

Whitepaper

Using SAS
with CgFX and FX file
formats

Kevin Bjorke

Version 1.03 – 29 March 2008

 Version 1.03 – 29 March 2008 1

Using SAS
with CgFX and FX file formats

What, Why, How

This document covers the use of SAS (that is, “Standard Annotations and
Semantics,” and usually pronounced “sass”) in effect files for either of the two
popular text-based “.*fx” formats – either .fx (for DirectX only, and based on
HLSL) or .cgfx (for use with either DirectX or OpenGL, and based on Cg). Both
formats are extremely similar, and the SAS details are identical between the
two1.

SAS support can be found in multiple programs. To date, NVIDIA FX Composer is
the shading tool with the most comprehensive support of SAS, and will be used
as a baseline example. This document will also cover annotations and semantics
that are unique to FX Composer.

This is not a general shading tutorial. It assumes that you can be comfortable
with C++ -like languages, and in general doesn’t try to teach you about color
and light, nor HLSL or Cg except in the context of SAS. For a general introduction
to hardware shading languages, try “The Cg Tutorial,” which is available both at
booksellers and at the NVIDIA developer web site, http://developer.nvidia.com

Effect files (that is, shader files with the suffixes “.cgfx” or “.fx”) try to describe a
complete setup for real-time rendering. That means they include not only the
code for the specific vertex and pixel shader functions that will run on the GPU,
but also definitions of the contexts for these shader functions: the required
graphics states; the user parameters that control them (whose values may be
controlled by a UI, or automatically provided by the rendering program); and in
many cases, the multiple rendering passes that together draw a complete, final
image. In some advanced cases, as we’ll describe, these multiple passes may be
executing in varying order – and in some cases there can be some limited
interactions between multiple effect files.

Control over all of these interactions is provided by SAS.

1 SAS is sometimes also called “DXSAS” to indicate its DirectX origins, but the
“DX” is usually dropped since SAS is effective across graphics APIs.

Using SAS with CgFX and FX file formats

 2 Version 1.03 – 29 March 2008

Semantics and Annotations

Just so that we are clear on what semantics and annotations are, consider this
typical parameter declaration, drawn from the NVIDIA shader library’s
“plasticP.fx” effect2:

float3 gLamp0Pos : Position <
 string Object = "PointLight0";
 string UIName = "Lamp 0 Position";
 string Space = "World";
> = { -0.5f, 2.0f, 1.25f } ;

In this example, global variable gLamp0Pos has a semantic, three annotations,
and a value. All three are optional – at a minimum, all that’s required is a data
type and parameter name. In general, parameter declarations are of the form:

type name : semantic <annotation_list> = value ;

which can cover one or many lines, up to the closing semicolon.

A bare minimum declaration might be something like:

float gCurrentScore;

Where the host program (e.g., FX Composer) will insert defaults for the
semantic (none), annotation_list (none) and value (in this case, probably a
zero).

Why Semantics and Annotations?

In general, semantics describe specific functional parts of the hardware or
graphics API. As use cases of these basic types grew, more-general annotations
were added to allow more-complex specifications of ideas such as “how to
represent a color in the UI?”, a “metaconcept” that goes beyond the hardware
itself. To understand these ideas in practice, let’s look at how just semantics
were initially used to describe hardware connections between the CPU and GPU.

During the initial development of Cg and HLSL, semantics were use to describe
specific GPU hardware registers. For example, this structure declaration
describes the data that an effect expects in the vertex buffer before executing a
vertex shader function:

2 For OpenGL users, there is also a corresponding “plasticP.cgfx” in the library, which is the same in terms
of semantics and annotations. In general we will use HLSL examples in this document, but the SAS usage
applies identically to both languages, save for the use of the HLSL virtual machine as described in the
Appendix on “texture shaders.”

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 3

struct appdata {
 float3 Position : POSITION;
 float4 UV : TEXCOORD0;
 float4 Normal : NORMAL;
 float4 Tangent : TANGENT0;
 float4 Binormal : BINORMAL0;
};

Each of the semantics in this structure declaration indicate a specific part of the
hardware memory that’s fed to vertex shaders that use input values of type
“appdata.” Here’s the vertex shader from that same file (along with the
declarations of its output data).

struct vertexOutput {
 float4 HPosition : POSITION;
 float2 UV : TEXCOORD0;
 // The following values are passed in "World"
 // coordinates since it tends to be the most flexible
 // and easy for handling reflections, sky lighting,
 // and other "global" effects.
 float3 LightVec : TEXCOORD1;
 float3 WorldNormal : TEXCOORD2;
 float3 WorldTangent : TEXCOORD3;
 float3 WorldBinormal : TEXCOORD4;
 float3 WorldView : TEXCOORD5;
};

vertexOutput std_VS(appdata IN,
 uniform float4x4 WorldITXf,
 uniform float4x4 WorldXf,
 uniform float4x4 ViewIXf,
 uniform float4x4 WvpXf,
 uniform float3 LampPos) {
 vertexOutput OUT = (vertexOutput)0;
 OUT.WorldNormal = mul(IN.Normal,WorldITXf).xyz;
 OUT.WorldTangent = mul(IN.Tangent,WorldITXf).xyz;
 OUT.WorldBinormal = mul(IN.Binormal,WorldITXf).xyz;
 float4 Po = float4(IN.Position.xyz,1);
 float4 Pw = mul(Po,WorldXf);
 OUT.LightVec = (LampPos - Pw.xyz);
#ifdef FLIP_TEXTURE_Y
 OUT.UV = float2(IN.UV.x,(1.0-IN.UV.y));
#else /* !FLIP_TEXTURE_Y */
 OUT.UV = IN.UV.xy;
#endif /* !FLIP_TEXTURE_Y */
 OUT.WorldView = normalize(ViewIXf[3].xyz - Pw.xyz);
 OUT.HPosition = mul(Po,WvpXf);
 return OUT;
}

Using SAS with CgFX and FX file formats

 4 Version 1.03 – 29 March 2008

The semantics specify hardware registers, and their usage is also defined by
context. You may have noticed that both the input structure AND the output
structure contain members with the POSITION semantic – the context (in this
case, being compiled as a vertex shader) makes the difference clear to the
compiler and host application. If you tried to compile this function as a pixel
shader, it would fail.

Here is a pixel shader from the same effect file:

float4 plasticPS(vertexOutput IN,
 uniform float3 SurfaceColor,
 uniform float Kd,
 uniform float Ks,
 uniform float SpecExpon,
 uniform float3 LampColor,
 uniform float3 AmbiColor
) : COLOR {
 float3 diffContrib;
 float3 specContrib;
 plastic_shared(IN,Kd,Ks,SpecExpon,

LampColor,AmbiColor,
diffContrib,specContrib);

 float3 result = specContrib +
(SurfaceColor * diffContrib);

 return float4(result,1);
}

Here the function itself has been assigned a hardware semantic – for a pixel
shader, that COLOR semantic (or the synonym COLOR0) means the final output
color of the pixel as the image is delivered to the final render target (either to a
render surface or the frame buffer).

There are a variety of syntactical ways to do this – some users may prefer to use
“out” parameters rather than directly returning a value, or they may not like to
use structs, or they may prefer global-scope variables as opposed to passing
formal parameters. Here’s a version using a “void” function and returning the
COLOR via an “out” parameter instead:

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 5

void plasticPS_v2(vertexOutput IN,
 uniform float3 SurfaceColor,
 uniform float Kd,
 uniform float Ks,
 uniform float SpecExpon,
 uniform float3 LampColor,
 uniform float3 AmbiColor,
 out float4 FinalColor : COLOR0
) {
 float3 diffContrib;
 float3 specContrib;
 plastic_shared(IN,Kd,Ks,SpecExpon,

LampColor,AmbiColor,
diffContrib,specContrib);

 float3 result = specContrib +
(SurfaceColor * diffContrib);

 FinalColor = float4(result,1);
}

See the Appendix “Alternative Constructions” to see some possibilities. They are
all, however, functionally identical. The same semantics lead to the same
hardware paths.

The semantic names describing standard hardware, such as TEXCOORD0, are
understood to have specific mappings to specific hardware registers, as defined
by the API (DirectX or OpenGL). In 99.9% of the cases, these are the names you
should use. For some very old game or CAD engines (think: 20th Century code),
you may need to specify exactly the hardware register you need. In these rare
cases, you can use the register semantic. The register semantic looks like a
function: e.g., register(c1) means “color register 1.” This semantic’s use is now
fading into oblivion.

Other Hardware Semantic Names

The sample shown has already covered the most common hardware semantics.
There are a couple of other rarely-used ones, such as the polygon-facing flag
(VFACE in DirectX, FACE in OpenGL) and the PSIZE attribute of particles. Both
entities are well-documented for their specific APIs.

Semantics from software API’s

Semantics for hardware registers have connections defined by the overall
graphics state. What about values that should be connected to the surrounding
software environment? For example, how can we bind the world location of the
current object to a value, or the color of the current light source?

Using SAS with CgFX and FX file formats

 6 Version 1.03 – 29 March 2008

DirectX and the CgFX runtime both provide several semantics relating to just
these issues. These semantics can hint to the renderer about connecting colors
and positions to existing parts of the scene, and they call tell the renderer to load
data from the scene into specific parameters.

All of these semantics will be assigned to *fx global parameters – never to
functions. When a parameter is bound to a scene element (either automatically
or by the user), its values will then be automatically assigned once each frame –
so the user will not be able to tweak those values (say, in the FX Composer
properties pane) except by altering the underlying scene. Once bound, they are
“untweakable.”

Some hints are stronger than others, depending on the renderer. In general, the
semantics indicating transform matrices are strong and universal: they appear to
bind automatically in all renderers. Semantics for light positions, surface colors,
and so forth: unpredictable! Sometimes it’s difficult for a renderer to know which
light you want, if you are trying to assign a color from an object or a light, etc.

Typical semantics used on parameters will correspond to the values of the old
DirectX “hardware transform and lighting” days – for example the DIFFUSE
semantic is intended to correspond to the “Diffuse” value in a DirectX material
structure and assigned in a DirectX9 program by
IDirect3DDevice9::SetMaterial(). In general, these semantics relating to old-
style, pre-pixel-shader-days material and light definitions (others include
SPECULAR, or AMBIENT – if you look at the member names of the D3D Material
structs they will look surprisingly familiar…) are being used less and less, as they
are references to an antiquated material definition scheme (if you do want to
bind to such values, there is also a newer way, using annotations to bind to an
object or light – in such cases, use the semantic COLOR and see the section
“Light and Object Binding” – there are additional semantics associated with lights
and cameras that will be described in that section).

Vectors indicating the position or direction of a lamp can be distinguished by the
POSITION or DIRECTION semantics, which can also let the renderer know what
sorts of lights can be successfully bound to which parameters. (Later on, see info
on the special FX Composer “dirpos” use of the POSITION semantic for float4
vectors, which can dynamically manage both point and directional lamp types at
run time).

Transforms

Transforms never go out of style. Both fx and cgfx formats follow the DirectX
definition of a matrix stack:

Object → World → View → Projection

Points in the vertex buffer are in “Object” space, which can be transformed to a
shared “World” coordinate system. Transforming from “World” to “View” space

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 7

sets the points to be located relative to the camera’s location and orientation,
and the final matrix transforms them into projected screen space.

Those last three transforms can be used as semantics, and can also be (in the
order shown) concatenated: That is, you can have semantics WORLD, VIEW,
PROJECTION, WORLDVIEW, VIEWPROJECTION, or WORLDVIEWPROJECTION.
Each will provide a single (possibly concatenated) matrix.

(Why no “OBJECT” semantic? Because it will always be an identity matrix!)

In addition, the optional “operational” suffixes INVERSE and TRANSPOSE can be
added to the mix: VIEWINVERSE is useful for determining camera locations in
WORLD coordinates, for example (while an un-inverted VIEW matrix would
move points the opposite way, from WORLD coordinates into VIEW coordinates).
The ultimate automatic transform name could be the intimidating agglutination
of all transforms and operations:
WORLDVIEWPROJECTIONINVERSETRANSPOSE.

Generally, a small number of transforms will get you what you need for any
specific effect. Here are the global transform variables declared by the example
“plasticP.fx” file:

float4x4 gWorldITXf : WorldInverseTranspose;
float4x4 gWvpXf : WorldViewProjection;
float4x4 gWorldXf : World;
float4x4 gViewIXf : ViewInverse;

(In this case, we are defining the View according to the primary scene camera.
What about spotlight shadow cameras? These are specified by the Object
annotation. This specialized usage will be covered in the section on shadowing.)

Annotations

Annotations appeared primarily because rendering applications needed a method
to specify the UI for specific effect parameters. While an application could guess,
either by name or by reference to a semantic, the results are unpredictable. It
seems obvious that a float3 parameter with the DIFFUSE semantic is a color, but
what about a float3 called, say, “Mixer”? Is it a location, a color, something else?

Annotations eliminate the guessing by providing a mechanism to specify UI
details explicitly. Any type of metadata can be attached to any parameter, for
whatever use you desire. If an application doesn’t recognize the specific
annotations, it can just ignore them (for FX Composer users, unrecognized or
user-defined attributes can still be queried from Python).

Using SAS with CgFX and FX file formats

 8 Version 1.03 – 29 March 2008

Here is another example from our sample effect:

float gKd <
 string UIWidget = "slider";
 float UIMin = 0.0;
 float UIMax = 1.0;
 float UIStep = 0.01;
 string UIName = "Diffuse Strength";
> = 0.9;

As you can see annotations like UIWidget and UIMax require a type declaration
as well as their own name. In this example, the annotations are purely related
to the UI for the parameter “gKd” – they say that it should be displayed as a
fine-grained slider with a range from zero to one, and that its displayed name
should not be the cryptic-looking (to a non-shader-programmer) “gKd,” but the
more human-readable “Diffuse Strength.”

Annotations can also be added to technique and pass definitions, which will be
important later.

Annotations without End?

Annotations can define anything that a rendering program might want – if you
want to add a string “author” or “notes” annotation to a parameter, you can – it
will work fine, though as the creator of that effect file you will need to provide a
way to identify and interpret those strings yourself.

While annotations let you add arbitrary (meta)data, they also invite a Babel-like
explosion of arbitrary duplications of the same purposes – say, five different
definitions of a “slider” UI element – to avoid this hazard, standard annotations
and semantics were defined3.

Standard Annotations and
Semantics

At its core, SAS simply defines a standard list. While any rendering application
can use semantics and annotations as they see fit, following the standard list
gives everyone the best chance of broad compatibility.

3 Some damage is already done! For example, effect files for some DCC applications like XSI and 3ds Max
are already using their own semantics for camera location. Fortunately simple workarounds are available.

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 9

SAS Parameter UI Annotations

For most programs, the key annotations are few, and related to UI. For most
user parameters, it’s a good idea to provide them with a name and a choice of
UI widget. This can be done using the obviously-named annotations UIName
and UIWidget.

We saw the UIName annotation above. It provides a human-readable description
for sometimes cryptic variable names.

Next is the UIWidget annotation, which we also saw in the example. The
UIWidget string has three especially useful values: “Slider,” “Color,” and “None.”

We saw “Slider,” as well as the related UIMin, UIMax, and UIStep annotations
that are unique to slider widgets. Here is a “Color”:

float3 gSurfaceColor : DIFFUSE <
 string UIName = "Surface";
 string UIWidget = "Color";
> = {1,1,1}; //white

The parameter will be be displayed with the name “Surface” (which, since it’s
being displayed as a color, is obviously “Surface Color”).

The “None” value for UIWidget completely suppresses display of the parameter.
It’s principally useful for parameters that are automatically-bound to an element
from the scene, such as a transform. There’ no need to clutter-up the properties
pane with a lot of changing but un-tweakable numbers (“number noise”). The
full matrix declarations from “plasticP.fx” actually include this semantic for just
that reason:

float4x4 gWorldITXf : WorldInverseTranspose <
string UIWidget="None"; >;

float4x4 gWvpXf : WorldViewProjection <
string UIWidget="None"; >;

float4x4 gWorldXf : World <
string UIWidget="None"; >;

float4x4 gViewIXf : ViewInverse <
string UIWidget="None"; >;

Any rendering application may have its own special cases – for example, the
standard Maya Cg plugin only allows float4 parameters to be displayed as colors.
Some applications may have special UIWidget values that are not widely
recognized (say, an enumerated pulldown). But the standard UIWidget name
should still be used.

Most of the other SAS parameter semantics and annotations deliver specifically-
detailed information about the current graphics state back to the effect file.

Using SAS with CgFX and FX file formats

10 Version 1.03 – 29 March 2008

Textures

Textures have a small number of semantics but can be complex in combination.
The most important semantics are those that designate a texture as a writable
render target: RENDERCOLORTARGET or RENDERDEPTHSTENCILTARGET. We
will discuss Render Targets in greater depth as part of the discussion on SAS
Scripting.

Occasionally you will find textures marked as DIFFUSE, DIFFUSEMAP, NORMAL,
SPECULAR, SPECULARMAP, ENVMAP, ENVIRONMENTNORMAL, or
ENVIRONMENT. These provide hints to the API about automatic binding, but
these usages are disappearing over time (again, they are mostly useful in
mapping fixed-function values to shader values, and are now antiquated).

For disk textures, the annotations are simple – usually just a UIName and a
ResourceName (described below) to identify the disk file. But for Render
Targets, the annotations define many of the most-crucial aspects of texture
definition and creation.

Texture Annotations, Sampler States
FX formats require two parameters for texture use: the declaration of the texture
data, and the declaration of at least one sampler object that will pass the texture
data to the shader(s). Textures can have annotations, while samplers have a
state declaration that happens to look like annotations – but is not.

Sampler states are enclosed in { braces }, while annotations use < angle
brackets > – and more tellingly, sampler states are predefined entities – unlike
annotations sampler state declarations never require a data type.

Textures, however, may have annotations. Look at the following pair, a texture
declaration followed by a matching sampler declaration:

texture gEnvTexture : ENVIRONMENT <
 // These are annotations
 string ResourceName = "default_reflection.dds";
 string UIName = "Environment";
 string ResourceType = "Cube";
>;

samplerCUBE gEnvSampler = sampler_state {
 // These are not annotations
 Texture = <gEnvTexture>;
 MagFilter = Linear;
 MinFilter = Linear;
 MipFilter = Linear;
 AddressU = Clamp;
 AddressV = Clamp;
 AddressW = Clamp;
};

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 11

The following annotations are supported for textures. Some may not be
meaningful depending upon the context: ViewportRatio has no influence on
disk-based textures, for example (while conversely ResourceName means
nothing to a RenderTarget):

 ResourceName (string): The name of a file that should be read by
default, if not overwritten by material. Meaningless for RenderTargets.

 ResourceType (string): The type of disk file to seek when loading
textures. Can be “2D,” “3D,” or “CUBE.” Meaningless for RenderTargets.

The annotations below are unique to texture declarations where the texture data
will itself be created by the effect, rather than loaded from disk:

 ViewportRatio (float2): The dimension of a RenderTarget texture
expressed as ratios relative to the viewport. “float2 ViewportRatio =
{1,1};” results in the same dimensions as the screen. “float2
ViewportRatio = {0.5, 1.0};” would result in a texture ½ as wide as the
render window, but just as tall. Mutually exclusive with Dimensions,
Width, Height, and Depth annotations.

 Dimensions (int 2-3): The expected width, height, & optional depth for a
procedural or RenderTarget texture. Mutually exclusive with
ViewportRatio, Width, Height, and Depth annotations.

 Width (component of dimensions) (int): Assigns the width of a
procedural or RenderTarget texture. Mutually exclusive with Dimensions
and ViewportRatio annotatons.

 Height (component of dimensions) (int): Assigns the width of a
procedural or RenderTarget texture. Mutually exclusive with Dimensions
and ViewportRatio annotations.

 Depth (component of dimensions) (int): Assigns the depth of a
procedural texture. Mutually exclusive with Dimensions and
ViewportRatio annotations.

 Format (string): Pixel format. Ignored for disk-based textures.

 Miplevels (int): The number of mip levels to create.

 Levels (int): A synonym for MipLevels.

 Function (string): The name of the virtual-machine function used to
procedurally generate this texture (HLSL only). See the appendix
section “Texture Shaders in the HLSL Virtual Machine” for details.

FX Composer-specific note: Render Targets are often hidden from the list of
material properties (by setting a UIWidget annotation to “None”). If you want to
use a shared Render Target, make sure not to hide the texture, so that it can be

Using SAS with CgFX and FX file formats

12 Version 1.03 – 29 March 2008

assigned to the shared surface by the users of your effect. For more details, see
the Appendix section on Sharing Textures.

For DirectX9 effects, it is also possible to have the CPU generate texture data
dynamically at effect-load time. This requires a special syntax, which you can
read about in the Appendix labeled “Texture Shaders in the HLSL Virtual
Machine.”

Viewport Semantics
While not directly connected to texture data, knowing the size of the current
render viewport is crucial for render-to-texture effects. The VIEWPORTPIXELSIZE
semantic should be attached to a float2 parameter and provides pixel-count
information about the size of the current scene render window.

The “Quad.fxh” file used by many of the Shader Library FX samples defines the
following global variable, used widely by full-screen library shaders:

float2 QuadScreenSize : VIEWPORTPIXELSIZE <
 string UIName="Screen Size";
 string UIWidget="None";
>;

Individual pixels/texels will be of the size (float2(1.0,1.0)/QuadScreenSize) – and
importantly (a fact already factored into the vertex shaders defined in the same
header file), this calculation can be used to adjust for the half-texel origin offset
in DirectX.

Light and Object Binding

Often, scales, colors, and transforms need to be bound to a specific lamp or
other object in the current scene. Annotations and semantics, working together,
provide a flexible mechanism for accomplishing this. A semantic can be used to
specify the kind of data required – say, a COLOR – while an annotation (usually
Object) is used to describe where to find that kind of information.

Depending on the kind of object, a semantic may make sense or not. In general,
if the Object named includes the substring “light,” then the data should be
appropriate for a light. If instead it includes the substring “camera,” then the
data should be appropriate for a camera. Otherwise, it’s just a user-defined
name & there’s no rigid guarantee that the value can be bound sensibly.

Coordinate Systems
For bound data that is spatial, getting the data in the appropriate coordinate
system is important. Currently only POSITION and DIRECTION semantics support
the Space annotation, which can be assigned as “World,” “View,” or “Object.”

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 13

Light Names
Typical light names might be something like “Spotlight0” – FX Composer will
keep track of all such names encountered, and permit the user to bind any light
to the symbolic name “Spotlight0” – with correct propagation of values to any
and all parameters that use the name.

Light names can be used with either Object or Frustum annotations, as we’ll see
below.

Light Semantics
The following semantics can be used sensibly with lights. Specify the light in the
Object annotation and (for geometric values) be sure to specify a desired Space
for coordinates.

POSITION

DIRECTION

COLOR

DIFFUSE

SPECULAR

AMBIENT

CONSTANTATTENUATION

LINEARATTENUATION

QUADRATICATTENUATION

FALLOFFANGLE

FALLOFFEXPONENT

As an example:

float gCone1 : FALLOFFANGLE <
 string Object = “Spotlight1”;
>;

The values associated with lights within FX Composer can be seen by selecting
the light and its properties. They can be edited there, if not already bound by
animation (say, from a 3ds Max clip).

Viewing transforms associated with shadow maps are sometimes bound using
the Frustum annotation rather than Object. FX Composer supports both usages.
See the section “Shadow Transforms” for an example.

Camera Semantics
Only “direct” camera transform transforms are currently supported by FX
Composer – that is, you can grab the VIEW matrix, but not WORLDVIEW or
VIEWINVERSE. These combinations can be coded either in the vertex shaders or

Using SAS with CgFX and FX file formats

14 Version 1.03 – 29 March 2008

(in DirectX9) as “static” declarations. See the NVIDIA Shader Library header file
“nvMatrix” for an array of available matrix operations.

POSITION and DIRECTION semantics are also supported for cameras.

Scaling Info

How big is an object? The shading of a 2-inch block of wood and a 20-foot one
are likely to be different. The UNITSSCALE semantic indicates to the rendering
program that the indicated value can be mapped to some external or real-world
measurement. Here’s an example from the Shader Library’s “cage.fx”:

float gScale : UNITSSCALE <
 string units = "inches";
 string UIWidget = "slider";
 float uimin = 0.0;
 float uimax = 20.0;
 float uistep = 0.01;
 string UIName = "Size of Pattern";
> = 5.1;

The host render may define its own default value of for units if it is not supplied
by the annotation.

Timing
The TIME semantic provides absolute system time. In seconds. As this makes for
a rather large unreadable number, such parameters are usually marked as
hidden using a UIWidget annotation.

Absolute system time is best used for “self-animating” effects like fire, spinning
fighter propellers, water, etc. Several NVIDIA Shader Library effects use it, such
as “MrWiggle,” “Ocean,” or “post_corona.”

To grab frame-count information from animated clips, consider FX Composer’s
“playblast” Python module.

Float values tagged with the ELAPSEDTIME semantic return the time since the
previous frame – great for calculations such as those used in motion blur
algorithms.

For FX Composer users, TIME is also often important when dealing with
interactivity, via the mouse – which will be described in the next section.

FX Composer-Specific Semantics

A handful of non-SAS semantics (or beyond-SAS uses of existing semantics) are
supported specifically to reflect the functionality of NVIDIA FX Composer.

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 15

Mouse Position and State
FX Composer permits querying the position of the mouse, the states of the
mousebutton, and the time when those buttons were last pressed.

MOUSEPOSITION parameters should be float2. They will report the current
location relative to the render window.

LEFTMOUSEDOWN & RIGHTMOUSEDOWN provide four bits of info as a float4:
if the button was pressed; where the mouse was when it was pressed as an XY
pair just like MOUSEPOSITION; and when the button was pressed, in the same
format as used by TIME parameters. For either button semantic, the format will
be:

XY: Where the mouse was when pressed.

Z: Is the button pressed? One or zero.

W: The system time when the button was last pressed.

Renderer Reset
When the RenderWindow is reset, either by being resized, a new scene has
started, etc., then “bool” parameters with the FXCOMPOSER_RESETPULSE
semantic will be set to true (1) – for exactly one frame. At the end of that first
new frame they’ll flip back to false (0). This will be important later on when we
discuss full-screen effects.

Combining Directions and Positions
Some game and rendering engines like to use the nature of homogenous data to
let the same shader accept light data from either point lights or directional lights
using the same vector. That is, for a float4 vector, the w component indicates if
the data is a point in space (nonzero w) or a vector though space (zero w). FX
Composer supports this idea, and float4 vectors can be tagged with the semantic
POSITION. FX Composer will know how to bind both point and directional lights
to such values, and will set the w component appropriately5.

As a momentary shading aside, here is a typical vertex shader for such “dirpos”
data:

5 Float3 data, which lacks a w component, can’t be used this way. Float3 positions will only bind to regular
position data in FX Composer.

Using SAS with CgFX and FX file formats

16 Version 1.03 – 29 March 2008

vertexOutput std_dp_VS(appdata IN,
 uniform float4x4 WorldITXf,
 uniform float4x4 WorldXf,
 uniform float4x4 ViewIXf,
 uniform float4x4 WvpXf,
 uniform float4 LampDirPos // ”dirpos” POSITION
) {
 vertexOutput OUT = (vertexOutput)0;
 OUT.WorldNormal = mul(IN.Normal,WorldITXf).xyz;
 OUT.WorldTangent = mul(IN.Tangent,WorldITXf).xyz;
 OUT.WorldBinormal = mul(IN.Binormal,WorldITXf).xyz;
 float4 Po = float4(IN.Position.xyz,1);
 float4 Pw = mul(Po,WorldXf);
 if (LampDirPos.w == 0) { // “dirpos” switch HERE
 OUT.LightVec = -normalize(LampDirPos.xyz);
 } else {
 // we are still passing a (non-normalized) vector
 OUT.LightVec = LampDirPos.xyz - Pw.xyz;
 }
#ifdef FLIP_TEXTURE_Y
 OUT.UV = float2(IN.UV.x,(1.0-IN.UV.y));
#else /* !FLIP_TEXTURE_Y */
 OUT.UV = IN.UV.xy;
#endif /* !FLIP_TEXTURE_Y */
 OUT.WorldView = normalize(ViewIXf[3].xyz - Pw.xyz);
 OUT.HPosition = mul(Po,WvpXf);
 return OUT;
}

The float3 result in “OUT.LightVec” correctly preserves the direction and
magnitude for later light calculations in the pixel shader, regardless of lightsource
type.

The Two SAS’s

Two different versions of SAS exist. The version 1.0 spec, which is officially
supported by Microsoft in the latest DirectX9; and the 0.86 pre-release, which is
the version used by FX Composer and several other applications (for DirecctX9,
DirectX10, and OpenGL). In general, parameter semantics and annotations like
WORLDTRANSPOSE and UIWidget are identical in both versions of SAS. The
principal difference between the two? Scripting.

SAS Scripting

SAS 0.86 includes support for the scripting of techniques and passes (while
DirectX9’s version 1.0 does not).

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 17

Why would you want to script techniques and passes?

Rendering occurs in a series of discrete steps. Often, only one pass is needed to
render an object (or entire scene). Sometimes, several passes are accumulated
or otherwise combined. By default, the passes are simply executed in order, one
after another. If that’s all you need, then scripting isn’t required. But it often is!
For example, you may have an iterative technique that requires looping on a
single pass. Or you may want to use a shadow map, which needs to be rendered
to an offscreen buffer with a different render size and transform from the regular
scene camera.

Besides ordering passes, scripting allows you to set the desired priority between
techniques (for effects that contain multiple techniques), and to pass data to the
rendering program to let it know when to execute your effect in relationship to
other effects in the scene.

In short: scripting lets effects mimic the variety of rendering patterns found in
real game engines.

The Script : STANDARDSGLOBAL Parameter

In “plastic.fx,” you may notice this block:

float Script : STANDARDSGLOBAL <
 string UIWidget = "none";
 string ScriptClass = "object";
 string ScriptOrder = "standard";
 string ScriptOutput = "color";
 string Script =
"Technique=Technique?SimplePS:TexturedPS:SimpleQuadraticPS:
TexturedQuadraticPS;";
> = 0.8;

This special “parameter” Script, when semantically tapped as
STANDARDSGLOBAL, is expected by the renderer to contain annotations to
describe the overall effect.

The value 0.8 specifies the SAS version.

The UIWidget hides this variable (it isn’t ever actually called by the shader
functions).

The ScriptClass, ScriptOrder, and ScriptOutput annotations indicate that this is
a surface material (“object”) effect, that it follows standard use and it outputs
colored pixels. So far so good and the expected default state -- in fact we could
completely ignore and delete the Script parameter, except for the contents of
the last Script annotation (yes, the Script variable has a Script annotation).

Using SAS with CgFX and FX file formats

18 Version 1.03 – 29 March 2008

Script <Script> and Technique Selection
By default, *fx files will by select techniques according to the order in which
those techniques appear in the file. If a technique is unavailable (say, because
the user’s computer isn’t capable of running the specified profile), it will be
skipped and the next technique will be tried. The renderer will proceed down the
list until a working technique is found. In the example above, the Script
annotation is letting the shader author explicitly name which techniques should
be available, and the order in which they should be evaluated (and for renderers
that allow user choice of multiple techniques, the desired order of the techniques
in the UI).

The Script annotation can specify either a single technique, in the form:
“Technique=name;” or the annotation can indicate a prioritized sequence of
techniques, using the syntax: “Technique=Technique?nameA:nameB:nameC;” –
that is, as a colon-separated list prefaced by the token “Technique?” – the list
will explicitly prioritize the listed techniques.

In the example case, the Script specifies that the “SimplePS” technique is the
correct default. In programs like FX Composer or Maya that permit technique
selection, the preferred order of the displayed lists in those programs should be

SimplePS
TexturedPS
SimpleQuadraticPS
TexturedQuadraticPS

If there are other techniques in the file (say, a vertex-shaded alternative, or a
version specific to a particular game platform), they will not, by default, be
displayed or available to the user of this effect.

 (The shader library includes Script parameters and other SAS details in most
shaders, even though they are often redundant. For example, there may be a
Script definition like “Technique=Main;” for a file that only has one technique!
This is because shader library samples are intended to provide templates for
further exploration. They’re a bit deliberately “over-engineered” – we do the
typing up front so you don’t have to later on.)

ScriptOutput
Let’s get back to those other annotations: ScriptClass, ScriptOrder, and
ScriptOutput. The last is the easiest: ScriptOutput should always be “color” and
nothing else. This is a practical assertion – while values like “depth” were once
intended to be supported, they’ve never been used.

We’ll see the value of ScriptOutput later on, when discussing a Script command
called “ScriptExternal.” For now, just trust us: it’s always “color.”

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 19

ScriptClass
ScriptClass defines the purpose of this effect. Is it a material to be applied to
objects? Then it should be “Object,” which is the default expectation. Some
effects, however, are complex, and may require rendering to multiple render
targets. They may in fact render no objects directly at all. Such effects should
designate themselves as being in the “Scene” ScriptClass.

There is also a third choice for ScriptClass, “SceneOrObject.” Its purpose has
been to provide a more complete choice of techniques. By default, it’s expected
that “Object” effects don’t need to write to offscreen buffers, while “Scene”
effects can. “Object” effects can be bound to geometry, while “Scene” effects are
typically bound only to the entire frame. But sometimes you really do need both
– for example, a material for terrain may have a simple version, but also a
second, more-complicated version that renders shadow maps.

ScriptOrder
The ScriptOrder is meaningful for “Scene” and “SceneOrObject” effects. It has
three possible values: “standard,” “preprocess,” and “postprocess.” You should
normally not assign “preprocess” or “postprocess” to “SceneOrObject” effects –
these two ScriptOrder choices are specifically intended for image processing.

The three choices allow some broad-scale control over effect ordering in the
overall scene. Generally, the user may have little control over the order in which
effects are executed – they just get fired-off as their objects appear in the
buffer. The ScriptOrder lets this amorphous mass be split into three, smaller
amorphous masses:

1. The preprocess phase, which will always be rendered first and can
include the creation of background images and (for COLLADA) shared
textures;

2. the standard phase, which will render next (and unless over-ridden, will
include all object rendering);

3. and the closing postprocess phase, which renders after all others to
add screen-buffer effects like motion blur, color styling, and bloom.

There may be multiple preprocess and/or postprocess effects in a single scene.
They will render in the same order as they were added to the scene, and always
within their own ScriptOrder group.

This is most important for image-processing-based rendering. For example, a
scene may include a preprocess effect to render a background, then the scene
geometry is rendered on top of that, and then a postprocess effect adds contrast
control and color tinting.

Using SAS with CgFX and FX file formats

20 Version 1.03 – 29 March 2008

Pass Ordering and Screen Clears: Technique Scripting

As mentioned, we can attach annotations to individual techniques, and to
individual passes within those techniques. These annoatation will control the
render process.

If we just want to execute those passes in a straight-ahead, all-pixels-to-the-
framebuffer fashion, then we don’t need to do anything special. But if we want
additional control, then the Script annotation is useful here, too.

We can also manipulate when and how the screen is to be cleared while
executing our effect (as you can imagine, it’s very dangerous to let object
materials clear the screen! Other objects may disappear).

Pass ordering and framebffer control is managed by a script in the technique’s
Script annotation. Here’s one of the longest in the library, from
“scene_uvds_skin.fx”:

technique Main <
 string Script =
 "Pass=MakeShadow;"
 "Pass=HBlur;"
 "Pass=VBlur;"
 "RenderColorTarget0=;"
 "RenderDepthStencilTarget=;"
 "ClearSetColor=gClearColor;"
 "ClearSetDepth=gClearDepth;"
 "Clear=Color;"
 "Clear=Depth;"
 "Pass=useBakedLighting;";
> {
 // …rest of technique and pass declarations….

As we can see, the Script contains a string with multiple commands (the per-line
strings are automatically concatenated up until the final semicolon). Each of the
commands itself has a semicolon (forgetting these is a common mistake), and
each command is essentially a “leftside=rightside” assignment. In two cases, the
rightside is empty. In others, the rightside contains the names of scene global
parameters, and in others the names of passes, and in others keywords telling
the renderer what to do. It’s admittedly a strange language-within-a-language.
Fortunately, you’ve already seen 90% of it!

Each line represents a specific action to take. First, the passes named
“MakeShadow,” “HBlur,” and “VBlur” are executed, in that order.

Then, we assign the “RenderColorTarget” (for DirectX9, this is analogous to
calling IDirect3DDevice9::SetRenderTarget()). Having an empty rightside
means “set to the current enclosing-scope default” (e.g., the frame buffer).
Passes can also assign their own “RenderColorTarget” (and these ones do!), so
this command redirects the renderer back to the main scene.

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 21

In the same way, we next redirect the “RenderDepthStencilTarget” to “” (that is,
to the framebuffer).

Next, we assign the Clear color and the Clear depth to the values of the indicated
global parameters, which had been declared earlier in the effect file. We’re not
actually clearing any buffers here, we’re just setting some “state” values to be
used when we do call “Clear,” Which is next.

The following two lines clear the buffer, twice. “Clear=Color” clears the
“RenderColorTarget” with our values from gClearColor, while “Clear=Depth”
clears the “RenderDepthStencilTarget” with the values from gClearDepth. So
after these nine commands, we’ve drawn some buffers, come back, selected the
main frame buffer, and cleared it.

Finally, we execute one more pass, named “useBakedLighting.” We’re done!

If there are other passes in the technique, they’re ignored (this means the
technique Script is a good tool for trying different combinations while creating
and debugging, by the way).

In this sample we’ve already seen that we can assign render and depth targets,
clear the frame (which constitutes a sort of “hidden pass”), and control the
frame order. Technique Script annotations can perform one extra bit of magic:
Looping.

Looping
Here’s the technique Script from the Shader Library “paint_brush.fx” effect
(which turns FX Composer into a very minimal paint program):

< string Script =
 "RenderColorTarget0=;"
 "RenderDepthStencilTarget=;"
 "LoopByCount=bReset;"
 "Pass=revert;"
 "LoopEnd=;"
 "Pass=splat;"; >

What it does, and how it does it:

The parameter bReset is a global parameter that’s controlled by the application-
specific semantic FXCOMPOSER_RESETPULSE (described earlier). Here is its
declaration:

bool bReset : FXCOMPOSER_RESETPULSE <
string UIName="Clear Canvas"; >;

A parameter bound to FXCOMPOSER_RESETPULSE is set to one (true) if either
the user selects “Clear Canvas” or if the canvas (render window) is reset – say,
by a view-size change. It will be true for that one frame – on all subsequent
frames, the value will be zero (false).

Using SAS with CgFX and FX file formats

22 Version 1.03 – 29 March 2008

Okay, so we have a value in bReset that is one or zero. Now we can use the
Script commands “LoopByCount” and “LoopEnd.” To give us a more elegant
frame reset than just a simple “clear the screen” (in this case, our “revert” pass
redraws the screen with a user-assigned background texture, which the user can
then paint over).

“LoopByCount” looks at the value of the designated parameter and executes the
commands up to “LoopEnd” exactly that many times. In this case, the count is
either one or zero. If it’s zero, the enclosed commands are executed zero times –
that is, the “revert” pass doesn’t execute at all.

This combination of FXCOMPOSER_RESETPULSE (or really, any bool parameter)
and the “LoopByCount” Script command provides us with a somewhat kludgy but
effective “if { }” mechanism.

Oh, and by the way, the indentation of the sub-strings in a Script means nothing
– it just makes it easier for a person to read.

Let’s look at a more traditional use of looping, this time from
“scene_reaction_diffusion.fx.” As before, we declare a parameter bReset, but
also one called gIterationsPerFrame. Its declaration is (note the deliberately-
chunky UIStep):

float gIterationsPerFrame <
 string UIName = "Iterations Per Frame";
 string UIWidget = "slider";
 float UIMin = 0;
 float UIMax = 100;
 float UIStep = 1;
> = 10;

…and the technique Script is:

< string Script =
 "LoopByCount=bReset;"
 "Pass=revert;"
 "LoopEnd=;"
 "LoopByCount=gIterationsPerFrame;"
 "Pass=simulate01;"
 "Pass=simulate10;"
 "LoopEnd=;"
 "pass=exterior01;"
 "Pass=paint;"
 "Pass=seed;"
 "Pass=clearSeed;"
 "Pass=display;"; >

Here we still keep our revert pass (which initializes an offscreen buffer). We also
let the user actively choose how many iterations of reaction and diffusion (passes
“simulate01” and “simulate10”) to perform each frame.

Our third and final looping example is from “scene_EasyBake.fx” and
demonstrates the ability to push the loop count back into the shader function (in

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 23

this case, to place instances of a model in varying locations). We declare a global
value that will define the number of iterations, and also a global value into which
we will be passing-back each current loop’s count:

float gThisInstance <
string UIWidget = "none"; >; // loop counter, hidden

then in the technique Script:

< string Script =
 "Pass=bake;"
 "RenderColorTarget0=;"
 "RenderDepthStencilTarget=;"
 "ClearSetColor=ClearColor;"
 "ClearSetDepth=ClearDepth;"
 "Clear=Color;"
 "Clear=Depth;"
 "LoopByCount=gNInstances;"
 "LoopGetIndex=gThisInstance;"
 "Pass=useBakedLighting;"
 "LoopEnd;"; >

Here we see the loop iteration count set by gNInstances, and a new Script
command, “LoopGetIndex” is used to set the value of the global parameter
gThisInstance. That parameter can be used in any way by any passes (in this
case, “useBakedLighting”) within the loop.

Here is the vertex shader declared by the “useBakedLighting” pass declaration
itself:

VertexShader = compile vs_2_0 instancesVS(gXvpXf,
 gThisInstance,
 gNInstance,
 gSpacing);

The value gThisInstance is passed along like any other, and “instancesVS()” can
use the value to determine the position of each different instance.

Pass Scripting and Rendering to Texture

Pass scripting, like technique scripting, can assign render targets and execute
clear commands. It can be tough to decide if you should assign the targets in the
technique Script or in the pass Script – in general, the method chosen for the
NVIDIA Shader library has been: passes that use off-screen targets assign their
own targets, while handling of the global-scope framebuffer is done by the
technique. There is no hard and fast rule, but in general that has been the
easiest to manage and debug.

RenderTargets are a piece of the rendering state, and there is no state stack –
that is, if a pass assigns a “RenderColorTarget,” that target won’t “pop” or reset
when the pass is completed – its assignment will remain, until explicitly reset by

Using SAS with CgFX and FX file formats

24 Version 1.03 – 29 March 2008

the same pass, the technique, or another pass. Are you unexpectedly rendering
a black frame? Make sure you’re rendering where you think!

(Note too that if you want your Script to reassign the RenderTarget after the
Geometry has drawn, that’s also okay).

Passes can also specify what to draw in each pass – either the geometry from
the scene, or a screen-aligned quadrilateral that will exactly fit the render
window. We use the pass Script “Draw” command to chose: either
“Draw=Geometry;” for (you guessed it) geometric models, or “Draw=Buffer;” for
a full-screen quad. If neither is specified, a “Draw=Geometry;” will be implied at
the end of your pass Script.

Here is a sample from the “scene_uvds_skin.fx” file:

pass HBlur < string Script =
 "RenderColorTarget0=gBlur1Tex;"
 "RenderDepthStencilTarget=DepthBuffer;"
 "Draw=Buffer;"
 > { //…

Both the color and depth Render Targets are assigned, to textures that have
been defined using the RENDERCOLORTARGET or
RENDERDEPTHSTENCILTARGET semantics.

After the target assignment, the full-screen quad is drawn.

On the next pass, any sampler that has been bound to the texture gBlur1Tex will
be available for reading – as long as you change the “RenderColorTarget0” first
(remember, it’s illegal to read and write to the same texture in the same pass)!

Examples from the Shader Library that draw full-screen quads usually include the
NVIDIA “Quad” header file (either “include/Quad.fxh” or “include/Quad.cgh,”
depending on the language). These header files include sample vertex shaders
and pixel shaders to handle the “Buffer” quadrilateral and map previously-
rendered textures exactly to the screen coordinates (which can be tricky,
because of a half-pixel offset under DirectX).

Persistence
When a reset event occurs (the same events that would trigger
FXCOMPOSER_RESETPULSE): all RenderTargets may be potentially reset,
resized, and flushed from memory. You must always do your own clearing of
render targets, or they will be filled with either random junk or the results of the
previous render.

This isn’t always a bad thing! Shader library effects like “post_corona” (which
displays an animated “flaming” halo around objects) or “post_trail” deliberately
use this feature.

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 25

Shadow Mapping
Shadow mapping a specialized kind of RTT that will introduce yet another Script
command, “RenderPort.” We will also need to get some special matrices that
describe our shadowing lamp’s relationship to the rest of the scene.

Shadow Transforms
We can use the regular automatic transform semantics, with one additional
feature: the Object annotation. We assign Object to the “semantic name” of the
light (see also the section above on Light and Object Binding):

 float4x4 gLampView : View <
string Object =”SpotLight0”; >;

 float4x4 gLampProj : Projection <
string Object = “SpotLight0”; >;

 float4x4 gLampViewProj : ViewProjection <
string Object = “SpotLight0”; >;

Instead of basing their values on the default camea, they will base their values
on a square camera controlled by the “SpotLight0” assignment (by default, the
scene’s first SpotLight object).

Shadow Bias Matrices

These you need to construct yourself. The methods are different between HLSL
and Cg – the Shader Library provides and uses a header called either
“include/shadowMap.fxh” or “include/shadowMap.cgh” that can manage the
details of shadow bias-matrix construction in an almost invisible manner.

RenderPort
To complete our pass, we need to let the renderer know to switch cameras and
formats. We can use the “Renderport” Script command to do just that.
“Renderport” can be set to the name of a lamp e.g., “RenderPort=SpotLight0;”
and can be reset (that is, re-assigned to the master scene camera) by setting
back to “” – “Renderport=” alone.

Remember to reset before your final pass!

MRTs
Using multiple render targets (MRTs) is straightforward for renderers that
support it.

Besides “RenderColorTarget0,” you may also assign “RenderColorTarget1,”
“RenderColorTarget2,” etc in your Script – up to the limits of your system.

Remember to reset all the targets after rendering to them!

In the pixel shader, MRT values can be written using “out” values with semantics
COLOR0, COLOR1, etc, as in this sample with three RenderTargets:

Using SAS with CgFX and FX file formats

26 Version 1.03 – 29 March 2008

void prepMRTPS(vertexOutput IN,
 uniform float3 SurfaceColor,
 uniform sampler2D ColorSampler,
 out float4 ColorOutput : COLOR0,
 out float4 NormalOutput : COLOR1,
 out float4 ViewptOutput : COLOR2)
{
 float3 Nn = normalize(IN.WorldNormal);
 NormalOutput = float4(Nn,0);
 float3 Vn = normalize(IN.WorldView);
 ViewptOutput = float4(Vn,0);
 float3 texC = SurfaceColor *

tex2D(ColorSampler,IN.UV).rgb;
 ColorOutput = float4(texC,1);
}

Preprocess and Postprocess effects

Preprocess effects are simple. They have no geometry, and thus they should just
“Draw=Buffer;”

Postprocess files are somewhat trickier as they introduce our final Script
command: “ScriptExternal=Color;” which is only used for postprocess effects.

Here is the entire technique from the shader library “post_negative” effect:

technique Main < string Script =
 "RenderColorTarget0=gSceneTexture;"
 "RenderDepthStencilTarget=gDepthBuffer;"
 "ClearSetColor=gClearColor;"
 "ClearSetDepth=gClearDepth;"
 "Clear=Color;"
 "Clear=Depth;"
 "ScriptExternal=Color;"
 "Pass=PostP0;";
> {
 pass PostP0 < string Script =
 "RenderColorTarget0=;"
 "RenderDepthStencilTarget=;"
 "Draw=Buffer;";
 > {
 VertexShader = compile vs_2_0

ScreenQuadVS2(QuadTexelOffsets);
 ZEnable = false;
 ZWriteEnable = false;
 AlphaBlendEnable = false;
 CullMode = None;
 PixelShader = compile ps_2_a

negativePS(gSceneSampler);
 }
}

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 27

At this point you should be able to read the entire Script, save for the
“ScriptExternal=Color.” This technique has a single pass, but before that pass it
assigns and clears color and depth RenderTargets, calls “ScriptExternal,” then
calls the Pass “PostP0” – the pass in turn immediately resets the RenderTargets
to “” and draws a fullscreen quad using the Sampler associated with the
RenderTarget (gSceneSampler) that was used by the technique when it called
“ScriptExternal.”

Just what did “ScriptExternal” render? Everything.

That is, everything in the scene that has come before this postprocess effect:
first preprocess effects, then all geometries with their object effects.
“ScriptExternal” redirects the output of these effects to the postprocess effect’s
own RenderTarget, rather than the frame buffer (a difference tat’s entirely
transparent to those other effects).

That’s it! For a complete list of commands to use in technique and pass Script
annotations, see the very end of this document.

Appendices

Alternate Constructions

The choices made for the formatting of NVIDIA Shader Library were made in the
interest of general clarity. They’re not the only way to do it!

Shader parameter names have been chosen to be as consistent as possible
between shaders, for example, so that it’s easy to copy-and-paste between
different samples when creating your own new variations.

Structs have been used to indicate hardware-register and hardware-connector
inputs and outputs. These struct definitions are shared between to most of the
shaders, which eliminates a lot of typing and therefore a lot of potential for error.

Similarly, except for MRTs, library pixel shaders usually return a float4 and the
function is marked with the COLOR0 semantic. Some users may prefer to use
void functions and enumerate the outputs explicitly using “out” variables. Both
are valid choices.

As in this document, semantics are usually CAPITALIZED to make them easy to
spot.

Global scope: in many older shaders, globally-scoped parameters were used.
This made the code clean in some ways, but made it difficult to copy and paste
such shader code into other effect files or into game engines. Newer shaders,

Using SAS with CgFX and FX file formats

28 Version 1.03 – 29 March 2008

and revisions of many old ones, have switched to using formal parameter
passing, and avoiding the direct global use of the shader parameters within
functions. This makes for a bulkier-looking function, but also makes it much
easier to drop such a function into other non-fx-based engines, or to share
snippets between shaders.

To make global parameters easier to spot, we have adopted the “Hungarian”
convention of prepending a small letter “g” before parameter names, and
passing the values to shader functions by using the same name without the “g”:
e.g., the float4x4 parameter “gWorldViewXf” would be passed to the
appropriate vertex shader as “uniform float4x4 WorldViewXf”

HLSL virtual machine: some HLSL effects use the virtual machine to generate
textures (see “Texture Shaders in the HLSL Virtual Machine,” immediately
below). Some HLSL effects also include uses of the HLSL “static” construct. Their
corresponding CgFX versions (if any) cannot, as COLLADA lacks such a virtual
machine. So those calculations are usually moved to the vertex and/or fragment
shaders in the Cg versions. If you intend to use Shader Library code as a starting
point for your game engine, be aware that sometimes simple calculations like
calculations using TIME variables (which only need to be calculated once for the
entire frame) can be effectively moved to the CPU for a fractional GPU boost.

We’re always interested in improving NVIDIA’s products. If you have ideas on
improving these constructions that may increase their power and usefulness, let
us know at the NVIDIA Developer Forums, on the web at
http://developer.nvidia.com/forums/

Texture Shaders in the HLSL
Virtual Machine

DirectX9 includes the notion of “texture shaders” – functions run on the CPU
once, when the effect is loaded, to procedurally create texture data. The
parameters of these shaders have their very own special usages of the
POSITION, PSIZE, and COLOR semantics.

To use a texture shader, you write an HLSL function that will be iteratively
executed on each of the texture MIP levels. It is much like a pixel shader
function, and should return a value with the COLOR semantic. Automatic inputs
to this function will have two special semantics: POSITION will contain XY data
varying from 0 to 1, while PSIZE is used indicate the pixel (texel) size (thus
allowing the texture function to alter its calculations according to the MIP level).

Here is a sample used by the Shader Library “stripe_tex.fxh” header file:

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 29

#define STRIPE_TEX_SIZE 128

float4 make_stripe_tex(

float2 Pos : POSITION,
float ps : PSIZE

) : COLOR
{
 float v = 0;
 float nx = Pos.x+ps; // last column = 1 for all MIPs
 v = nx > Pos.y;
 return float4(v.xxxx);
}

texture gStripeTexture <
 string function = "make_stripe_tex"; // our function
 string UIWidget = "None";
 float2 Dimensions = {

STRIPE_TEX_SIZE,
STRIPE_TEX_SIZE };

>;

sampler2D gStripeSampler = sampler_state {
 Texture = <gStripeTexture>;
 MinFilter = Linear;
 MipFilter = Linear;
 MagFilter = Linear;
 AddressU = Wrap;
 AddressV = Clamp;
};

A cautionary note: Because they are run at effect-load time, the inputs to a
texture shader must be constants –user parameters will have no control over the
texture shader (since those parameters haven’t been displayed yet by the time
the texture shader runs). If you want to change a texture shader input, you must
edit the code and recompile (build) the effect.

Things you cannot currently do
with SAS Scripts

Loop per-object or per-light – that is, you can’t cause a loop that goes “once
per object” or “for each light, do….” – Loops only function by numeric count,
though you could, Loop by a count and then extract light data from arrays by
using “LoopGetIndex.”

The Script directive “LoopByType,” described in some versions of the DXSAS
Spec, is not implemented (nor have we seen it implemented in any other tool, so
far).

Using SAS with CgFX and FX file formats

30 Version 1.03 – 29 March 2008

Control object rendering order (if there is more than one object) – this is
defined by the rendering application, not SAS. Order-dependant algorithms (such
as transparency) need to have the data ordered properly in advance.

Specify single objects to draw (when there is more than one object). Object
hiding is up to the rendering application. This means there no non-hacky way to
use, say, shadow proxy objects.

Call passes from other passes.

Persistent non-texture values – while textures can persist from frame to
frame, numeric parameter values do not. If you really need them, you could
write them to a texture and retrieve them each frame. This has been done in FX
Composer 1.8. For FX Composer 2+, why not consider a Python script? Python
namespaces persist across frames. Look at the “playblast” module, distributed
with FX Composer. Using “playblast()” can control the frame count and play
animated clips while executing your own Python per-frame callback functions,
which can load the effect parameters with the values you need – more like a
regular game engine.

Share texture buffers, explicitly under SAS control – that is, SAS provides
no mechanism for sharing image buffers between effects – say a shadow map
that would be used by multiple material effects, dynamic refelction maps, or full-
scene deferred-render buffers. There are some possibilities, however…

How to Share Textures: Two Methods

COLLADA method: FX Composer supports, for COLLADA-FX, the ability to write
to a shared texture surface. Other COLLADA-FX effects (and CgFX effects) can
access this texture from their properties pane. This is how the NVIDIA “Ninja
Scene” demo was created, where the numerous materials on the environment
and the running armored Ninja all share the same shadow maps. See the NVIDIA
Developer Forums post at
http://developer.nvidia.com/forums/index.php?showtopic=267 for technical
details.

Recent user experiments have found that this COLLADA-based method can also
work for DirectX effects in FX Composer – again, check the NVIDIA developer
forums for the latest details and developments.

Autodesk 3DS Max method: while not exactly controlled by SAS, 3DS Max
has a slightly-different mechanism for defining preprocess, standard, and
postprocess effects. The result is that Max scenes can indeed render themselves
and use shared shadows, reflections, and so forth. For details, check the web for
the Autodesk Presentation “Integrating High-Level Shading Effects into Autodesk
3ds Max and Maya,” which has been updated repeatedly by Autodesk and
available from multiple sources.

(A “secret” third method? The HLSL specification provides an explicit “shared”
storage classifier for global parameters – the intent was to provide a mechanism

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 31

for sharing both texture buffers and parameter values between effects – e.g.,
“shared float AA;” would provide the same numeric values to any loaded effects
that contained a reference to that shared “AA” parameter. Alas, this keyword has
so far never appeared in a running HLSL implementation)

Semantics, Annotations, and
Python

Here is a quick IronPython snippet that can be used within FX Composer to view
predefined semantics recognized by your current edition of the program:

Import FXComposer
[s for s in dir(FXComposer.Core.FXSemanticID) if \
 not callable(getattr(FXComposer.Core.FXSemanticID.s)) \
 and not s.__contains__(’_’)]

IronPython within FX Composer has access to the complete annotation list for
any parameter – including annotations not usually recognized by FX Composer
itself. See the provided” Parameters.py” module and its method
“named_annotation()” for an example of how to retrieve annotation values.

List of Common Semantics

Hardware Semantics

Register Names in vertex buffers and vertex‐output connections

COLOR0

COLOR1

TEXCOORD0

TEXCOORD1

TEXCOORD2

TEXCOORD3

TEXCOORD4

TEXCOORD5

TEXCOORD6

TEXCOORD7

TEXCOORD8 (synonym for COLOR0)

TEXCOORD9 (synonym for COLOR1)

Using SAS with CgFX and FX file formats

32 Version 1.03 – 29 March 2008

ATTR0 (synonym for TEXCOORD0 sometimes seen in Cg)

ATTR1 (synonym for TEXCOORD1)

ATTR2 (synonym for TEXCOORD2)

ATTR3 (synonym for TEXCOORD3)

ATTR4 (synonym for TEXCOORD4)

ATTR5 (synonym for TEXCOORD5)

ATTR6 (synonym for TEXCOORD6)

ATTR7 (synonym for TEXCOORD7)

register(hardware_register_specifier)

POSITION

NORMAL

NORMAL0

TANGENT

TANGENT0

BINORMAL

BINORMAL0

Particle Size and Polygon Facing Flag Inputs for Pixel Shaders

PSIZE

FACE (OpenGL equivalent to VFACE)

VFACE (DirectX equivalent to FACE)

Pixel Shader Output Values

COLOR (synonym for COLOR0)

COLOR0

COLOR1

COLOR2

COLOR3

Standard Software Semantics

Common Material and Light Characteristics

POSITION

DIRECTION

DIFFUSE

SPECULAR

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 33

AMBIENT

POWER

SPECULARPOWER

CONSTANTATTENUATION

LINEARATTENUATION

QUADRATICATTENUATION

FALLOFFANGLE

FALLOFFEXPONENT

EMISSION

EMISSIVE

OPACITY

REFRACTION

Texture‐Related

RENDERDEPTHSTENCILTARGET

RENDERCOLORTARGET

VIEWPORTPIXELSIZE

DIFFUSEMAP

SPECULARMAP

NORMAL

ENVIRONMENT

ENVMAP

ENVIRONMENTNORMAL

Transforms & Locations

WORLD

VIEW

PROJECTION

WORLDVIEW

VIEW PROJECTION

WORLDVIEWPROJECTION

WORLDINVERSE

VIEWINVERSE

PROJECTIONINVERSE

WORLDVIEWINVERSE

VIEW PROJECTIONINVERSE

Using SAS with CgFX and FX file formats

34 Version 1.03 – 29 March 2008

WORLDVIEWPROJECTIONINVERSE

WORLDTRANSPOSE

VIEWTRANSPOSE

PROJECTIONTRANSPOSE

WORLDVIEWTRANSPOSE

VIEW PROJECTIONTRANSPOSE

WORLDVIEWPROJECTIONTRANSPOSE

WORLDINVERSETRANSPOSE

VIEWINVERSETRANSPOSE

PROJECTIONINVERSETRANSPOSE

WORLDVIEWINVERSETRANSPOSE

VIEW PROJECTIONINVERSETRANSPOSE

WORLDVIEWPROJECTIONINVERSETRANSPOSE

TRANSFORM

LIGHTPOSITION

Others

STANDARDSGLOBAL

HEIGHT

UNITSSCALE

FXComposer Specific Semantics

Resetting Views

FXCOMPOSER_RESETPULSE

Mouse Interactions

MOUSEPOSITION

LEFTMOUSEDOWN

RIGHTMOUSEDOWN

Timing

TIME

ELAPSEDTIME

Using SAS with CgFX and SAS file formats

 Version 1.03 – 29 March 2008 35

Other Semantics Sometimes Encountered

SI_EYEPOS (use VIEWINVERSE instead)

WORLD_CAMERA_POSITION (likewise)

COS_TIME (just call cos())

If you encounter any new semantics, please send them to us on the NVIDIA
forums: http://developer.nvidia.com/forums/

List of Scripting Commands

Pass=pass_name

RenderColorTarget0=render_target_or_null

RenderColorTarget1=render_target_or_null

RenderColorTarget2=render_target_or_null

RenderColorTarget3=render_target_or_null

RenderDepthStencilTarget=render_target_or_null

ClearSetColor=color_parameter_name

ClearSetDepth=depth_parameter_name

Clear=Color

Clear=Depth

Draw=Geometry

Draw=Buffer

LoopByCount=parameter_name

LoopGetIndex=parameter_name

LoopEnd=

RenderPort=light_identifier_or_null

ScriptExternal=Color

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under
any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Macrovision Compliance Statement

NVIDIA Products that are Macrovision enabled can only be sold or distributed to buyers with a valid and
existing authorization from Macrovision to purchase and incorporate the device into buyer’s products.

Macrovision copy protection technology is protected by U.S. patent numbers 4,631,603, 4,577,216 and
4,819,098 and other intellectual property rights. The use of Macrovision’s copy protection technology in the
device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only,
unless otherwise authorized in writing by Macrovision. Reverse engineering or disassembly is prohibited

Copyright

© 2008 NVIDIA Corporation. All rights reserved.

