
Integrating Shaders into Your Game
Engine

Bryan Dudash
NVIDIA

Developer Technology

Agenda

Why shaders?
What are shaders exactly?

Evolution of graphics
Using Shaders

High Level Shading Languages
C++ side API and semantics

Tools

Why Shaders?

Pixel Shaders are the #1 feature that will visually
differentiate next-gen titles
Distinct materials

Great way to show detail without geometry
Not everything matte or plastic
Moving away from just Blinn/Phong
Custom light types

Volumetric lights
Not limited to OpenGL fixed pipeline

No Shaders vs Shaders

Flat texture, single texture,
vertex lighting, no shadow

Bump mapped, multi texture,
per pixel lighting, soft shadow

Doom 3 courtesy of id Software. All Rights Reserved.

Per Pixel Lighting

Bump mapping / Normal Mapping / Per-Pixel
Lighting are synonyms

Blinn Diffuse Specular lighting
With Tangent space Bump mapping

Instead of calculating lighting on a per-vertex
normal, use a per-pixel normal instead

Two quads lit per pixel

Pipelined Architecture

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerVertex
Processor

Geometry
StorageCPU

Vertices Pixels

What are Shaders?
User-defined vertex and fragment processing

Custom animation, lighting, image processing, etc.

Ubiquitous platform & API support
PCs, next-generation consoles, cellular phones
Direct3D, OpenGL, OpenGL-ES

Programmed in C-like high level languages
HLSL (Direct3D)
GLSL (OpenGL)
GLSL-ES (OpenGL-ES)
Cg (OpenGL, OpenGL-ES)

Shader Taxonomy
Hardware functionality often described relative to
Direct3D shader models 1 – 3

Newer shader models increase programmability

SM 1: Fixed-point color blending, static dependent
texturing, <= 16 operations

SM 2: Floating-point arithmetic, programmable
dependent texturing, <= 64 operations

SM 3: Branching & subroutines, 1000s of operations

PC/DirectX Shader Model Timeline

1998 1999 2000 2001 2002 2003 2004

DirectX 6
Multitexturing

Riva TNT

DirectX 8
SM 1.x

GeForce 3 Cg

DirectX 9
SM 2.0

GeForceFX

DirectX 9.0c
SM 3.0

GeForce 6
DirectX 5
Riva 128

DirectX 7
T&L TextureStageState

GeForce 256

Quake 3 Giants Halo Far Cry UE3

All images courtesy of respective companies. All Rights Reserved.

DirectX 8, SM 1.x / OpenGL 1.4

Programmable vertex shaders
Up to 128 floating-point instructions

Programmable pixel shaders
Up to 16 fixed-point vector instructions and 4 textures
3D texture support
Up to 1 level of dependent texturing

Advanced Render-to-Texture support

Example Hardware
GeForce 3, ATI Radeon 8500, XGI Volari V3, Matrox Parhelia

SM 1.x-era Game: Halo

Vertex shaders used to add fresnel reflection to ice
Pixel shaders used to add glow to sun
Render-to-texture used to distort pistol scope
Dependent texturing used to animate & light water

Halo courtesy of Microsoft. All Rights Reserved.

DirectX 7 vs DirectX 8

Halo courtesy of Microsoft. All Rights Reserved.

Cg – C for Graphics

High-level language designed for real-time shaders

Supported in major DCC apps (Maya, Max, XSI)
What artists see in tool chain matches in-game result

HLL vs Assembly
Assembly
ADDR R0.xyz, eyePosition.xyzx, -f[TEX0].xyzx;
DP3R R0.w, R0.xyzx, R0.xyzx;
RSQR R0.w, R0.w;
MULR R0.xyz, R0.w, R0.xyzx;
ADDR R1.xyz, lightPosition.xyzx, -f[TEX0].xyzx;
DP3R R0.w, R1.xyzx, R1.xyzx;
RSQR R0.w, R0.w;
MADR R0.xyz, R0.w, R1.xyzx, R0.xyzx;
MULR R1.xyz, R0.w, R1.xyzx;
DP3R R0.w, R1.xyzx, f[TEX1].xyzx;
MAXR R0.w, R0.w, {0}.x;
SLER H0.x, R0.w, {0}.x;
DP3R R1.x, R0.xyzx, R0.xyzx;
RSQR R1.x, R1.x;
MULR R0.xyz, R1.x, R0.xyzx;
DP3R R0.x, R0.xyzx, f[TEX1].xyzx;
MAXR R0.x, R0.x, {0}.x;
POWR R0.x, R0.x, shininess.x;
MOVXC HC.x, H0.x;
MOVR R0.x(GT.x), {0}.x;
MOVR R1.xyz, lightColor.xyzx;
MULR R1.xyz, Kd.xyzx, R1.xyzx;
MOVR R2.xyz, globalAmbient.xyzx;
MOVR R3.xyz, Ke.xyzx;
MADR R3.xyz, Ka.xyzx, R2.xyzx, R3.xyzx;
MADR R3.xyz, R1.xyzx, R0.w, R3.xyzx;
MOVR R1.xyz, lightColor.xyzx;
MULR R1.xyz, Ks.xyzx, R1.xyzx;
MADR R3.xyz, R1.xyzx, R0.x, R3.xyzx;
MOVR o[COLR].xyz, R3.xyzx;
MOVR o[COLR].w, {1}.x;

High-level source code
float3 L = normalize(lightPosition – position.xyz);
float3 H = normalize(L + normalize(eyePosition –

position.xyz));

color.xyz = Ke + (Ka * globalAmbient) +
Kd * lightColor * max(dot(L, N), 0) +
Ks * lightColor * pow(max(dot(H, N), 0), shininess);

color.w = 1;

Impact of HLLs

Dramatic increase in shader adoption
Tens of games per year to hundreds

Shift in game development
Shaders become content requirement, not tech feature
“What do I want?”, not “what can I do?”
Gives control of the look of the game to artists

Unreal courtesy of Epic Games. All Rights Reserved.

DirectX 9, SM 2.0 / OpenGL 1.5

Floating point pixel processing
16/32-bit floating point shaders, render targets & textures
Up to 64 vector instructions and 16 textures
Arbitrary dependent texturing

Longer vertex processing – 256 instructions

Multiple Render Targets – up to 16 outputs per pixel

Example Hardware
GeForce FX 5900, ATI Radeon 9700, S3 DeltaChrome

DirectX 9.0c, SM 3.0 / OpenGL 2.0

Unified shader programming model
Pixel & vertex shader flow control
Infinite length vertex & pixel shaders
Vertex shader texture lookups

Floating-point filtering & blending

Geometry instancing

Example Hardware
GeForce 6800, GeForce 7800 GTX

SM 3.0-era Game: Unreal Engine 3

16-bit FP blending for high dynamic range lighting
16-bit FP filtering accelerates glow and exposure FX
Long shaders & flow control for virtual displacement
mapping, soft shadows, iridescence, fog, etc.

Unreal Engine 3 courtesy of Epic Games. All Rights Reserved.

Using Shaders

“Effects”
Direct3D FX and CgFX

ID3DXEffect or CGeffect
Wrapper around pixel and vertex shaders
Can Configure

Target shader version
Common case variables

Can reference a library of shader functions
Define multi-pass techniques

Semantics

Define any variable naming you want
Semantics make sure constants get set

float4x4 wvp : WorldViewProjection;

D3D SAS is standardized
Supported by many applications

FX Composer
3D Studio Max

OpenGL semantics standardized for CgFX in 1.4

Annotations
Custom data associated with any element of your HLSL or
CgFX effect

sampler2D anisoTextureSampler <
string file = "Art/stone-color.png";

> = sampler_state {
generateMipMap = true;
minFilter = LinearMipMapLinear;
magFilter = Linear;
WrapS = Repeat;
WrapT = Repeat;
MaxAnisotropy = 8;

};

Allows you to provide hooks to set per object data
E.g. Used extensively by shader tools for UI controls

CgFX Semantics Demo

Demo Important Bits

Tangent basis interpolated from vertex shader
Single fragment shader for lighting
An unsized array of light structures that is
dynamically resized by the C++ side
A handful of different light types that implement
the light interface

Point light
Spot Light
Etc…

Optional Bump mapping based on a constant

Single Lighting Function

Sample Albedo map for base color
Normalize interpolated vectors

Tangent space basis vectors
Optionally perturb our normal based on a normal
map
Iterate over our lights and accumulate diffuse and
specular
Combine color and lighting values to produce final
result

C++ Side

Assign the light position through the effect given a
handle to the variable
Sets number of lights and light info based on
program code dynamically
Can also pick whether or not to use normal maps

When not using it, shader gets faster
Any dynamic configuration can be represented as
a uniform parameter or global constant

Shader Library
Rather than writing each shader separately
Code re-use is good!!
Establish common interpolated values

Vertex to Fragment/Pixel program
e.g. At a base, COLOR0, TEXCOORD0 off
limits

Create a library of useful functions
Break everything out
Only costs compile time (can be
preprocessed!)

Write with extensibility in Mind

Quick hacks are for prototyping
Same as regular code
Establish guidelines for style
Full preprocessor support

#ifdef #define etc
Naming convention for techniques
No Assembly!

Performance
CPU bound, or Pixel Shader
NVIDIA’s GPU Programming Guide
NVIDIA provides a number of
handy performance analysis tools

NVShaderPerf
NVPerfHUD
NVPerfKit

NVPerfHUD

What is NVPerfHUD?
How does it work?
Schedule

What is NVPerfHUD?

Stands for: PERFormance Heads Up Display
Overlays graphs and dialogs on top of your
application
Interactive HUD

What is NVPerfHUD?

4 different types of HUD
Performance Dashboard
Debug Console
Frame Debugger
Frame Profiler (New in 4.0)

How to use it

Run your application with NVPerfHUD
Use it as you normally do until you find:

Functional problem: use the debugger
Low FPS: use the profiler

Performance Dashboard

Performance Dashboard

Performance Dashboard

Performance Dashboard

Performance Dashboard

Performance Dashboard

Performance Dashboard

Resources monitored
Textures
Volume Textures
Cube textures
Vertex Buffers
Index buffers
Stencil and depth surfaces

Resource monitor

Performance Dashboard

Performance Dashboard

Speed control

The simplified graphics pipeline

Vertex
Assembly Vertex Shader Pixel Shader Raster OPerations

Schedule

Beta: August
Release : September

NVPerfKit Performance Analysis Toolkit

Complete Performance Instrumentation Solution
Instrumented Driver
NVIDIA Developer Control Panel (NVDevCPL)
NVIDIA Plug-in for Microsoft PIX for Windows
Direct access to performance counters via PDH

Support for PerfMon, Intel® VTune™, gDEBugger, and more
Access to performance signals inside your applications

Includes code samples for OpenGL and Direct3D
Opt-in security mechanism prevents unauthorized analysis

NVPerfKit Instrumented Driver
Provides GPU and Driver Performance Counters
Supports OpenGL and Direct3D
Supports SLI Counters
Requires GeForce FX or later

Significantly more counters available
on GeForce 6 Series
and later...

NVPerfKit NVIDIA Developer Control Panel

NVPerfKit PDH Counters in PerfMon

PerfMon already shows CPU counters. Now you can add NVPerfKit counters
reported by the GPU hardware, OpenGL Driver and Direct3D Driver.

NVShaderPerf

Same technology as
Shader Perf panel
in FX Composer

Analyze DirectX and OpenGL Shaders
HLSL, GLSL, Cg, !!FP1.0, !!ARBfp1.0, VS1.x, VS2.x, VS3.x,
PS1.x, PS2.x, PS3.x, etc.

Shader performance
regression testing on
the entire family of
NVIDIA GPUs,
without rebooting!

Conclusion

Use high-level shading languages
Use FX files and Semantics

Either CgFX or D3D FX
Use our tools

Tons of free tools
Tons of free examples

Treat Shaders like C++ code
Good design can save tons of time in making your game
look amazing!

Questions

http://developer.nvidia.com

http://developer.nvidia.com/CgTutorial

Email: bdudash@nvidia.com

http://developer.nvidia.com/
http://developer.nvidia.com/CgTutorial
mailto:bdudash@nvidia.com

	Integrating Shaders into Your Game Engine
	Agenda
	Why Shaders?
	No Shaders vs Shaders
	Per Pixel Lighting
	What are Shaders?
	Shader Taxonomy
	PC/DirectX Shader Model Timeline
	DirectX 8, SM 1.x / OpenGL 1.4
	SM 1.x-era Game: Halo
	DirectX 7 vs DirectX 8
	Cg – C for Graphics
	HLL vs Assembly
	Impact of HLLs
	DirectX 9, SM 2.0 / OpenGL 1.5
	DirectX 9.0c, SM 3.0 / OpenGL 2.0
	SM 3.0-era Game: Unreal Engine 3
	Using Shaders
	“Effects”
	Semantics
	Annotations
	CgFX Semantics Demo
	Demo Important Bits
	Single Lighting Function
	C++ Side
	Shader Library
	Write with extensibility in Mind
	Performance
	NVPerfHUD
	What is NVPerfHUD?
	What is NVPerfHUD?
	How to use it
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	Performance Dashboard
	The simplified graphics pipeline
	Schedule
	NVPerfKit Performance Analysis Toolkit
	NVPerfKit Instrumented Driver
	NVPerfKit NVIDIA Developer Control Panel�
	NVPerfKit PDH Counters in PerfMon
	NVShaderPerf
	Conclusion
	Questions

