
W-Buffering in Direct3D
Doug Rogers

NVIDIA Corporation
drogers@nvidia.com

"W-buffering is a depth-buffering alternative to z-buffering, and should be used in cases where
z-buffering produces artifacts. W-buffering does a much better job of quantizing the depth
buffer." [D3DIM.DOC]

W-buffering provides a linear representation of distance in the depth buffer. Z-buffering is non-
linear and allocates more bits for surface that are close to the eyepoint and less bits farther away.

There are two ways to represent the W buffer, scaled integer and floating point. Two or three
bytes can be specified as well.

There are two clipping planes used for W-buffering. These are Wnear and Wfar. Wnear, the closest
W value that is set to the device driver, is not used in the current implementation and is zero.
Wfar is the farthest W value that will be sent to the hardware.

Wnear and Wfar are initialized by setting the matrix operations in D3D using the following calls:

SetTransform(D3DTRANSFORMSTATE_WORLD, &matWorld);
SetTransform(D3DTRANSFORMSTATE_VIEW, &matView);
SetTransform(D3DTRANSFORMSTATE_PROJECTION, &matProj);

There is no other way to initialize Wnear and Wfar. If you are performing your own
transforms and lighting operations, and use W-buffering, you must still set Wnear and Wfar
with SetTransform. Wnear and Wfar are calculated from the matrices this way:

 dvWNear = m._44 - m._43 / m._33 * m._34;
 dvWFar = (m._44 - m._43) / (m._33 - m._34) * m._34 + m._44;

If you just want to set Wnear and Wfar, you can use this code which calls the SetTransform
functions:

VOID D3DUtil_InitViewport(D3DVIEWPORT2& vp, DWORD dwWidth, DWORD dwHeight)
{
 ZeroMemory(&vp, sizeof(D3DVIEWPORT2));
 vp.dwSize = sizeof(D3DVIEWPORT2);
 vp.dwWidth = dwWidth;
 vp.dwHeight = dwHeight;
 vp.dvMaxZ = 1.0f;

 vp.dvClipX = -1.0f;
 vp.dvClipWidth = 2.0f;
 vp.dvClipY = 1.0f;
 vp.dvClipHeight = 2.0f;
}

/*
 sets wNear and wFar
*/

HRESULT set_wbuffer_planes(LPDIRECT3DDEVICE3 lpDev, float dvWNear, float dvWFar)
{
 HRESULT res;
 D3DMATRIX matWorld;
 D3DMATRIX matView;
 D3DMATRIX matProj;

 D3DUtil_SetIdentityMatrix(matWorld);
 D3DUtil_SetIdentityMatrix(matView);
 D3DUtil_SetIdentityMatrix(matProj);

 if (dvWFar <= dvWNear) return 1;
 res = lpDev->SetTransform(D3DTRANSFORMSTATE_WORLD, &matWorld);
 if (res) return res;
 res = lpDev->SetTransform(D3DTRANSFORMSTATE_VIEW, &matView);
 if (res) return res;

 matProj._43 = 0;
 matProj._34 = 1;
 matProj._44 = dvWNear; // not used
 matProj._33 = dvWNear / (dvWFar - dvWNear) + 1;

 res = lpDev->SetTransform(D3DTRANSFORMSTATE_PROJECTION, &matProj);
 return res;
}

Values to use for W-buffering

The values that W ranges over is [Wnear, Wfar]. Wnear

 must be greater than zero. Wfar must be
greater than Wnear. Invert W and pass it in as RHW.

What the Device Driver Does

 W-buffering values that are set to the hardware must be within the legal range that is
representable. This is dependent upon the format.

Format Scale_factor
dvRWfar = 







factorscale
W far

_

16 bit floating point. 28 (256)
256

farW

16 bit fixed point 1.0 farW

24 bit floating point 2127 (1.7 x1038)
1.0 or 1272

farW

24 bit fixed point 1.0 farW

W and Wfar

The device driver calculates the w values that is passed to the hardware in the following way:

 factorscale
W
WW

far
scaled _*=

Scale_factor scales W so W-buffering spans all representable W-buffer locations, maximizing
the W-buffering precision.

Interpolation is performed over the inverse of W, which is passed to the TNT.

factorscale
W

dvRW far
far _

=

W
dvRW

factorscaleW
W

W
W farfar

scaled
TNT =

⋅
==

_
1

where scale_factor is from the above table and RHW is the reciprocal of homogenous W.

Typically you want to keep Wnear very small and Wfar greater than one. You probably want to set
Wfar to many thousands or millions of units.

For 24 bit floating point W-buffering, we have the choice of scaling the incoming W or we can
just store the value directly and lose seven bits of the mantissa. If we choose this, then we don't
have to scale RHW at all, we can just load the W value in directly. If we want to scale the W

farTNT dvRWRHWW ⋅=

values, the scaling contant dvRWfar is 1272
farW . There is no change in the application code if a

24 or 16 bit W-buffer is used.

Example 1:

The W values in your application range from 10 to 1000. If you are performing your own
transformations:
Wnear = 10
Wfar = 1000

1) Set the projection matrix. set_wbuffer_planes(lpDev, Wnear, Wfar).

2) Set RHW in the vertex data, vertex.rhw =
W
1 .

Example 2:
The W values in your application range from 10 to 1000. D3D is performing the transformations.

1) Set the projection matrix. Wnear and Wfar are encoded in the projection matrix. This is
function to set the projection matrix is from Microsoft's d3dframework.

HRESULT D3DUtil_SetProjectionMatrix(D3DMATRIX& mat, float fFOV, float fAspect, float
fNearPlane, float fFarPlane)
{
 if((fFarPlane-fNearPlane) < 0.01f)
 return E_INVALIDARG;
 float fCos = (float)cos(fFOV/2);
 float fSin = (float)sin(fFOV/2);
 float Q = (fFarPlane * fSin) / (fFarPlane - fNearPlane);
 ZeroMemory(&mat, sizeof(D3DMATRIX));
 mat._11 = fCos * fAspect;
 mat._22 = fCos;
 mat._33 = Q;
 mat._34 = fSin;
 mat._43 = -Q * fNearPlane;
 return S_OK;
}

RHW will be set for you in the vertex data by the D3D transformations.

