
Robust Stencil Shadow
Volumes

CEDEC 2001
Tokyo, Japan

Robust Stencil Shadow
Volumes

CEDEC 2001
Tokyo, Japan

2

Mark J. Kilgard
Graphics Software Engineer
NVIDIA Corporation

3

Games Begin to Embrace
Robust Shadows

• John Carmack’s new Doom engine leads the way
• First-class lights
• Vital to the look of the engine

• Cinematic shadowing effects
• Scary scenes possible

4

Variety of
Shadow Techniques

ShadowShadow
volumesvolumes

Light mapsLight maps

ProjectedProjected
planarplanar
shadowsshadows

HybridHybrid
approachesapproaches

5

Stenciled Shadow Volumes

ShadowShadow
volumesvolumes

Technique that Carmack is
using for new Doom engine

Advantages
• Support omnidirectional lights
• Exact shadow boundaries

Disadvantages
• Fill-rate intensive
• Expensive to compute shadow volumes
• Hard shadow boundaries, not soft shadows
• Difficult to implement robustly

6

Let Us Consider
Omni-directional Shadowing

• Situation: a light source centered in a room
• Dynamic characters in the room
• Everything should shadow everything

• This is a situation for stenciled shadow volumes

Light
source

Light
source

7

Review:
Stenciled Shadow Volumes

• A single point light source splits the world in two
• Shadowed regions
• Unshadowed regions
• Volumetric shadow technique

• A shadow volume is the boundary between these
shadowed and unshadowed regions
• Determine if an object is inside the boundary of the

shadowed region and know the object is shadowed
• First described by [Crow 77]

By the way, Frank Crow
works at NVIDIA now

8

Visualizing Shadow
Volumes

• Occluders and light source cast out a shadow
volume
• Objects within the volume should be shadowed

Light
source

Scene with shadows from
an NVIDIA logo casting a

shadow volume

Visualization of the
shadow volume

9

Shadow Volume
Algorithm

• High-level view of the algorithm
• Given the scene and a light source position,

determine the shadow volume (harder than it
sounds)

• Render the scene in two passes
• Draw scene with the light enabled,

updating only fragments in unshadowed region
• Draw scene with the light disabled,

updated only fragments in shadowed region
• But how to control update of regions?

10

2D Cutaway of a
Shadow Volume

Shadowing
object

Shadow
volume
(infinite extent)

Partially
shadowed
object

Light
source

Eye position
(note that
shadows are
independent of
the eye position)

Surface inside
shadow volume
(shadowed)

Surface outside
shadow volume
(illuminated)

11

Tagging Pixels as
Shadowed or Unshadowed

• High-level algorithm does not say how to
update only either pixels in or out of the
shadow volume!

• The stenciling approach
• Clear stencil buffer to zero and depth buffer to 1.0
• Render scene to leave depth buffer with closest Zs
• Render shadow volume into frame buffer with

depth testing but without updating color and
depth, but inverting a stencil bit

• This leaves stencil bit set within shadow!

12

Stencil Inverting of
Shadow Volume

• Why inverting stencil works

Eye
position

Light
source

Shadowing
object

Two inverts, left zero

One invert, left one

Zero inverts, left zero

13

Visualizing Stenciled
Shadow Volume Tagging

red = stencil value of 1
green = stencil value of 0

Shadowed scene Stencil buffer contents

GLUT shadowvol example credit: Tom McReynolds

14

Computing
Shadow Volumes

• Harder than you might think
• Easy for a single triangle, just project out three

infinite polygons from the triangle, opposite the
light position

• But shadow volume polygons should not intersect
each other for invert trick to work

• This makes things hard
• For complex objects, projecting object’s 2D

silhouette is a good approximation (flat objects are
easy)

• Static shadow volumes can be pre-compiled

15

Computing Shadow Volumes
For Polygonal Models

• High-level: determine “possible silhouette”
edges of the model
• Transform light into object space
• Compute the plane equation for every polygon in

the model (can be pre-computed for static models)
• For every polygon in the model, determine if the

object-space light position is behind or in front of
the polygon’s plane

• I.e., Is the planar distance from the polygon’s plane
to the light positive or negative?

• Search for edges where polygons have opposite
facingness toward the light

• These edges are possible silhouette edges

16

Examples of Possible
Silhouette Edges for Models

An object viewed from the
same basic direction that the
light is shining on the object
has an identifiable light-view
silhouette

An object’s light-view
silhouette appears quite
jumbled when viewed form a
point-of-view that does not
correspond well with the
light’s point-of-view

17

For Shadow Volumes
With Intersecting Polygons

• Use a stencil enter/leave counting approach
• Draw shadow volume twice using face culling

• 1st pass: render front faces and increment when
depth test passes

• 2nd pass: render back faces and decrement when
depth test passes

• This two-pass way is more expensive than invert
• And burns more fill rate drawing shadow volumes
• Inverting is better if all shadow volumes have no

polygon intersections (very rare)

18

Why Increment/Decrement
Stencil Volumes Work

• Example in 2D

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

19

Problems with
Near Plane Clipping

zero

zero

+1+1
+2

+2
+3

Near clip
plane

Far clip
plane

Missed shadow
volume intersection
due to near clip
plane clipping

20

Capping Shadow Volumes at
The Near Clip Plane

zero

zero

+1+1
+2

+2
+3

Missed shadow volume intersection now
occurs on the near clip plane because
shadow volume edge is capped; keeps
shadow volume enter/leave counts
correct

3D version of
the problem is
harder than 2D
case!

21

Shadow Volume Near Plane
Clipping Artifacts

• Typically, shadow artifacts when light is behind
objects

Correct shadows:
Near plane capped properly

Incorrect shadows:
Near plane NOT capped

Incorrect shadows: Projection of
silhouette edges to the near clip
plane shows capping is
responsible for the artifacts

Light source behind demon’s head

22

Alternative to Near Plane
Capping: Carmack’s Reverse

• Conventional shadow volume stencil usage
• Increment stencil when depth test passes for front

facing shadow volume polygons
• Decrement stencil when depth test passes for back

facing shadow volume polygons
• John Carmack [1998?] reverses this usage

• Increment stencil when depth test fails for back
facing shadow volumes

• Decrement stencil when depth test fails for front
facing shadow volume polygons

23

Implications of
Carmack’s Reverse

• No longer have to worry about near clip plane
capping

• But the reverse shifts the problem to that the far
clip plane clipping shadow volumes
• Approach assumes that shadow volumes are

truncated and capped after a certain finite distance
that can never extend beyond the far clip plane

• Typically ok for attenuated lights
• Works ok because it is easier to move the far clip

plane further out than move the near clip plane
closer in

24

More Implications of
Carmack’s Reverse

• Requires always truncating the shadow volumes
and capping them some distance out

• Setting the far clip plane far in the distance to
avoid shadow volume intersections does
compromise the available depth buffer precision

• A light very close to a shadowing polygon can
cast a shadow so large that it fails to extend far
enough

25

Polygons Very Close to the
Light Source Cause Problems

Capped shadow
volumes eventually
collapse into an
increasingly
marginal volume
when the light gets
extremely close

Capped shadow
volumes work ok
when the light is a
reasonable distance
from an occluder

26

Carmack’s Doom Solution

• Uses Carmack’s reverse
• Support only attenuated lights

• Attenuation means illumination can be bounded
• Dynamically move far clip plane out to enclose light’s

maximum region of illumination
• Clip shadow volumes to eliminate “light too close to

shadowing polygon” case
• Extra clipping work

• Optimize spotlights
• Exploits light’s frustum

27

A New Robust Technique for
Shadow Volume Capping

• Use stenciled shadow volume conventionally
• Rather than using Carmack’s Reverse

• Exploit rasterization with w=0 to draw semi-
infinite polygons
• Details follow

• Adjust depth range and projection matrix to
ensure crack free near clip plane capping
• Details follow

• Result: Robust stenciled shadow volume
algorithm

28

Rasterize This Polygon

(1,3,z0,1)

(-1,-3,z1,1)

(2,-2,z2,1)

29

Rasterize This Polygon

(1,3,z0,1)

(-1,-3,z1,1)

(2,-2,z2,1)

30

Rasterize This Polygon,
One Vertex has W=0

(1,3,z0,1)

(-1,-3,z1,1)
(2,-2,z2,0)

31

Rasterize This Polygon,
One Vertex has W=0

(1,3,z0,1)

(-1,-3,z1,1)
(2,-2,z2,0)

32

(1,3,z0,1)

(-1,-3,z1, 0)
(2,-2,z2,0)

Rasterize This Polygon

33

Rasterize This Polygon,
Two Vertices have W=0

(1,3,z0,1)

(-1,-3,z1,0)
(2,-2,z2,0)

34

OpenGL Renders W=0
Polygons Correctly

• OpenGL implementations are required to render
triangles properly when vertices have w=0

• Because of how the “possible silhouettes” for
shadow volumes project on the near clip plane,
rendering triangles with w=0 provides correct
capping
• Because we really need to be rendering semi-

infinite polygons
• That’s what w=0 vertices are all about

35

Near Clip Plane
Capping Cases

• A “possible silhouette” is a loop of vertices on an
occluding model

• Given a light position, this loop can be projected
onto the near clip plane
• We are only interested in projecting AWAY from the

light (shadows just project away from a light)
• Three possibilities

1. No vertices on the loop project away to the near clip
plane (trivial case, no capping required)

2. All vertices on the loop project away to the near clip
plane (easy capping case)

3. Some but not all of the loop vertices project away
onto the near clip plane (hard capping case)

36

Handling the “Trivial” None
Near Clip Plane Capping Case

• None of the rays cast away from the light source
intersect with the near clip plane

• Render a quad strip loop using “possible
silhouette” vertices and infinite vertices (with
w=0) where x, y, and z are the direction away from
the light
• The w=0 vertices are easier to compute than trying

to extend the shadow volume some sufficiently
large finite distance

• Avoid all worries that the large finite distance used
may not actually be sufficient

37

Handling the “Easy”
Near Clip Plane Capping Case

• Intersect each ray cast away from the light source
with the near clip plane

• Render a quad strip loop using “possible
silhouette” vertices and the near clip plane
intersection positions

• Project all the model’s triangles that are within
the “possible silhouette” loop (i.e., facing away
from the light) to the near clip plane and render
them

38

Handling the “Hard” Near
Clip Plane Capping Case (1)

• In this case, the “possible silhouette” loop
projects AWAY onto the near clip plane for some
loop vertices, but not all

• Render a quad strip loop using “possible
silhouette” vertices and a projected position
• If the ray cast from a loop vertex away from the

light intersects the near clip plane, use the
intersection position for the projected position

• Send two vertices for the quad strip loop: the loop
vertex and its projected position

• Otherwise, …
• Send two vertices for the quad strip loop: the loop

vertex and its direction away from the light for
XYZ and with w=0

39

Handling the “Hard” Near
Clip Plane Capping Case (2)

• For each triangle within the “possible silhouette”
loop (i.e., facing away from the light) …
• If all three vertices do not project AWAY to the near

clip plane, skip this triangle
• If all three vertices do project AWAY to the near

clip plane, render a triangle from these projected
vertices

• If one or two vertices project AWAY to the near clip
plane, but not all three, these are handled as
described on the next two slides

40

Handling the “Hard” Near
Clip Plane Capping Case (3)

• If exactly one vertex projects AWAY to the near clip
plane, render a triangle with this projected vertex
and two vertices with w=0 as described

• The two remaining vertices are determined by
computing the plane containing the light position,
the single projected vertex position on the near clip
plane, and one of the two remaining loop vertices

• Then take the cross product of the direction of this
plane and the near clip plane

• Render a triangle with the single projected vertex
position and two other vertices such that the XYZ of
these two vertices is the direction vector result from
the cross product and w=0

41

Handling the “Hard” Near
Clip Plane Capping Case (4)

• If exactly two vertices project AWAY to the near
clip plane, render a quad with these two projected
vertices and two other vertices with w=0 as
described

• Determine the third vertex by computing the plane
containing the light position, one of the two
projected vertices, and the unprojected loop vertex

• Then take the cross product of the direction of this
plane and the near clip plane

• The third vertex is such that XYZ is the direction
vector results from the cross product and w=0

• Compute the fourth vertex in the same manner using
the remaining projected vertex

42

“Hard” Case Example

• Consider a point light source in a box open on one
side, facing the viewer (a.k.a. the lantern case)

Intersects the
near clip plane

zero

+1

43

“Hard” Case Example

• Lantern case requires w=0 capping

Outward
capping
required

zero

+1

Side view Front view

zero+1

+1

+1

+1

Capping requires 4 w=0
quads rendered at the
near clip plane

44

Remaining Issues
• We must be extra careful to not introduce cracks

when capping a stencil shadow volume at the
near clip plane
• We expect to draw the model in object space so

would naturally render the shadow volume and cap
it in object space too

• The near clip plane capping must not introduce
any T-junctions

• So far, we say that we are drawing the polygons
at the near clip plane to cap our shadow volumes
• However, the near clip plane is a razor’s edge

where polygons exactly or nearly coincident with
the near clip plane may indeed be clipped

45

Building a “Ledge” at the
Front of the Depth Buffer

• We would like to configure the depth buffer and
projection matrix as follows:

• The scene would be drawn in the range [0.1 .. 1.0]
• The shadow volumes would be drawn in the

range [0.0 .. 1.0]
• Shadow volume capping would be drawn at 0.05,

the ledge halfway plane
• Depth values from the scene and shadow

volumes must be comparable

n'=0.0 n=0.1 f=1.0

0.05 ledge
halfway

Scene depth range

Shadow volume depth range

46

zero

zero

+1+1

+2

Shared Vertices for Shadow
Volume Capping on Ledge

n'=0.0 n=0.1 f=1.0Scene depth range

Shadow volume depth range

Must share
vertices to
avoid cracks!

0.05 ledge
halfway

Boundary for shadow volume view frustum

Boundary for scene view frustum

47

Math for Building a “Ledge”
At Front of Depth Buffer (1)

• Setting depth range and projection matrix

glDepthRange(f, n);
gluPerspective(fov, aspect, N, F);

• gluPerspective builds 4x4 matrix

fov/aspectfov/aspect

00

00

00

00

fovfov

00

00

00

00

(F+N)/(N(F+N)/(N--F)F)

--11

00

00

(2*F*N)/(N(2*F*N)/(N--F)F)

00

Note: The Z row and
only the Z row
depends on F and N

X and Y positions can
& will be bit exact if
only Z row changes

48

Math for Building a “Ledge”
At Front of Depth Buffer (2)

• Given n, f, N, and F, and a closer depth range near value n',
can we determine a value N' for the gluPerspective call that
will make the depth values using n, f, N, and F comparable
to the depth values generated using n', f, N', and F ?

• Being comparable mathematically means:

(FN)/(N(FN)/(N--F) z + (2*F*N)/(NF) z + (2*F*N)/(N--F)F)

-- zz

(f(f--n)n)

22

(n+f)(n+f)

22
++**

=
(F(FNN')/()/(NN'--F) z + (2*F*F) z + (2*F*NN')/()/(NN'--F)F)

-- zz

(f(f--nn'))
22

((nn'+f)+f)

22
++**

49

Math for Building a “Ledge”
At Front of Depth Buffer (3)

• The expression

does simplify so that z cancels out of the expression. This
means z is comparable. Moreover, N' can be expressed in
terms of n, f, N, F, and n':

(FN)/(N(FN)/(N--F) z + (2*F*N)/(NF) z + (2*F*N)/(N--F)F)

-- zz

(f(f--n)n)

22

(n+f)(n+f)

22
++**

=
(F(FNN')/()/(NN'--F) z + (2*F*F) z + (2*F*NN')/()/(NN'--F)F)

-- zz

(f(f--nn'))
22

((nn'+f)+f)

22
++**

-- (f (f -- n) * F * Nn) * F * N

n * N n * N -- f * F f * F -- nn' * (F * (F -- N)N)
NN' = =

50

Issue: How to Properly
Tessellate Capping Polygons

• Rendering polygons at near clip plane properly
caps shadow volumes
• But proper capping is hard if you only assume that

you know the outline

Trivial to cap the outline
of a single triangle

Non-trivial if just given a complex
shadow volume intersection with
the near clip plane

51

Solution: Project Object
Polygons to Near Plane

• Tessellating from an outline is a hard problem
• Involved computational geometry problem

• But we have more information than the outline
• Capping tessellation on the near clip plane is really

just a projection of object’s back facing geometry
(with respect to the light) onto the near clip plane

• So render the capping geometry on the near
clip plane by projection object’s back facing
geometry to the near clip plane

52

Incrementing for Projected
Polygons Causes Errors

• Naively, increment stencil for projected capping
polygons

• Consider the following two situations

+1 +1
+1

Good Case:
Incrementing works
correctly, all pixels inside
outline are incremented

+1

+1

Bad Case: But when interior
vertex is outside of outline,
incorrect double incrementing
occurs outside the outline!

+2
+1

53

When Does the
Bad Case Occur

• Numerical error in transformation can lead to
interior vertices that are barely outside of the
outline when projected to screen space
• Trust me – it happens

• If not corrected, double incrementing of regions
that should not be incremented at all leads to
spurious shadowed pixels
• Only a few pixels, but obvious
• Particularly obvious when animating

54

Example of Bad Case

• Bogus Shadowed polygonal region
due to naïve capping

Notice how the bogus
shadowed polygon is
near the capping outline

55

Examine the Bad Case in
More Detail

• Examine polygon facing-ness for the two example
situations

front-facing

front-facing

back-facing
front-facing

front-facing

front-facing

Good Case Bad Case

56

Solution: Increment Front
Faces, Decrement Back Faces

• Draw capping polygons twice
• Increment stencil for front faces
• Decrement stencil for back faces

+1 +1
+1

All faces front facing

+1

+1

Region that was double
incremented is now left zero
because it is both
incremented & decremented

+1 -1 = 0

+1

57

Performance Implications

• Is drawing capping polygons twice expensive?
• Not really

• Most capping polygons are front-facing
• Rarely are back-facing polygons encountered
• When back-facing polygons occur, there is an

extra overhead of incrementing and decrementing
pixels (pixel touched twice for no net effect)

• Modern hardware culls wrong-facing polygons at
amazing rates

• Hardware setup can cull 25+ million wrong-facing
polygons per second

• Moreover, the alternative is bogus shadowing

58

High-level Shadow Volume
Performance Optimization

• Key performance problem with shadow volumes
• shadow volumes consume invisible fill rate

• If you plan to use shadow volumes
• Invest early on in developing a robust algorithm
• Analyze your maps to eliminate shadow volumes

that cannot be seen
• Example: shadows completely behind walls

• Do not overextend shadow volumes
• Example: do not extend shadow volumes past walls

• Carmack’s optimizations in these areas will
make new Doom engine awesome

59

Combining Shadow Volumes
With Bump Mapped Models

md2shader demo/example

