ZVIDIA. /
Hardware-Accelerated Procedural =~
Texture Animation |

Greg James
NVIDIA

Agenda

< Introduce Concepts
~ Demos of Effects

< Explanations
< Basic Effect — Fire and Smoke
< Effect — Dynamic Bump Maps
< Effect — Interactive Water Simulation on the GPU! /
< Effect — Large Bodies of Water |
< Special Guest!

< More Ideas ,
2 Q&A
<

2 RVIDIA.

Audience

< Intro & Overview:
<« Everyonel
< Artists, Programmers, Designers

< Detailed Explanations:
<« Everyonel /
2 Programmers |
< Folks that know textures and basic 3D graphics

< A little DX8.1 code
- Emphasis on concepts ‘
- Same things possible in OpenGL @
3 BVIDIA.

Context

< PC and Xbox Games
< concepts apply to PS2 (Baldur’s Gate: Dark Alliance)
<« Hardware
- GeForce 3
-~ Radeon 8500
< DirectX 8.1
< Pixel Shaders 1.1 J;
2 Vertex Shaders 1.1 /
-~ OpenGL - not discussed today |
< demos = http://developer.nvidia.com
< NV_vertex_program
< NV _texture _shader ‘
< NV _register_combiners @_‘

< Similar extensions from other vendors
4 BVIDIA.

Gameblevelo pers
Conference

Introduction

< Procedural textures are more Elder Scrolis ll: Morrowind
than wood and marble! Bethesda Softworks

3 e
M -

< Animation is our goal
< Dynamic bump maps
< Animated textures
<~ Special effects
< Interactive effects

< “Procedural” enables real-time control

5 BVIDIA.

Brief History

< Early techniques for textures and geometry
- Ken Perlin, D. Peachey, G. Gardner — Noise, marble
< F.K. Musgrave — Fractal landscapes, geometry

< Storage is expensive, slow

< Non-procedural gives: Fixed resolution, 2D,
no animation

< Reference:

< D. Ebert, F.K. Musgrave, “Texturing & Modeling, A
Procedural Approach 2"9 ed.,” Academic Press,
1998 \

<

6 #VIDIA.

Effects for This Talk

<~ Developed over the last year

<« GeForce 3 hardware demos
< 4 texture samples per pass
< Vertex and Pixel Shaders
<« Matthias Wloka (NVIDIA) began this thread
- Edge detection
< Image processing
<« Greg James (NVIDIA)
< Dynamic normal maps
< Animation effects \

2 ATl — Image processing <
7 BVIDIA.

J BN Bl BN _
. Practical Techniques! ——)

< Designed for real-time games
< Effects run at 150 — 500+
frames per second
< Shouldn’t kill your frame rate
< Bump Maps, Water, and Fire/Plasma are cool!
<~ Free modular source code /
|

Elder Scrolls Ill: Morrowind

< Drop-in classes to run an effect
< Add working effect in 5 lines of code ©

< Developer support

< Just ask! ‘
(Qf“ﬁ_ |

g BVIDIA.

y

Define “HW Procedural Texture Animation”!

< ltls:
- Textures created at run-time as needed
<~ Rendering operations which create new textures
< Using textures to create new textures

< Itis NOT:
< An artist painting everything by hand |
2 ‘Canned’ animation
< Consuming disk space for each frame

< It can be:

- Fast, endless, non-repeating or repeating ‘
| i <
2 Interactive =

9 #VIDIA.

GameDevelopers
Conference

Compare ‘Canned’ to Procedural

< Canned animations store every frame
< Huge storage requirement, even with compression

< Procedural animations only need to store a few
frames or components

« Frames created and displayed as needed

Wl —

DISPLAY 7
2 v 4 e
10 . BVIDIA.

Canned vs. Procedural

<« Canned offers complete control
< Make a movie
< To change it: Make another movie

<« Procedural defines a behavior
< A system with rules J
< Hopefully it behaves the way you want it to! :

< To change it: Add input or change the rules
- Change rules as it is running
> Emergent behavior ‘

<

11 RVIDIA.

Each Has Its Place

<« Use Canned for:
<~ Short loops

< Absolute control
< Photography
< Movies

<~ Use Procedural for: /
<~ Things you can calculate

< Physical simulation, water, noise, image processing,
special effects

< User interaction ‘
- Reactive displays and surfaces

<

12 RVIDIA.

The Basic ldea

’ Render to texture
> Simple geometry drives the processing

if

if

f

" You get several texture samples at each pixel

< Sample a set of neighbors
> Combine samples into rendered pixels
> Use rendered textures as needed

f

if

> Can use advanced Pixel Shader instructions

f

< Dependent texture reads
< Dot-products |

2 CND conditional instruction <
13 BVIDIA.

Fundamental Operation

< Render to texture

Texture
< Then use rendered
texture in rendering Texture
your scene Texture
— — =
/ Geometry
@ RENDER
Texture Surface
Render Target
<

14 #ZVIDIA.

Keep it on the GPU!

15

-

> Avoid texture Locks!
> No AGP texture transfer between CPU and GPU

> No CPU or GPU stalls!

- Caveat — May flush some GPU pipes, but this is
better than a complete stall

" Huge GPU computation power (fill rate)

. 10s or 100s of millions of animated texels / second

. Saves a lot of CPU MHz

' Free parallel processing
- Several pixels per clock

<

RVIDIA.

Without Graphics HW

<~ Heavy CPU load

< Cycles and memory bandwidth
< Slow transfer to GPU over AGP
< GPU and CPU stall waiting for each other
< Breaks efficient buffering of GPU commands

< Lots of nasty SIMD assembly code

- Two versions: Intel, AMD

2lt's SLOWER! ® \

16 #VIDIA.

GameDevelopers
Conference

Overview of Effects

< Simple fire and smoke
< Dynamic normal maps
< Water

< Cellular automata
< Noise
« Patterns

17 @VEIEIAQ

Gameblevelo pers
Conference

Fundamental Operation

< Render to texture

Texture
Texture
Texture
= ——
/ Geometry

@ RENDER /
Texture Surface
Render Target

<

8 BVIDIA.

API Calls

« DirectX 8
< IDirect3DDevice8->SetRenderTarget(color, depth);
< color = IDirect3DTexture8->GetSurface(..);
< depth is usually not used

< OpenGL
< WGL_ARB_render_texture /
2 WGL_EXT_pbuffer
< GL_NV register_combiners
< GL_NV texture shader

< ‘

19 RVIDIA.

Steps

< Bind input textures

< Establish texture coordinates

< Configure Pixel Shader / Register Combiners

< Set texture render target

< Render simple geometry J

<~ Set ordinary render states
<« Set render target to back buffer
<~ Render scene ‘

<

20 #VIDIA.

Texture Coordinates Determine Sampling

< Sampling can be =7

Texture 0 74/
« One-to-One £
< Neighbors Texture 1 2 %V
< Arbitrary E\V +
.~ Coordinates from Texture 2 Ee=t=—

: \
< Vertices M /
- Per-pixel Texture Coord TO
displacements M
Texture Coord T1
Texture Coord T2 M ‘

<

2 BVIDIA.

Coordinate Interpolation

< Vertex texture coordinates are interpolated
< Gives texture coordinates for each pixel rendered

< Interpolation causes same neighbor pattern to be
sampled for each pixel rendered

Wrap ?
7 7 |
Texture O = /
Texture Coord TO @J

22 BVIDIA.

ﬁ_ﬂﬂ El.é‘*:":a_:'_,--- :';:H\""
Conference

How to Sample Each Texel’s Neighbors

<« Source texture: (x,y) pixels in size ©
<« SetTexture(0..3, pSource);

< Render Target: also (X,y) pixels in size
-~ SetRenderTarget(pDest, NULL);
< NULL for no depth buffer

23 BVIDIA.

How To Sample Each Texel’s Neighbors

\VC
t0 = (0,0)
vV VB

-~ Render a quad over render target
< Texture coordinates from
(0,0) to (1.0, 1.0) Vo
< Vertex Shader writes four
different texture coordinates for

each vertex

-~ Each of the four coordinates is Quad
offset by a vector VA, VB, VC, or VD (1,1)
oTO = vertex tcO + c[VA
0Tl = vertex_tcO + c[VB] |
oT2 = vertex tcO + c[V(C
0oT3 = vertex _tcO + c[VD @s—*

24 #VIDIA.

q,_,,d T 4-{
Cnnference

Offset Coordinates Sample Neighbors

VC

”

£=E

VA

< Or some pattern of other texels

25 BVIDIA.

Sampling From Neighbors

< 10,11, t2, t3 samples delivered to C
Pixel Shader

< When destination pixel, @ is rendered,
If VA, VB, VC,VvD are (0,0) then:

t0 = @ pixel at (2,1)
tl = © pixel at (2,1)
t2 = @ pixel at (2, 1) O 1 2 3
t3 = @ pixel at (2,1)

If VA =(1,0), VB=(10), VvC=(0,-1), VD=(0,1) then:
t0 = pixel Aat (1,1)

tl = pixel Bat (3,1)
t2 = pixel Cat (2,0) ‘
t3 = pixel Dat (2,2) <

26 #VIDIA.

Sampling From Neighbors

~ Same pattern is sampled for each

pixel rendered to the destination -
. . . A|l@®|B
< When pixel © is rendered, it samples

from: E|1©]D

| F /
t0 = pixel E
tl = pixel D O 1 2 3
t2 = pixel A
t3 = pixel F

27 RVIDIA.

l L] r] TieL’'c "":.."-::::f:'i""ia
I I l | . I I Il Conference

Sample Local Area or Not

\
P

=S e /A—/\\\
—

TEXTURE
ADDRESSING { = COORDS
g 4
f’ 1 val 12| |va| |12
1]-4]1
0|10
FRAGMENT — - PIXEL SHADER

COMBINE

\/

RENDER 5 «3’__51

28 TARGET #ZVIDIA.

Samples Delivered to Pixel Shader

I I Il Conference

29

< Process them however you like
<~ Average to blur
< Difference to sharpen or compute gradients
<~ Example DirectX 8 Pixel Shader

ps. 1.1

tex
tex
tex
tex

to
tl
t2
t3

sub_x4

mul

sub_x4

mad

mul _x2
dp3_d2

add
mad

ro,
t o,
ri,
ro,
t1,
ri,
ro,
ro,

/l t0 =-s, O
/]l t1 =+s, O
/] t2 = 0, +t
/[l t3 = 0, -t

to, t1l

r0, c[PCN_RED MASK]

t3, t2

rl, c[PCN_GREEN MASK], tO

ro, ro0

1-t1, cl

ro, c2

rl, c4, r0

nei ghbor 1
nei ghbor 2

[l (t0O - t1)*4 : 4 for higher scale

[/ t0 = s result in red only

/[l rl =1t result in green

/1 rO =red,green for s and t result
[l t1 =(2* sh2, 2* t~r2, 0.0)

[l blue = =1 - s*"2 - t"2
/1l bias red,green to 0.5 J
/'l RGBB = (r0.r+0, r0.g+0, 0 + r1.blue)_)IA

R

Fire Effect

Texture |
Source "Embers”
blur + scroll blur + scroll
\;J'exturel j

J

a. b.

< Blur and scroll upward b
2 Trails of blur emerge VA:& | ‘
from bright source f/vs @
, embers’atthe bottom g BVIDIA.

Fire Effect Pseudo-Code

. Clear(F1 texture); Clear(F2_texture);
< while(not(done))
< Jitter(VA, VB, VC, VD, full coverage quad)
< SetVertexConsts(VA, VB, VC, VD)
< SetRenderTarget(F1_texture)
< SetTexture(embers_texture)

< Render(embers_object) — ;
< SetTexture(F2_texture) /[previous fire/smoke
< Render(full _coverage quad) _

< Swap(F1_texture, F2_texture)

< SetRenderTarget(backbuffer, depth) @
=

< RenderScene(using F2_texture)
31 BVIDIA.

Fire Effect

< Jitter texture sampling
< Vary scroll direction for a wind effect

< Turbulence: Tessellate geometry with jittered
texture coords or positions

<~ Change color averaging multiplier
-~ Brighten or extinguish the smoke /

< How to improve:
< Better jitter patterns (not random jumps)

-~ Re-map colors \
> Dependent texture read @_‘
32 BVIDIA.

Sample Placement

< D3D and OpenGL sample differently
-~ D3D samples from texel corner
<~ OpenGL samples from texel center
<« Can cause problems with bilinear sampling

< Solution: Add half-texel sized offset with D3D

O = pixel rendered
7\ X = sample placement
O X
offset ‘
<

33 D3D OpenGL BVIDIA.

GameDevelopers
Conference

Dynamic Normal Maps

< Create and update surface normal maps as needed
< MOST POWERFULL TECHNIQUE
< Normal map from Height map in single pass

< Quick review of surface normal maps
< Represent surface geometry

34 BVIDIA.

GameDevelopers
Conference

Review: Surface Normal Maps

<« Height maps are popular (3DS Max, Maya, ..)
< RGBA color represents height of a surface
< Usually limited to 8 bits of precision

< Normal maps are better

< RGB color represents XYZ coordinates of surface
normal

<~ 8 or 16 bits per coordinate axis (more precise!)

. el
. "'i-"'ﬁi Rt

l-.‘..-—....l o oor faaea, ® 0

3 Helght Map Normal Map RVIDIA.

GameDevelopers
Conference

Review: Per-Pixel Lighting

< Lighting equation per-pixel instead of per-vertex
<« Visualize light vector and normal as RGB color

Light Vector, L Normal map Per-Pixel Lighting

36

5 EES 1 N P == 1
Per-Pixel Reflection -I Conference

Using Surface Normal Map

37

Cass Everitt

RVIDIA.

Game

Creating Normal Maps From Height Maps

< Simple: Use 4 nearest neighbors

-

< dz/du=(B.z-A.z)/2.0f /I U gradient

< dz/dv=(D.z-C.z)/2.0f /I'V gradient

< Normal = Normalize((dz/du) X (dz/dv))
X denotes cross-product QJ

38 BVIDIA.

Creating Normal Maps in HW

f

> Can render a normal map from a height map
source in a single rendering pass

< Approximate normalization
< 1If A issmall then sqgrt(1-A) ~=1-%A
> Could do exact normalization in 2 passes
< This isn’t needed. Approximation is good enough!

f

i

> Update height maps
<~ Render features into height map
> Create normal maps |

" Keeps all data on graphics HW @4
39 BVIDIA.

f

f

Normal Map Creation Shader

ps. 1.1

def c2, 0.5, 0.5, 0.0, 0.0

def c¢c1, 1.0, 1.0, 0.0, 0.0

def c4, 0.0, 0.0, 1.0, 1.0

tex tO /[l t0 = -u, O nei ghbor A t0..t3 are sane texture
tex t1l /[l t1 = +u, O nei ghbor B

tex t2 [l t2 = 0, +v nei ghbor D

tex t3 /[l t3 = 0, -v nei ghbor C

sub_x4 r0, tO, t1 [/ (tO0 - t1)*4 for higher scale
mul t0, r0, c[PCN RED MASK] /] t0 = s result inred only
sub x4 rl1l, t3, t2 [l rl =1t result in green

mad ro, rl, c[PCN GREEN MASK], tO // rO=r,qg for s and t result
mul _x2 t1, r0, rO [l t1 = 2 *s”2, 2 * t~2, 0.0)
dp3 d2 rl1, 1-tl1l, cil /[l blue = =1 - s?"2 - t"2

add ro, r0, c2 /'l bias red,green to 0.5

mad ro, rl, c4, r0 [l R@&=(r0.r+0,r0.g+0,0+rl. b)

40

e W A R B LR E

Normal Map — Src Height in Blue, Alpha

Conference

i gy o, P P
uudinev'evelopers

41

def c¢1, 1.0, 1.0, 0.0, 0.0

def c2, 0.5, 0.5, 0.0, 0.0

def c4, 0.0, 0.0, 1.0, 1.0

tex tO [l -u,0 t0, t1,
tex tl /1 +u, 0

tex t2 /1 0, +v

tex t3 /1 0, -v

sub x4 r0.a, tO, t1

mul t0.rgb, r0.a, c[PCN RED MASK]
+sub x4 rl.a, t3, t2

mad ro, rl.a, c[PCN GREEN MASK], tO
mul _x2 t1, r0O, rO

dp3_d2 r1, 1-t1, cl

add ro, r0, c2

mad ro, r1, c4, r0

t2,

11
11
11
11
11
11
11
11

t3 are sane height texture

(t0 - t1)*4 4 for higher scale
t0 = s result inred only

rl =1t result in green

roO = red,green for s and t result
tl =(2 * sh2, 2 * t~r2, 0.0)

(1-2s"2 + 1-2t"2)12 =1 -
bias red,green to 0.5
RG&B = (r+0, g+0, O+blue)

sh2 - tN2

BVIDIA.

Animate Normal Map Geometry

«~ Change surfaces in subtle or drastic ways

< Render damage into surfaces

< Animate cracks, wear

<« Character aging

<« X-Files inspired skin crawlers

< Fluid surfaces /
2 Warping, melting surfaces

< ‘

42 RVIDIA.

Height-Based Water Simulation

<« Physics on the GPU
< In glorious 8-bit precision
< 8 bits is enough, barely!
<~ Each texel is one point on water surface

<« Each texel holds
< Water height H /
2 Velocity V
< Force F - computed from height of neighbors

~ Damped + Driven system
< For “stability” ‘

<

43 BVIDIA.

It Just So Happens That...

- Discretizing a 2D wave equation to a uniform grid
gives equations which sample neighbors

< Derivatives (slopes) in partial differential equations
(PDEs) turn into neighbor sampling on a grid

- See [Lengyel] or [Gomez] for great derivations
< Textures + Neighbor Sampling are all we need!

< Forget the math — Use Intuition!

< And a spring-mass system

2 Math near identical to PDE derivation @Q
44 BVIDIA.

The Math

<~ Height texels are connected to neighbors with

springs

< Force acting on HO from spring connecting HO to H1

- = k*(H1-HO0)

< k =spring strength constant
< Always pulls HO toward H1

<~ HO, H1 are 8-bit color values

JF=k*(H1+H2+H3+H4-4*HO)
<V=V+cl*F
<« HO=HO+c2*V

< cl, c2 are constants (mass,time)

45

H1

H4

HO

H2 /

H3

\

RVIDIA.

Height-Based Water Simulation

]'['I'u

Height current (HTn), previous (HTn-1)
Force partial (F1), force total (F2)
< Velocity current (VTn), previous (VTn-1)

. Use 1 color channel for each @
A
__

< F=red; V=green; H=Dblueand alpha -
46 BVIDIA.

Newtonian Physics in Pixel Hardware

F=k*(HL+H2+H3+H4—4*H0)
V=V+cl*F
HO = HO +¢c2 * V

<~ Repeat, generating new H & V values at each point

< New set of heights is next time step

< Pixel Shader ;
<~ 1) Reads HO..H4, V from texture

- 2) Calculates new H& V

-~ 3) Renders new H & V to texture, to be read back
again at step 1

< Will it work? Not quite! ‘
<

47 BVIDIA.

Stability Issues

< High frequency oscillation

- Checkerboard patterns amplify

< Solution: Add blur step to smooth H and/or V
<~ Values hit O or 1 saturation

<~ Numerical error in 8-bit values

< Solution: Add gentle force pulling height to 0.5

- Option: Move heights slightly toward 0.5 at each step
< Blur and Dampening make waves fade to nothing

< Solution: Add subtle excitations to keep it going

- Render blobs additively into H or V values

48 #VIDIA.

Final Approach

< Pick c1,c2, k, k2,d1 to match [0,1] color value range

<+ cl=04; c2=048; k=1; k2=0.15; d1=0.9875
< Change them to change water behavior!

F=k*(HL+H2+H3+H4-4*H0)+k2*(0.5-H0) /
V=V+cl*F
HO=HO*dl+c2*V
HO = blur (H1, H2, H3, H4, or other neighbors)
Repeat! ‘
2 Works great! <
49 RVIDIA.

How Many Passes?

< Passes at texture resolution — Not screen resolution

«~ GeForce 3 or 4:
- Calculate F, V, H: 2 passes
< Blur H: 1 pass
< Normal map from H: 1 pass
. Possibleto do it all in 3 passes f
< Mipmapping requires more passes. Not used

<« Future HW:
< Everything in 1 pass ‘
<~ Sometimes better to use 2 passes @_1

50 #VIDIA.

Make It React

< Character moving through

- Render small blob into H, V, or F (blue, green, or red
color channels) at character location

.~ Best to render into H Height
< Additively or alpha blend
< Physics makes waves spread naturally

- Barriers in water

- Texture with barrier height in one channel, and
barrier ‘strength’ in alpha

< Alpha blend into H after the physics

< Alpha =0 has no effect. Alpha =1 has full C
(&=
=z

effect of solid barrier
51 BVIDIA.

Large Bodies of Water

<~ Texture border wrap makes water tile seamlessly
< Problem: Character displacements shouldn’t tile

< Answer: Two water simulations
. One for tiled water

< One for localized unique water with waves from
character

<« Couple tiled water into border of localized water
- Match texture coords as the local water moves
< Render tiled texture to outer edge of local water
- Tiled and Local will match seamlessly \

<« See public demos for specifics @
52 BVIDIA.

GameDevelopers
Conference

Coupled Water

« Used in “Elder Scrolls Ill: Morrowind”

GameDevelopers
Conference

Special Guest

< Todd Howard, Bethesda Softworks

54 — BVIDIA.

More Ideas

55

<« Cellular Automata: patterns, noise, tiles, life!
<« Image Processing: edges, bad TVs
< XBox game “Wreckless”
< Advanced fluids
< Use texture distortions for flow /

< Simulate temperature, density, pressure, 2D
velocity, heat flow

« Future hardware will make it easier, faster, more ‘

powerfull
<
BVIDIA.

Cellular Automata

Green channel Dependent green-bluee
neighbor count address operation

| (IF
Blue channel (1.1
on/off state . Rules map e,

.. GREAT for generating noise and other animated patterns to
use in blending

.. Game of Life in a Pixel Shader
< Three render-to-texture passes per generation @}
- Dependent texture read with rules in a texture -
56 P BVIDIA.

GameDevelopers
Conference

Questions?

< Greg James - gjames@nvidia.com
devsupport@nvidia.com

57 BZVIDIA.

References & Source Code

« Height-based fluid simulation

Gomez, Miguel, “Interactive Simulation of Water Surfaces” in
“Game Programming Gems,” Charles River Media, 2000, p 187

Lengyel, Eric, “Mathematics for 3D Game Programming &
Computer Graphics,” Charles River Media, 2002, Chapter 12, p
327

~ Game Gems Il Article

James, Greg, “Operations for Hardware-Accelerated Procedural
Texture Animation,” in “Game Programming Gems Il,” Charles
River Media, 2001, p 497

~ Demos -- NVIDIA Effects Browser

http://developer.nvidia.com
(OLD) http://developer.nvidia.com/view.asp?lO=dynamic_bump_reflection
(NEW) http://developer.nvidia.com/view.asp?lO=water_interaction
http://developer.nvidia.com/view.asp?IO=cellular_automata_fire @1
h _ - : 1= :
53 http://developer.nvidia.com/view.asp?lO=game_of_life BVIDIA.

