helps
- Deferred decals
kdmitriev
or
emakarov
(at)
nvidia.com