
Samuel Gateau, NVIDIA
Robert Neuman, DISNEY
Marc Salvati, OLM

SIGGRAPH | 2011 | Vancouver

Stereoscopy, From XY to Z
http://developer.nvidia.com/siggraph-2011-stereoscopy-course

Agenda

9:00 Welcome

9:05 Stereoscopy fundamentals and depth perception Samuel Gateau

9:40 Stereopsis and 3D hints Marc Salvati

10:10 Depth as storytelling tool Robert Neuman

10:30 Real-time & gaming techniques Samuel Gateau

11:00 Cartoon Authoring for 3D Marc Salvati

11:30 Creative choices for 3D Robert Salvati

11:50 Managing a depth budget Robert Salvati

12:10 Questions

Course available at

http://developer.nvidia.com/siggraph-2011-stereoscopy-course

Special Thanks…

How does it work ?

TWO EYES, ONE SCREEN, TWO IMAGES

Changes to the rendering pipe

In Mono

Eye space

Z Y

X

Near plane

Scene is viewed from one eye

and projected with a perspective

projection along eye direction on

Near plane in Viewport
Mono Frustum

Scene

Viewport

In Stereo

Eye space

Z Y

X

Scene

Near plane

In Stereo:

Two eyes

Eye space

Z Y

X

Left and Right eyes
Shifting the mono eye along

the X axis

Scene

Near plane

In Stereo:

Two eyes

Eye space

Z Y

X

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

Scene

Near plane

Virtual Screen

In Stereo: Two Eyes,

One Screen

Eye space

Z Y

X

One “virtual” screen

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

Scene

Near plane

Scene

In Stereo: Two Eyes,

One Screen

Virtual Screen

Eye space

Z Y

X

Left Frustum Right Frustum

One “virtual” screen
Where the left and right

frustums converge

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

Near plane

In Stereo: Two Eyes, One Screen,

Two Images

Virtual Screen

Eye space

Z Y

X

Two images
2 images are generated at

the near plane in each views

Scene

Left
Image

Right
Image

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

One “virtual” screen
Where the left and right

frustums converge

Near plane

In Stereo: Two Eyes, One Screen,

Two Images

Virtual Screen

Eye space

Z Y

X

Scene

Left
Image

Right
Image

Left Image

Right Image

Real Screen

Near plane

Two images
2 images are generated at

the near plane in each views

Presented independently to

each eyes of the user on the

real screen

Stereoscopic Rendering

Render geometry twice

From left and right eyes

Into left and right images

DEFINING STEREO PROJECTION

Basic definitions so we all speak English

Stereo Projection

 Human vision is really like 2 eyes looking at a parallel direction

Left Eye

Right Eye

Z

Y

X

Eye space

Stereo Projection

 Stereo projection matrix is a horizontally offset version of regular mono projection

matrix

 Offset Left / Right eyes along X axis

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

 Screen

Mono Frustum

Stereo Projection

 Projection Direction is parallel to mono direction (NOT toed in)

 Left and Right frustums converge at virtual screen

Left Eye

Right Eye

 Mono Eye

Left Frustum

Right Frustum

 Virtual
Screen

Z

Y

X

Eye space

Parallel, NOT Toed in!

 Historically, live camera mounted in parallel stereo would waste a lot of the view field

 Waste view field is wasted film area

Left Eye

Right Eye

 Mono Eye
Z

Y

X

Eye space

 Virtual
Screen

Parallel, NOT Toed in!

 Hence the Toed-in camera solution

 But Toed in frustum introduces deformation which is really painful

 Image Planes are not parallel to the screen plane

 This can be corrected in post production but not perfect

Left Eye

Right Eye

 Mono Eye
Z

Y

X

Eye space

Interaxial

 Distance between the 2 virtual eyes in eye space

 The mono, left & right eyes directions are all parallels

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye Interaxial

Separation

 The normalized version of interaxial by the virtual screen width

 More details in a few slides….

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐼𝑛𝑡𝑒𝑟𝑎𝑥𝑖𝑎𝑙

𝑆𝑐𝑟𝑒𝑒𝑛 𝑤𝑖𝑑𝑡ℎ

Screen width
Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye Interaxial

 Virtual
Screen

Convergence

 Virtual Screen‘s depth in eye space (“Screen Depth”)

 Plane where Left and Right Frustums intersect

Convergence

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

Left Frustum

Right Frustum

 Virtual
Screen

Parallax

 Signed Distance on the virtual screen between the projected

positions of one vertex in left and right image

 Parallax is function of the depth of the vertex

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

 Virtual
Screen

Parallax

Vertex depth

Convergence

In
te

ra
xi

al

Depth Perception

DEPTH PERCEPTION

Where the magic happens

Virtual vs. Real Screen

Virtual Screen

Virtual Space

Z Y

X

Scene

The virtual screen is

perceived AS the real screen

Left Image

Right Image

Real Screen

Parallax is Depth

Virtual Screen

Virtual Space

Z Y

X

Scene

Left Image

Right Image

Real Screen

Parallax is Depth

Virtual Screen

Virtual Space

Z Y

X

Scene

Parallax creates the depth

perception for the user

looking at the real screen

presenting left and right

images

Left Image

Right Image

Real Screen

In / Out of the Screen

Z

Y

X

Eye space

Left Eye

Right Eye

 Mono Eye

 Screen Out of the Screen In the Screen

Convergence

Vertex Depth Parallax Vertex Appears

 Further than Convergence Positive In the Screen

Vertex Depth Parallax Vertex Appears

 Further than Convergence Positive In the Screen

Equal Convergence Zero At the Screen

Vertex Depth Parallax Vertex Appears

 Further than Convergence Positive In the Screen

Equal Convergence Zero At the Screen

Closer than Convergence Negative Out of the Screen

COMPUTING PARALLAX & PROJECTION MATRIX

Equations !!!

Computing Parallax
Thank you Thales

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

Convergence

In
te

ra
xi

al

Parallax

In eye space:
𝑃𝑎𝑟𝑎𝑙𝑙𝑎𝑥𝑒𝑦𝑒

𝐼𝑛𝑡𝑒𝑟𝑎𝑥𝑖𝑎𝑙
=

𝐷𝑒𝑝𝑡ℎ−𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

𝐷𝑒𝑝𝑡ℎ

𝑃𝑎𝑟𝑎𝑙𝑙𝑎𝑥𝑒𝑦𝑒 = 𝐼𝑛𝑡𝑒𝑟𝑎𝑥𝑖𝑎𝑙 × 1 −
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

𝐷𝑒𝑝𝑡ℎ

 S
cr

ee
n

Depth

 S
cr

ee
n

Computing Parallax
In image space (not pixels but in range [0,1])

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

Depth

Convergence

In
te

ra
xi

al

Parallax

 S
cr

ee
n

Computing Parallax
And clip space for free

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

Depth

Convergence

In
te

ra
xi

al

Parallax

Parallax in normalized image space

Pa
ra

lla
x

in
 n

o
rm

al
iz

ed
 im

ag
e

sp
ac

e

Depth

Separation

 C
o

n
ve

rg
en

ce

Parallax diverges quickly to negative infinity
 for object closer to the eye

Parallax is 0 at screen depth

Maximum Parallax at infinity is
separation distance between the eyes

𝑃𝑎𝑟𝑎𝑙𝑙𝑎𝑥 = 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 × 1 −
𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

𝐷𝑒𝑝𝑡ℎ

REAL EYE SEPARATION

Take care of your audience

Real Eye Separation

 Interocular (distance between the eyes) is on

average 2.5” 6.5 cm

 Equivalent to the visible parallax on screen for

objects at infinity

 Depending on the screen width, we define a

normalized “Real Eye Separation”

 Different for each screen model

 A reference maximum value for

the Separation used in the stereo

projection for a comfortable experience

Real Screen

Screen Width

Interocular

Parallax at infinity

𝑅𝑒𝑎𝑙 𝐸𝑦𝑒 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐼𝑛𝑡𝑒𝑟𝑜𝑐𝑢𝑙𝑎𝑟

𝑅𝑒𝑎𝑙 𝑆𝑐𝑟𝑒𝑒𝑛 𝑊𝑖𝑑𝑡ℎ

Real Eye Separation is infinity

 The maximum Parallax at infinity is

Separation

 Real Eye Separation should be used as

the very maximum Separation value

Real Screen

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑅𝑒𝑎𝑙 𝐸𝑦𝑒 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

Separation must be Comfortable

 Never make the viewer look diverge

 People don’t have the same eyes

 For Animation movie, separation must

be very conservative because of the

variety of the screen formats

 IMAX vs Home theatre

 For Interactive application, let the user

adjust Separation

 When the screen is close to the user (PC

scenario) most of the users cannot handle

more than 50% of the Real Eye Separation

Real Screen

Real Eye Separation is the Maximum
Parallax

Real Screen Real Screen

𝑎𝑏𝑠(𝑃𝑎𝑟𝑎𝑙𝑙𝑎𝑥) < 𝑅𝑒𝑎𝑙 𝐸𝑦𝑒 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

Safe Parallax Range

P
a
ra

lla
x

Depth

Separation 1

 C
o

n
ve

rg
en

ce

Separation 2

Real Eye Separation

-Real Eye Separation

𝑎𝑏𝑠(𝑃𝑎𝑟𝑎𝑙𝑙𝑎𝑥) < 𝑅𝑒𝑎𝑙 𝐸𝑦𝑒 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

PARALLAX BUDGET

Convergence and Separation working together

Nearest
pixel

Farthest
pixel

Parallax
budget

P
a
ra

lla
x

Depth

Separation
 C

o
n

ve
rg

en
ce

Parallax Budget
How much parallax variation is used in the frame

In Screen : Farthest Pixel

 At 100 * Convergence, Parallax is 99% of the Separation

 For pixels further than 100 * Convergence,

Elements looks flat on the far distance with no depth differentiation

 Between 10 to 100 * Convergence, Parallax vary of only 9%

 Objects in that range have a subtle depth differentiation

P
a
ra

lla
x

Depth

Separation

C
o

n
ve

rg
en

ce

Out of the Screen : Nearest pixel

 At Convergence / 2, Parallax is equal to -Separation, out of the screen

 Parallax is very large (> Separation) and can cause eye strains

P
a
ra

lla
x

Depth

Separation
 C

o
n

ve
rg

en
ce

Convergence sets the scene in the screen

Defines the window into the virtual space

Defines the style of stereo effect achieved (in / out of the screen)

P
a
ra

lla
x

Depth

Separation

 C
o

n
ve

rg
en

ce
 1

Far pixel Near pixel

 C
o

n
ve

rg
en

ce
 2

Parallax
budget 1

Parallax
budget 2

Separation scales the parallax budget

Scales the depth perception of the frame

P
a
ra

lla
x

Depth

Separation 1

 C
o

n
ve

rg
en

ce

Separation 2

Parallax
budget 1

Far pixel Near pixel

Parallax
budget 2

Adjust Convergence

 Convergence is a Camera parameter driven by the look of the

frame

 Artistic / Gameplay decision

 Should adjust for each camera shot / mode

 Make sure the scene elements are in the range

[Convergence / 2, 100 * Convergence]

 Adjust it to use the Parallax Budget properly

 Dynamic Convergence is a bad idea

 Except for specific transition cases

Stereopsis and 3D Hints

Depth as storytelling tool

Agenda

9:00 Welcome

9:05 Stereoscopy fundamentals and depth perception Samuel Gateau

9:40 Stereopsis and 3D hints Marc Salvati

10:10 Depth as storytelling tool Robert Neuman

10:30 Real-time & gaming techniques Samuel Gateau

11:00 Cartoon Authoring for 3D Marc Salvati

11:30 Creative choices for 3D Robert Salvati

11:50 Managing a depth budget Robert Salvati

12:10 Questions

Course available at

http://developer.nvidia.com/siggraph-2011-stereoscopy-course

Real-time & Gaming
Techniques

RENDERING IN STEREO

Let’s do it

Stereoscopic Rendering

Render geometry twice Do stereo drawcalls Duplicate drawcalls

From left and right eyes Apply stereo projection Modify projection matrix

Into left and right images Use stereo surfaces Duplicate render surfaces

How to implement stereo projection ?

 Start from the mono transformation stack

 Inject the side, separation and convergence to get a stereo transformation

stack

Pixel

Shader

Rasterization Vertex Shader

World

space

Eye

space

Clip

space

Normalized

space

Image

space

View

Transform

Projection

Transform

Perspective

Divide

Viewport

Transform

Stereo Projection Matrix

Pixel

Shader

Rasterization Vertex Shader

Eye

Space

Stereo Clip

space

Stereo

Normalized

space

Stereo

Image

space

Stereo

Projection

Transform

Perspective

Divide

Viewport

Transform
… …

Pixel

Shader

Rasterization Vertex Shader

Clip

space

Stereo Clip

space

Stereo

Normalized

space

Stereo

Image

space

Stereo

Separation

Perspective

Divide

Viewport

Transform
… Eye

space

Projection

Transform
…

Stereo shift on clip position

Stereo Projection Matrix
Right handed column major matrix (OpenGL style)

 Modified version of the Projection matrix for stereo to

transform geometry position from eye space to stereo clip

space

 𝑃𝑜𝑠𝑐𝑙𝑖𝑝 𝑠𝑡𝑒𝑟𝑒𝑜 = 𝑷𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏𝑠𝑡𝑒𝑟𝑒𝑜 × 𝑃𝑜𝑠𝑒𝑦𝑒

Right handed column major matrix (OpenGL style)

𝑷𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏𝑠𝑡𝑒𝑟𝑒𝑜 =

𝑝11 0 𝑝13 − 𝑠𝑖𝑑𝑒 ∗ 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 −𝑠𝑖𝑑𝑒 ∗ 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
0 𝑝22 𝑝23 0
0 0 𝑝33 𝑝34
0 0 −1 0

Side is -1 for left , +1 for right
pij are the coefficients of the standard mono perspective projection

Stereo Projection Matrix
Left handed row major matrix (D3D9 style)

 𝑃𝑜𝑠𝑐𝑙𝑖𝑝 𝑠𝑡𝑒𝑟𝑒𝑜 = 𝑃𝑜𝑠𝑒𝑦𝑒 × 𝑷𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏𝑠𝑡𝑒𝑟𝑒𝑜

 Left handed row major matrix (D3D9 style)

𝑷𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏𝑠𝑡𝑒𝑟𝑒𝑜 =

𝑝11 0 0 0
0 𝑝22 𝑝32 0

𝑝13 + 𝑠𝑖𝑑𝑒 ∗ 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 0 𝑝33 1
−𝑠𝑖𝑑𝑒 ∗ 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 0 𝑝34 0

Side is -1 for left , +1 for right
pij are the coefficients of the standard mono perspective projection

Stereo shift on clip position

 Just before rasterization in the vertex shader, offset the clip position by the

parallax amount

𝑐𝑙𝑖𝑝𝑃𝑜𝑠. 𝑥 += 𝑆𝑖𝑑𝑒 ∗ 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∗ (𝑐𝑙𝑖𝑝𝑃𝑜𝑠. 𝑤 – 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒)

 Side is -1 for left, +1 for right

Pixel

Shader

Rasterization Vertex Shader

Clip

space

Stereo Clip

space

Stereo

Normalized

space

Stereo

Image

space

Stereo

Separation

Perspective

Divide

Viewport

Transform
… Eye

space

Projection

Transform
…

Screen
Left Image

Right Image

Stereo rendering surfaces

 View dependent render targets

must be duplicated

 Back buffer

 Depth Stencil buffer

 Intermediate full screen render

targets used to process final

image

 High dynamic range, Blur, Bloom

 Screen Space Ambient Occlusion

Right Image

Left Image

Mono rendering surfaces

 View independent render targets DON’T need to be

duplicated

 Shadow map

 Spot light maps projected in the scene

Screen

How to do the stereo drawcalls ?

 Simply draw the geometries twice, in left and right versions of stereo surfaces

 Can be executed per scene pass

 Draw left frame completely

 Then Draw right frame completely

 Need to modify the rendering loop

 Or for each individual objects

 Bind Left Render target, Setup state for left projection, Draw geometry

 Bind Right render target, Setup state for right projection, Draw Geometry

 Might be less intrusive in an engine

 Not everything in the scene needs to be drawn

 Just depends on the render target type

When to do what?

Use Case
Render Target

Type
Stereo Projection Stereo Drawcalls

Shadow maps Mono
No

Use Shadow projection
Draw Once

Main frame

Any Forward rendering pass
Stereo Yes Draw Twice

Reflection maps Stereo

Yes

Generate a stereo

reflection projection

Draw Twice

Post processing effect

(Drawing a full screen quad)
Stereo

No

No Projection needed at all
Draw Twice

Deferred shading lighting

pass

(Drawing a full screen quad)

Stereo

G-buffers

Yes

Be careful of the

Unprojection

Should be stereo

Draw twice

Real-time technique

EVERYTHING IS UNDER CONTROL

What could go possibly wrong ?

3D Objects

 All the 3D objects in the scene should be rendered using a unique

Perspective Projection in a given frame

 All the 3D objects must have a coherent depth relative to the

scene

 Lighting effects are visible in 3D so should be computed correctly

 Highlight and specular are probably best looking evaluated with mono eye

origin

 Reflection and Refraction should be evaluated with stereo eyes

Pseudo 3D objects : Sky box, Billboards…

 Sky box should be drawn with a valid depth further than the

regular scene

 Must be Stereo Projected

 Best is at a very Far distance so Parallax is maximum

 And cover the full screen

 Billboard elements (Particles, leaves) should be rendered in a

plane parallel to the viewing plane

 Doesn’t look perfect

 Relief mapping cannot be abused

Several 3D scenes

 Different 3D scenes rendered in the same frame using different

scales

 Portrait viewport of selected character

 Split screen

 Since scale of the scene is different, Must use a different

Convergence to render each scene

Out of the screen objects

 The user’s brain is fighting against the perception of hovering

objects out of the screen

 Extra care must be taken to achieve a convincing effect

 Objects should not be clipped by the edges of the window

 Be aware of the extra horizontal guard bands

 Move object slowly from inside the screen to the outside area to

give eyes time to adapt

 Make smooth visibility transitions

 No blinking

 Realistic rendering helps

2D Objects 2D object in depth
attached to 3D anchor point

Starcraft2 screenshot , Courtesy of Blizzard

2D objects presenting
User interface at screen

Billboards in depth
Particles with 3D positions

2D Objects must be drawn at a valid Depth

 With no stereo projection

 Head Up Display interface

 UI elements

 Either draw with no stereo projection or with stereo projection at Convergence

 At the correct depth when interacting with the 3D scene

 Labels or billboards in the scene

 Must be drawn with stereo projection

 Use the depth of the 3D anchor point used to define the position in 2D window

space

 Needs to modify the 2D ortho projection to take into account Stereo

2D to 3D conversion
shader function

float4 2Dto3DclipPosition(

 in float2 posClip : POSITION, // Input position in clip space

 uniform float depth // Depth where to draw the 2D object

) : POSITION // Output the position in clip space

{

 return float4(

 posClip.xy * depth, // Simply scale the posClip by the depth

 // to compensate for the division by W

 // performed before rasterization

 0, // Z is not used if the depth buffer is not used

 // If needed Z = (depth * f – nf)/(f – n);

 // (For DirectX)

 depth); // W is the Z in eye space

}

Selection, Pointing in S3D

 Selection or pointing UI interacting with the 3D scene don’t work if drawn

mono

 Mouse Cursor at the pointed object’s depth

Can not use the HW cursor

 Crosshair

 Needs to modify the projection to take into account depth of pointed

elements

 Draw the UI as a 2D element in depth at the depth of the scene where pointed

 Compute the depth from the Graphics Engine or eval on the fly from the depth

buffer (Contact me for more info)

 Selection Rectangle is not perfect, could be improved

 Cf nvidia talk at GDC 2008

Performance considerations

 At worse the frame rate is divided by 2

 But applications are rarely GPU bound so less expensive in practice

 Since using Vsynch when running in stereo, you see the standard Vsync frequence

jumps

 Not all the rendering is executed twice (Shadow maps)

 Memory is allocated twice for all the stereo surfaces

 Try to reuse render targets when possible to save memory

 Get another GPU

STEREO CULLING

3D Objects Culling

When culling is done against the mono frustum…

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

 Screen Left Frustum

Right Frustum

Mono Frustum

3D Objects Culling

… Some in screen regions are missing in the right and left frustum …

They should be visible

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

 Screen Left Frustum

Right Frustum

Mono Frustum

3D Objects Culling

… And we don’t want to see out of the screen objects only in one eye …

It disturbs the stereo perception

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

 Screen Left Frustum

Right Frustum

Mono Frustum

3D Objects Culling

Here is the frustum we want to use for culling

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

 Screen Left Frustum

Right Frustum

Mono Frustum

Z

Y

X

Eye space
Left Eye

Right Eye

 Mono Eye

 Screen Left Frustum

Right Frustum

Mono Frustum

3D Objects Culling
Computing Stereo Frustum origin offset

Z = Convergence / (1 + 1 / Separation)

Z

Interaxial

Convergence

Screen Width

3D Objects Culling

 Culling this area is not always a good idea

 Blacking out pixels in this area is better

 Through a shader

 Equivalent to the “Floating window” used

in movies

Left Eye

Right Eye

 Mono Eye

 Screen Left Frustum

Right Frustum

Mono Frustum

STEREO TRANSFORM STACK TRICKS

Fetching Stereo Render Target

 When fetching from a stereo render target use the good texture coordinate

 Render target is addressed in STEREO IMAGE SPACE

 Use the pixel position provided in the pixel shader

 Or use a texture coordinate computed in the vertex shader correctly

Pixel Shader

…
Stereo Image

Space
POSITION.xy

Fetch Texel
at

POSITION.xy

Do something
with it

Stereo Render
Target

Pixel Shader

…
Mono Image

Space
uv

Fetch Texel
at
uv

Do something
with it

Stereo Render
Target

Unprojection in pixel shader
 When doing deferred shading technique, Pixel shader fetch the depth buffer

(beware of the texcoord used, cf previous slide)

 And evaluate a 3D clip position from the Depth fetched and XY viewport position

 Make sure to use a Stereo Unprojection Inverse transformation to go to Mono Eye

space

 Otherwise you will be in a Stereo Eye Space !

Pixel Shader

Stereo Image
Space

POSITION.xy

Image
space

Normalized
space

Clip
space

Mono Eye
space

Fetch Depth
at

POSITION.xy

Viewport
Inverse

Transform

Perspective
Multiply

Stereo
Projection

Inverse
Transform

Evaluate
Image Space

Position

Stereo
Depth Buffer

Pixel Shader

Stereo Image
Space

POSITION.xy

Image
space

Normalized
space

Clip
space

Stereo Eye
space

Fetch Depth
at

POSITION.xy

Viewport
Inverse

Transform

Perspective
Multiply

Mono
Projection

Inverse
Transform

Evaluate
Image Space

Position

Stereo
Depth Buffer

SELECTION IN S3D

What’s under this screen pixel ?

Right Depth buffer

From stereo depth buffers to parallax
Aka, What’s under that cursor ?

 Given the left and

right depth buffers

 A pixel position in the screen

(Cursor)

 How to find the unique

fragment of the scene under

that pixel like we would do in

the mono case ?

Left Depth Buffer

Right Depth buffer

Left Depth Buffer

screen

From stereo depth buffers to parallax

 There is a unique solution in

mono

 which is not trivial in stereo…

Virtual Screen

Eye Space

Z Y

X

Scene

Right Depth buffer

Left Depth Buffer

screen

From stereo depth buffers to parallax

 The fragments are different at

the Cursor position in left and

right buffer

Virtual Screen

Eye Space

Z Y

X

Scene

Right Depth buffer

Left Depth Buffer

screen

From stereo depth buffers to parallax

 Correct left and right cursor

locations

 Are pointing at the same scene

fragment

 Are shifted away from the mono

position from Parallax

Virtual Screen

Eye Space

Z Y

X

Scene

Right Depth buffer

Left Depth Buffer

screen

Left Depth Buffer

From stereo depth buffers to parallax

 Parallax is bounded in a given range of

pixels [MinParallax, MaxParallax]

 Deduced From the range [near, far]

 So we know where to look in the depth

buffers

 Correct location for the left & right pixels

is in the neighborhood of the mono pixel

 Now we need a technique to find the

correct solution in left and right depth

buffers in this area

Right Depth buffer

screen

Max parallax

Min parallax

Search area

From stereo depth buffers to parallax

 Search area in each buffer is only half of the total parallax

range and symmetrical around the mono pixel

 Look into pixel segment from the depth buffers

Left Depth Buffer Right Depth Buffer Right depth buffer pixel row Left depth buffer pixel row

From stereo depth buffers to parallax

 The left and right pixels over the same scene fragment

 Are horizontally at the same distance away from the mono pixel

because they should be shifted by the same half parallax

 And the 2 depths found should be equal and evaluate to the

correct half parallax

Right depth buffer pixel row Left depth buffer pixel row Left Depth Buffer Right Depth Buffer

From stereo depth buffers to parallax

 Start search from the mono pixel

 Progress on both sides pixel by pixel to find the one where

Right depth buffer pixel row Left depth buffer pixel row Left Depth Buffer Right Depth Buffer

X offset (Left) X offset (Right)

𝑃𝑎𝑟𝑎𝑙𝑙𝑎𝑥 𝑑𝑒𝑝𝑡ℎ = 𝑋𝑜𝑓𝑓𝑠𝑒𝑡
𝑋𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑒𝑓𝑡 = 𝑋𝑜𝑓𝑓𝑠𝑒𝑡𝑟𝑖𝑔ℎ𝑡

From stereo depth buffers to parallax

 Min parallax could be negative

 Scene out of the screen

 Look into both directions around the mono pixel

Right depth buffer pixel row Left depth buffer pixel row Left Depth Buffer Right Depth Buffer

X offset (Left) X offset (Right)

From stereo depth buffers to parallax

 Start search from the mono pixel

 Progress on both side pixel by pixel to find the one where

 Parallax(Depth) / 2 = Xoffset

 Xoffset Right

Right depth buffer pixel row Left depth buffer pixel row Left Depth Buffer Right Depth Buffer

X offset (Left) X offset (Right)

From stereo depth buffers to parallax

 Start search from the mono pixel

Right depth buffer pixel row Left depth buffer pixel row Left Depth Buffer Right Depth Buffer

From stereo depth buffers to parallax

 Progress pixel by pixel to find the one where

 Parallax(depth) / 2 = X offset

Right depth buffer pixel row Left depth buffer pixel row

X offset (Left) X offset (Right)

Parallax(Depth)

Cartoon authoring for 3D

Creative choices for 3D

Managing a depth budget

Special Thanks…

Course available at
http://developer.nvidia.com/siggraph-2011-stereoscopy-
course
Ping us for any question at
sgateau@nvidia.com

Questions

