
Hardware-Accelerated Procedural
Texture Animation

Hardware-Accelerated Procedural
Texture Animation

Greg James
NVIDIA

2

Agenda

Introduce Concepts
Demos of Effects
Explanations

Basic Effect – Fire and Smoke
Effect – Dynamic Bump Maps
Effect – Interactive Water Simulation on the GPU!
Effect – Large Bodies of Water

Special Guest!
More Ideas
Q&A

3

Audience

Intro & Overview:
Everyone!
Artists, Programmers, Designers

Detailed Explanations:
Everyone!
Programmers
Folks that know textures and basic 3D graphics
A little DX8.1 code

Emphasis on concepts
Same things possible in OpenGL

4

Context

PC and Xbox Games
concepts apply to PS2 (Baldur’s Gate: Dark Alliance)

Hardware
GeForce 3
Radeon 8500

DirectX 8.1
Pixel Shaders 1.1
Vertex Shaders 1.1

OpenGL – not discussed today
demos !!!! http://developer.nvidia.com
NV_vertex_program
NV_texture_shader
NV_register_combiners
Similar extensions from other vendors

5

Introduction

Procedural textures are more
than wood and marble!

Animation is our goal
Dynamic bump maps
Animated textures
Special effects
Interactive effects

“Procedural” enables real-time control

Elder Scrolls III: Morrowind
Bethesda Softworks

6

Brief History

Early techniques for textures and geometry
Ken Perlin, D. Peachey, G. Gardner – Noise, marble
F.K. Musgrave – Fractal landscapes, geometry

Storage is expensive, slow
Non-procedural gives: Fixed resolution, 2D,
no animation
Reference:

D. Ebert, F.K. Musgrave, “Texturing & Modeling, A
Procedural Approach 2nd ed.,” Academic Press,
1998

7

Effects for This Talk

Developed over the last year
GeForce 3 hardware demos

4 texture samples per pass
Vertex and Pixel Shaders

Matthias Wloka (NVIDIA) began this thread
Edge detection
Image processing

Greg James (NVIDIA)
Dynamic normal maps
Animation effects

ATI – Image processing

8

Practical Techniques!

Designed for real-time games
Effects run at 150 – 500+
frames per second

Shouldn’t kill your frame rate
Bump Maps, Water, and Fire/Plasma are cool!
Free modular source code

Drop-in classes to run an effect
Add working effect in 5 lines of code ☺☺☺☺

Developer support
Just ask!

Elder Scrolls III: Morrowind

9

Define “HW Procedural Texture Animation”!

It Is:
Textures created at run-time as needed
Rendering operations which create new textures
Using textures to create new textures

It is NOT:
An artist painting everything by hand
‘Canned’ animation
Consuming disk space for each frame

It can be:
Fast, endless, non-repeating or repeating
Interactive

10

Compare ‘Canned’ to Procedural

Canned animations store every frame
Huge storage requirement, even with compression

Procedural animations only need to store a few
frames or components
Frames created and displayed as needed

DISPLAY

11

Canned vs. Procedural

Canned offers complete control
Make a movie
To change it: Make another movie

Procedural defines a behavior
A system with rules
Hopefully it behaves the way you want it to!
To change it: Add input or change the rules

Change rules as it is running
Emergent behavior

12

Each Has Its Place

Use Canned for:
Short loops
Absolute control

Photography
Movies

Use Procedural for:
Things you can calculate
Physical simulation, water, noise, image processing,
special effects
User interaction

Reactive displays and surfaces

13

The Basic Idea

Render to texture
Simple geometry drives the processing

You get several texture samples at each pixel
Sample a set of neighbors

Combine samples into rendered pixels
Use rendered textures as needed

Can use advanced Pixel Shader instructions
Dependent texture reads
Dot-products
CND conditional instruction

14

Fundamental Operation

Render to texture
Then use rendered
texture in rendering
your scene

Texture Surface
Render Target

RENDER

Geometry

Texture

Texture

Texture

15

Keep it on the GPU!

Avoid texture Locks!
No AGP texture transfer between CPU and GPU
No CPU or GPU stalls!

Caveat – May flush some GPU pipes, but this is
better than a complete stall

Huge GPU computation power (fill rate)
10s or 100s of millions of animated texels / second
Saves a lot of CPU MHz

Free parallel processing
Several pixels per clock

16

Without Graphics HW

Heavy CPU load
Cycles and memory bandwidth

Slow transfer to GPU over AGP

GPU and CPU stall waiting for each other

Breaks efficient buffering of GPU commands

Lots of nasty SIMD assembly code
Two versions: Intel, AMD

It’s SLOWER! ####

17

Overview of Effects

Simple fire and smoke
Dynamic normal maps
Water
Cellular automata

Noise
Patterns

18

Fundamental Operation

Render to texture

Texture Surface
Render Target

RENDER

Geometry

Texture

Texture

Texture

19

API Calls

DirectX 8
IDirect3DDevice8->SetRenderTarget(color, depth);
color = IDirect3DTexture8->GetSurface(..);
depth is usually not used

OpenGL
WGL_ARB_render_texture
WGL_EXT_pbuffer
GL_NV_register_combiners
GL_NV_texture_shader

20

Steps

Bind input textures
Establish texture coordinates
Configure Pixel Shader / Register Combiners
Set texture render target
Render simple geometry

Set ordinary render states
Set render target to back buffer
Render scene

21

Texture Coordinates Determine Sampling

Sampling can be
One-to-One
Neighbors
Arbitrary

Coordinates from
Vertices
Per-pixel
displacements

Texture Coord T0

Texture Coord T1

Texture Coord T2

Texture 0

Texture 1

Texture 2

22

Coordinate Interpolation

Vertex texture coordinates are interpolated
Gives texture coordinates for each pixel rendered

Interpolation causes same neighbor pattern to be
sampled for each pixel rendered

Texture Coord T0

Texture 0

Wrap ?

23

How to Sample Each Texel’s Neighbors

Source texture: (x,y) pixels in size
SetTexture(0..3, pSource);

Render Target: also (x,y) pixels in size
SetRenderTarget(pDest, NULL);
NULL for no depth buffer

D

A

C

B

24

How To Sample Each Texel’s Neighbors

Render a quad over render target
Texture coordinates from
(0,0) to (1.0, 1.0)

Vertex Shader writes four
different texture coordinates for
each vertex
Each of the four coordinates is
offset by a vector VA, VB, VC, or VD

oT0 = vertex_tc0 + c[VA]
oT1 = vertex_tc0 + c[VB]
oT2 = vertex_tc0 + c[VC]
oT3 = vertex_tc0 + c[VD]

Quad

t0 = (0,0)

(1,1)

VD

VA

VC

VB

25

Offset Coordinates Sample Neighbors

Or some pattern of other texels

=

VC

VB

VA

26

Sampling From Neighbors

D

A

C

B

0 1 2 3

If VA = (-1,0), VB = (1,0), VC = (0,-1), VD = (0,1) then:
t0 = pixel A at (1,1)
t1 = pixel B at (3,1)
t2 = pixel C at (2,0)
t3 = pixel D at (2,2)

When destination pixel, is rendered,
if VA, VB, VC, VD are (0,0) then:
t0 = pixel at (2,1)
t1 = pixel at (2,1)
t2 = pixel at (2,1)
t3 = pixel at (2,1)

t0, t1, t2, t3 samples delivered to
Pixel Shader

27

Sampling From Neighbors

Same pattern is sampled for each
pixel rendered to the destination

When pixel is rendered, it samples
from:

t0 = pixel E
t1 = pixel D
t2 = pixel A
t3 = pixel F

D

A

C

B

0 1 2 3

F

E

28

Sample Local Area or Not

ADDRESSING

FRAGMENT
COMBINE

RENDER
TARGET

1/21/41/21/4

1 1-4
1

10 0

0 0

TEXTURE
COORDS

PIXEL SHADER

29

Samples Delivered to Pixel Shader

Process them however you like
Average to blur
Difference to sharpen or compute gradients

Example DirectX 8 Pixel Shader

ps.1.1

tex t0 // t0 = -s, 0 neighbor 1

tex t1 // t1 = +s, 0 neighbor 2

tex t2 // t2 = 0, +t

tex t3 // t3 = 0, -t

sub_x4 r0, t0, t1 // (t0 - t1)*4 : 4 for higher scale

mul t0, r0, c[PCN_RED_MASK] // t0 = s result in red only

sub_x4 r1, t3, t2 // r1 = t result in green

mad r0, r1, c[PCN_GREEN_MASK], t0 // r0 = red,green for s and t result

mul_x2 t1, r0, r0 // t1 = (2 * s^2, 2 * t^2, 0.0)

dp3_d2 r1, 1-t1, c1 // blue = = 1 - s^2 - t^2

add r0, r0, c2 // bias red,green to 0.5

mad r0, r1, c4, r0 // RGB = (r0.r+0, r0.g+0, 0 + r1.blue)

30

Fire Effect

Blur and scroll upward
Trails of blur emerge
from bright source
‘embers’ at the bottom

VD
VA

VC

VB

31

Fire Effect Pseudo-Code

Clear(F1_texture); Clear(F2_texture);
while(not(done))

Jitter(VA, VB, VC, VD, full_coverage_quad)
SetVertexConsts(VA, VB, VC, VD)
SetRenderTarget(F1_texture)
SetTexture(embers_texture)
Render(embers_object)

SetTexture(F2_texture) // previous fire/smoke
Render(full_coverage_quad)
Swap(F1_texture, F2_texture)

SetRenderTarget(backbuffer, depth)
RenderScene(using F2_texture)

32

Fire Effect

Jitter texture sampling
Vary scroll direction for a wind effect
Turbulence: Tessellate geometry with jittered
texture coords or positions

Change color averaging multiplier
Brighten or extinguish the smoke

How to improve:
Better jitter patterns (not random jumps)
Re-map colors

Dependent texture read

33

Sample Placement

D3D and OpenGL sample differently
D3D samples from texel corner
OpenGL samples from texel center

Can cause problems with bilinear sampling
Solution: Add half-texel sized offset with D3D

D3D OpenGL

O = pixel rendered
x = sample placement x x

offset

34

Dynamic Normal Maps

Create and update surface normal maps as needed
MOST POWERFULL TECHNIQUE
Normal map from Height map in single pass

Quick review of surface normal maps
Represent surface geometry

35

Review: Surface Normal Maps
Height maps are popular (3DS Max, Maya, ..)

RGBA color represents height of a surface
Usually limited to 8 bits of precision

Normal maps are better
RGB color represents XYZ coordinates of surface
normal
8 or 16 bits per coordinate axis (more precise!)

Height Map Normal Map

36

Review: Per-Pixel Lighting

Lighting equation per-pixel instead of per-vertex
Visualize light vector and normal as RGB color

• =

Per-Pixel Lighting

•

Normal mapLight Vector, L

=

37

Per-Pixel Reflection
Using Surface Normal Map

Cass Everitt

38

Creating Normal Maps From Height Maps

Simple: Use 4 nearest neighbors

dz/du = (B.z - A.z) / 2.0f // U gradient
dz/dv = (D.z - C.z) / 2.0f // V gradient
Normal = Normalize((dz/du) !!!! (dz/dv))
!!!! denotes cross-product

D

A
A

C

B

Surface Normal

UV

Z
D

C

B

39

Creating Normal Maps in HW

Can render a normal map from a height map
source in a single rendering pass

Approximate normalization
if A is small then sqrt(1 - A) ~= 1 – ½ A

Could do exact normalization in 2 passes
This isn’t needed. Approximation is good enough!

Update height maps
Render features into height map

Create normal maps
Keeps all data on graphics HW

40

ps.1.1

def c2, 0.5, 0.5, 0.0, 0.0

def c1, 1.0, 1.0, 0.0, 0.0

def c4, 0.0, 0.0, 1.0, 1.0

tex t0 // t0 = -u, 0 neighbor A t0..t3 are same texture

tex t1 // t1 = +u, 0 neighbor B

tex t2 // t2 = 0, +v neighbor D

tex t3 // t3 = 0, -v neighbor C

sub_x4 r0, t0, t1 //(t0 - t1)*4 for higher scale

mul t0, r0, c[PCN_RED_MASK] // t0 = s result in red only

sub_x4 r1, t3, t2 // r1 = t result in green

mad r0, r1, c[PCN_GREEN_MASK], t0 // r0= r,g for s and t result

mul_x2 t1, r0, r0 // t1 =(2 *s^2, 2 * t^2, 0.0)

dp3_d2 r1, 1-t1, c1 // blue = = 1 - s^2 - t^2

add r0, r0, c2 // bias red,green to 0.5

mad r0, r1, c4, r0 // RGB=(r0.r+0,r0.g+0,0+r1.b)

Normal Map Creation Shader

41

Normal Map – Src Height in Blue, Alpha

def c1, 1.0, 1.0, 0.0, 0.0

def c2, 0.5, 0.5, 0.0, 0.0

def c4, 0.0, 0.0, 1.0, 1.0

tex t0 // -u,0 t0, t1, t2, t3 are same height texture

tex t1 // +u,0

tex t2 // 0, +v

tex t3 // 0, -v

sub_x4 r0.a, t0, t1 // (t0 - t1)*4 : 4 for higher scale

mul t0.rgb, r0.a, c[PCN_RED_MASK] // t0 = s result in red only

+sub_x4 r1.a, t3, t2 // r1 = t result in green

mad r0, r1.a, c[PCN_GREEN_MASK], t0 // r0 = red,green for s and t result

mul_x2 t1, r0, r0 // t1 = (2 * s^2, 2 * t^2, 0.0)

dp3_d2 r1, 1-t1, c1 // (1-2s^2 + 1-2t^2)/2 = 1 - s^2 - t^2

add r0, r0, c2 // bias red,green to 0.5

mad r0, r1, c4, r0 // RGB = (r+0, g+0, 0+blue)

42

Animate Normal Map Geometry

Change surfaces in subtle or drastic ways
Render damage into surfaces
Animate cracks, wear
Character aging
X-Files inspired skin crawlers
Fluid surfaces
Warping, melting surfaces

43

Height-Based Water Simulation

Physics on the GPU
In glorious 8-bit precision
8 bits is enough, barely!

Each texel is one point on water surface
Each texel holds

Water height H
Velocity V
Force F - computed from height of neighbors

Damped + Driven system
For “stability”

44

It Just So Happens That…

Discretizing a 2D wave equation to a uniform grid
gives equations which sample neighbors

Derivatives (slopes) in partial differential equations
(PDEs) turn into neighbor sampling on a grid

See [Lengyel] or [Gomez] for great derivations
Textures + Neighbor Sampling are all we need!
Forget the math – Use Intuition!

And a spring-mass system
Math near identical to PDE derivation

45

The Math

Height texels are connected to neighbors with
springs
Force acting on H0 from spring connecting H0 to H1

= k * (H1 – H0)
k = spring strength constant
Always pulls H0 toward H1
H0, H1 are 8-bit color values

F = k * (H1 + H2 + H3 + H4 – 4*H0)
V = V + c1 * F
H0 = H0 + c2 * V

c1, c2 are constants (mass,time)

H3

H4

H1

H2H0

46

Height-Based Water Simulation

Height current (HTn), previous (HTn-1)
Force partial (F1), force total (F2)
Velocity current (VTn), previous (VTn-1)

Use 1 color channel for each
F = red; V = green; H = blue and alpha

47

Newtonian Physics in Pixel Hardware

F = k * (H1 + H2 + H3 + H4 – 4*H0)
V = V + c1 * F
H0 = H0 + c2 * V

Repeat, generating new H & V values at each point
New set of heights is next time step
Pixel Shader

1) Reads H0..H4, V from texture
2) Calculates new H & V
3) Renders new H & V to texture, to be read back

again at step 1
Will it work? Not quite!

48

Stability Issues

High frequency oscillation
Checkerboard patterns amplify
Solution: Add blur step to smooth H and/or V

Values hit 0 or 1 saturation
Numerical error in 8-bit values
Solution: Add gentle force pulling height to 0.5
Option: Move heights slightly toward 0.5 at each step

Blur and Dampening make waves fade to nothing
Solution: Add subtle excitations to keep it going
Render blobs additively into H or V values

49

Final Approach

Pick c1, c2, k, k2, d1 to match [0,1] color value range

c1 = 0.4; c2 = 0.48; k = 1; k2 = 0.15; d1 = 0.9875
Change them to change water behavior!

F = k * (H1 + H2 + H3 + H4 – 4*H0) + k2 * (0.5 - H0)
V = V + c1 * F
H0 = H0 * d1 + c2 * V
H0 = blur (H1, H2, H3, H4, or other neighbors)
Repeat!

Works great!

50

How Many Passes?

Passes at texture resolution – Not screen resolution
GeForce 3 or 4:

Calculate F, V, H: 2 passes
Blur H: 1 pass
Normal map from H: 1 pass
Possible to do it all in 3 passes
Mipmapping requires more passes. Not used

Future HW:
Everything in 1 pass
Sometimes better to use 2 passes

51

Make It React

Character moving through
Render small blob into H, V, or F (blue, green, or red
color channels) at character location
Best to render into H Height
Additively or alpha blend
Physics makes waves spread naturally

Barriers in water
Texture with barrier height in one channel, and
barrier ‘strength’ in alpha
Alpha blend into H after the physics
Alpha = 0 has no effect. Alpha = 1 has full
effect of solid barrier

52

Large Bodies of Water

Texture border wrap makes water tile seamlessly
Problem: Character displacements shouldn’t tile
Answer: Two water simulations

One for tiled water
One for localized unique water with waves from
character

Couple tiled water into border of localized water
Match texture coords as the local water moves
Render tiled texture to outer edge of local water

Tiled and Local will match seamlessly
See public demos for specifics

53

Coupled Water

Used in “Elder Scrolls III: Morrowind”

54

Special Guest

Todd Howard, Bethesda Softworks

55

More Ideas

Cellular Automata: patterns, noise, tiles, life!

Image Processing: edges, bad TVs

XBox game “Wreckless”

Advanced fluids

Use texture distortions for flow

Simulate temperature, density, pressure, 2D
velocity, heat flow

Future hardware will make it easier, faster, more
powerfull

56

Cellular Automata

GREAT for generating noise and other animated patterns to
use in blending
Game of Life in a Pixel Shader

Three render-to-texture passes per generation
Dependent texture read with rules in a texture

57

Questions?

Greg James - gjames@nvidia.com
devsupport@nvidia.com

58

References & Source Code
Height-based fluid simulation

Gomez, Miguel, “Interactive Simulation of Water Surfaces” in
“Game Programming Gems,” Charles River Media, 2000, p 187
Lengyel, Eric, “Mathematics for 3D Game Programming &
Computer Graphics,” Charles River Media, 2002, Chapter 12, p
327

Game Gems II Article
James, Greg, “Operations for Hardware-Accelerated Procedural
Texture Animation,” in “Game Programming Gems II,” Charles
River Media, 2001, p 497

Demos -- NVIDIA Effects Browser
http://developer.nvidia.com
(OLD) http://developer.nvidia.com/view.asp?IO=dynamic_bump_reflection
(NEW) http://developer.nvidia.com/view.asp?IO=water_interaction
http://developer.nvidia.com/view.asp?IO=cellular_automata_fire
http://developer.nvidia.com/view.asp?IO=game_of_life

