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Overview
• Why Per-Pixel Lighting?
• Review

• OpenGL Transforms and Spaces
• OpenGL Per-vertex Lighting
• Object Space Per-vertex Lighting

• Surface-local Space?
• Other names
• Why is this necessary?
• Surface-local Space Per-Vertex Lighting

• Per-Pixel Lighting
• In Surface-local Space
• In other spaces?
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Why Per-Pixel Lighting?
• Because it looks better than per-vertex lighting
• Because it’s hardware accelerated
• Because everyone else is doing it 

• Don’t be the last on your block
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This is do-it-yourself lighting

• You get total control, but this means you have to 
do it all
• No glShadeModel(GL_PHONG)
• No glEnable(GL_BUMP_MAPPING)

• If you don’t know how to implement per-vertex 
lighting, learn how to do that first

• Per-pixel shading is an extension of per-vertex 
shading (for the most part)
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OpenGL Transformations

• OpenGL operation transforms 
coordinates through several 
coordinate frames or spaces

• Each of the spaces has various 
properties that make it useful 
for some operation

• Vertex attributes are specified 
in object space

• Lighting, eye-linear texgen, and 
fog happen in eye space

• Clipping happens after 
projection in clip space

• Rasterization happens in window 
space

MODELVIEW matrix

object space

eye space

PROJECTION matrix

clip space

Perspective Divide

normalized device coordinates

viewport/depthrange scale & bias

window space
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Example Scene -- world space
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Note: world space is not an explicit space in OpenGL
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Example Scene -- eye space
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Object Space

Object Space For 
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Each object has its own origin, orientation, and scale
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OpenGL Per-Vertex Lighting

• For OpenGL Per-Vertex Lighting, all calculations 
happen in eye space

• Not essential, but convenient
• For each OpenGL per-vertex light, the 

illumination is computed as (assuming separate 
specular)
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Lighting in eye space
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Lighting in eye space (2)
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The vectors…
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Transforming Normals

• To evaluate the lighting equation in eye space, 
normals must be transformed from object space
into eye space

• Normals are not simply transformed by the 
modelview matrix like position

• You may know from the Red Book or various 
other sources that “normals are transformed by 
the inverse-transpose of the modelview matrix”, 
but let’s consider why…

• The following slides should help provide some 
intuition about the transforming of normals 
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Transforming Normals (2)

• Translation of position does not affect normals
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Transforming Normals (3)

• Rotation is applied to normals just like it is to 
position

x-x

-z

z

x-x

-z

z



15

Transforming Normals (4)

• Uniform scaling of position does not affect the 
direction of normals
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Note that we are only considering how the direction of 
a normal is affected by transforming the position
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Transforming Normals (5)

• Non-uniform scaling of position does affect the 
direction of normals!

• Opposite of the way position is affected – or the inverse
of the scaling matrix that’s applied to position
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Note that we are only considering how the direction of 
a normal is affected by transforming the position
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Transforming Normals (6)

• To summarize, these are the basic position 
transformations and the corresponding normal 
transformation:

translation
position normal

T I

rotation R R

scaling S S-1

• Note that any sort of scaling applies inversely to the normal 
– we treat all scales (uniform and non-uniform) the same

• This is why we need GL_NORMALIZE and 
GL_RESCALE_NORMAL for OpenGL lighting

• We have to deal with it in per-pixel lighting as well
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Transforming Normals (7)

• How does this match what OpenGL does?

oe nn T−= M

• For simplicity, consider M, the modelview matrix, is 
composed of a scale and a rotation
• inverse-transpose is distributive
• For rotation (orthonormal) matrices               , and
• For scaling (diagonal) matrices

T−M
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This matches our
ad hoc result!

RR =−T
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Object Space Per-Vertex Lighting
• Nothing in the lighting equation requires 

evaluation in eye space - consider lighting in object 
space instead

• Non-uniform scaling in the modeling matrix would complicate things, 
so we will ignore that for now…

• If the modeling matrix is simply a rigid body 
transform, then this is easy…

• Need to transform the light into object space from eye 
space

• No need to transform each normal now (cheaper)

eyeobj ll 1−= M local light source

eyeobj ll TM= infinite light source
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Example Scene -- object space for 
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Example Scene -- object space for 
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Lighting      in object space
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Note that the dot products are the 
same whether the vectors are in 
object space or eye space as long as 
all vectors are in the same space
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Surface-local Space
• This gets called a lot of things… 

• surface-local space
• tangent space
• texture space

• A surface-local space is a class of 
spaces defined for every point on a 
surface

• Tangent space and texture space are 
surface-local spaces that give specific 
definitions to the basis vectors

• Consider one additional transform 
from surface-local space to object space

MODELVIEW matrix

object space

eye space

PROJECTION matrix

clip space

Perspective Divide

normalized device coordinates

viewport/depthrange scale & bias

window space

surface-local matrix

surface-local space
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Surface-local Space (2)

• The classes of surface-local space we use are 
defined for every point on a surface such that the 
point is at the origin, and the geometric surface 
normal is along the positive z axis 

• Note that for per-pixel lighting the geometric surface 
normal is generally not what we use in the lighting 
equation

• The x and y axes are orthogonal and in the 
tangent plane of the surface

• Now the entire scene can be defined relative to 
any point on any surface in the scene – not just 
relative to any object
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Lighting      in surface-local space

The vectors…
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Lighting      in surface-local space

The vectors…
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Surface-local matrix
• If we specified vertices in surface-local space, they’d 

all be the same!
• glNormal3f(0,0,1); glVertex3f(0,0,0);

• The surface-local matrix, Sl, would provide the 
object space position and the object space normal 
orientation, and it would vary per-vertex:

• More on the tangent and binormal (T and B) 
vectors later…
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S
T -- tangent vector
B -- binormal vector
N -- object space vertex normal
P -- object space vertex position
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Per-Vertex Lighting in surface-local 
space

• As with lighting in eye space or object space, surface-
local space is a perfectly valid coordinate frame to 
evaluate the lighting equation

• We simply transform the light and eye into surface-
local space – the normal is known by definition, so 
it doesn’t need to be transformed

• Compare eye space and surface-local space lighting:
• Eye space lighting: the light vector or eye vector are 

“free”, but you must transform each normal into 
eye space

• Surface-local space lighting:  the normal is free, but 
you must transform the light and eye vectors into 
surface-local space
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Per-Pixel Lighting

• Getting back to the original point…
• We really want to evaluate the lighting equation 

per-pixel
• Rather than passing in normals per-vertex, we’ll 

fetch them from a texture map
• We simulate surface features with illumination only

per-vertex normals per-pixel normals

simulated 
surface
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Per-Pixel Lighting (2)

• The texture map containing normals (normal 
map) clearly uses normals that are not aligned 
with the +z axis in surface-local space
• This makes the tangent and binormal vectors 

important (see discussion later)
• With GeForce2 we have enough horsepower to 

evaluate the illumination equation at each pixel –
but we don’t have so much horsepower that we 
can do it in eye space!
• That would require transforming each normal into 

eye space (after fetching it from the texture map) 



31

Per-Pixel Lighting (2)

• The better solution is to light in surface-local space
• Fetched normals are already in the correct space
• Light and eye vector interpolate nicely as long as 

the tangent and binormal are “well behaved”
• All remaining arithmetic can be evaluated with 

register combiners 
• limited range and precision not a big penalty

• Minor limitation:  as with object space per-vertex 
lighting, you can’t have a non-uniform scale 
without requiring a per-normal transform and 
renormalize

• don’t do lots of non-uniform scaling -- it won’t behave correctly
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Per-Pixel Lighting (3)

• GeForce3 is capable of eye space lighting per-
pixel
• The NV_texture_shader extension provides a 3x3 

“texel matrix” that can be used to transform 
fetched normals from surface-local space into eye 
space for lighting calculations

• Supports non-uniform scale with renormalization 
per-pixel!

• In addition, GeForce3 can do specular, diffuse, 
and decal register combiners-style per-pixel 
lighting in a single pass – an operation that 
requires 3 passes on GeForce2!
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Tangent and Binormal

• Whether we implement per-pixel lighting in 
surface-local space or eye space, the tangent and 
binormal vectors need to be well-behaved from 
vertex to vertex 

• Specifically, 
and

T1

T2

B2B1

( ) 1,, 21 ≈TTalerp
( ) 1,, 21 ≈BBalerp

T1

T2
B2

B1

good bad
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Tangent and Binormal (2)

• Another way to look at the problem case:

T1

T2
B2

B1 T1

T2 B2

B1

B2

T1

T2

B1

x-x

x-x

-y

y

-y

y

surface-local space 
for vertex 1

surface-local space 
for vertex 2

l2l2

l1l1

The vectors we 
interpolate over 
the polygon are:

very 
denormalized

-x

-y

y

x

l1l1

l2l2
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Tangent and Binormal (3)

• In the previous case, we considered transforming 
the light into the surface-local space of each vertex 
and interpolating it for the per-pixel light vector --
this is what we would do for GeForce2

• For GeForce3, we can interpolate the 3x3 matrix 
over the surface and transform the normals by it 
– for this case if the tangent and binormal are not 
well-behaved, other anomalous behavior will 
result
• Normal “twisting”
• Incorrect bump scale/smoothing
• The interpolated matrix should be “nearly 

orthonormal”
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Implementation topics

• Please check out the NVIDIA OpenGL SDK 
presentations for information on these related 
topics:
• How do you compute a texture space surface-local 

matrix for textured polygonal models?
• How do you animate per-pixel shaded surfaces?
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Questions?

Cass Everitt
cass@nvidia.com
www.nvidia.com/Developer


