
Mathematics of Per-Pixel LightingMathematics of Per-Pixel Lighting
Cass Everitt

NVIDIA Corporation
cass@nvidia.com

2

Overview
• Why Per-Pixel Lighting?
• Review

• OpenGL Transforms and Spaces
• OpenGL Per-vertex Lighting
• Object Space Per-vertex Lighting

• Surface-local Space?
• Other names
• Why is this necessary?
• Surface-local Space Per-Vertex Lighting

• Per-Pixel Lighting
• In Surface-local Space
• In other spaces?

3

Why Per-Pixel Lighting?
• Because it looks better than per-vertex lighting
• Because it’s hardware accelerated
• Because everyone else is doing it

• Don’t be the last on your block

4

This is do-it-yourself lighting

• You get total control, but this means you have to
do it all
• No glShadeModel(GL_PHONG)
• No glEnable(GL_BUMP_MAPPING)

• If you don’t know how to implement per-vertex
lighting, learn how to do that first

• Per-pixel shading is an extension of per-vertex
shading (for the most part)

5

OpenGL Transformations

• OpenGL operation transforms
coordinates through several
coordinate frames or spaces

• Each of the spaces has various
properties that make it useful
for some operation

• Vertex attributes are specified
in object space

• Lighting, eye-linear texgen, and
fog happen in eye space

• Clipping happens after
projection in clip space

• Rasterization happens in window
space

MODELVIEW matrix

object space

eye space

PROJECTION matrix

clip space

Perspective Divide

normalized device coordinates

viewport/depthrange scale & bias

window space

6

Example Scene -- world space

x-x

-z

z

Note: world space is not an explicit space in OpenGL

7

Example Scene -- eye space

x-x

-z

z

8

Object Space

Object Space For

x-x

-z

z

Object Space For

x-x

-z

z

Each object has its own origin, orientation, and scale

9

OpenGL Per-Vertex Lighting

• For OpenGL Per-Vertex Lighting, all calculations
happen in eye space

• Not essential, but convenient
• For each OpenGL per-vertex light, the

illumination is computed as (assuming separate
specular)

()[]clicmclicmpri ddaaattspotC ln •+=))((

()() clicm
s

sec ssfattspotC rmhn •=))((

10

Lighting in eye space

x-x

-z

z

11

Lighting in eye space (2)

nn

ll
EEhh

The vectors…

12

Transforming Normals

• To evaluate the lighting equation in eye space,
normals must be transformed from object space
into eye space

• Normals are not simply transformed by the
modelview matrix like position

• You may know from the Red Book or various
other sources that “normals are transformed by
the inverse-transpose of the modelview matrix”,
but let’s consider why…

• The following slides should help provide some
intuition about the transforming of normals

13

Transforming Normals (2)

• Translation of position does not affect normals

x-x

-z

z

x-x

-z

z

14

Transforming Normals (3)

• Rotation is applied to normals just like it is to
position

x-x

-z

z

x-x

-z

z

15

Transforming Normals (4)

• Uniform scaling of position does not affect the
direction of normals

x-x

-z

z

x-x

-z

z

Note that we are only considering how the direction of
a normal is affected by transforming the position

16

Transforming Normals (5)

• Non-uniform scaling of position does affect the
direction of normals!

• Opposite of the way position is affected – or the inverse
of the scaling matrix that’s applied to position

x-x

-z

z

x-x

-z

z
Note that we are only considering how the direction of
a normal is affected by transforming the position

17

Transforming Normals (6)

• To summarize, these are the basic position
transformations and the corresponding normal
transformation:

translation
position normal

T I

rotation R R

scaling S S-1

• Note that any sort of scaling applies inversely to the normal
– we treat all scales (uniform and non-uniform) the same

• This is why we need GL_NORMALIZE and
GL_RESCALE_NORMAL for OpenGL lighting

• We have to deal with it in per-pixel lighting as well

18

Transforming Normals (7)

• How does this match what OpenGL does?

oe nn T−= M

• For simplicity, consider M, the modelview matrix, is
composed of a scale and a rotation
• inverse-transpose is distributive
• For rotation (orthonormal) matrices , and
• For scaling (diagonal) matrices

T−M

T1 RR =−

TSS =

()

1

TT

T

−

−−

−

=

=
=

RS
SR

RS
This matches our
ad hoc result!

RR =−T

19

Object Space Per-Vertex Lighting
• Nothing in the lighting equation requires

evaluation in eye space - consider lighting in object
space instead

• Non-uniform scaling in the modeling matrix would complicate things,
so we will ignore that for now…

• If the modeling matrix is simply a rigid body
transform, then this is easy…

• Need to transform the light into object space from eye
space

• No need to transform each normal now (cheaper)

eyeobj ll 1−= M local light source

eyeobj ll TM= infinite light source

20

Example Scene -- object space for

x-x

-z

z

21

Example Scene -- object space for

x-x

-z

z

22

Lighting in object space

nn
ll

EE

hhThe vectors…

x-x

-z

z

Note that the dot products are the
same whether the vectors are in
object space or eye space as long as
all vectors are in the same space

23

Surface-local Space
• This gets called a lot of things…

• surface-local space
• tangent space
• texture space

• A surface-local space is a class of
spaces defined for every point on a
surface

• Tangent space and texture space are
surface-local spaces that give specific
definitions to the basis vectors

• Consider one additional transform
from surface-local space to object space

MODELVIEW matrix

object space

eye space

PROJECTION matrix

clip space

Perspective Divide

normalized device coordinates

viewport/depthrange scale & bias

window space

surface-local matrix

surface-local space

24

Surface-local Space (2)

• The classes of surface-local space we use are
defined for every point on a surface such that the
point is at the origin, and the geometric surface
normal is along the positive z axis

• Note that for per-pixel lighting the geometric surface
normal is generally not what we use in the lighting
equation

• The x and y axes are orthogonal and in the
tangent plane of the surface

• Now the entire scene can be defined relative to
any point on any surface in the scene – not just
relative to any object

25

Lighting in surface-local space

The vectors…

x-x

-z

z

nn
ll

EE

hh

26

Lighting in surface-local space

The vectors…

x-x

-z

z

nnll
EE

hh

27

Surface-local matrix
• If we specified vertices in surface-local space, they’d

all be the same!
• glNormal3f(0,0,1); glVertex3f(0,0,0);

• The surface-local matrix, Sl, would provide the
object space position and the object space normal
orientation, and it would vary per-vertex:

• More on the tangent and binormal (T and B)
vectors later…



















=

1000
zzzz

yyyy

xxxx

l PNBT
PNBT
PNBT

S
T -- tangent vector
B -- binormal vector
N -- object space vertex normal
P -- object space vertex position

28

Per-Vertex Lighting in surface-local
space

• As with lighting in eye space or object space, surface-
local space is a perfectly valid coordinate frame to
evaluate the lighting equation

• We simply transform the light and eye into surface-
local space – the normal is known by definition, so
it doesn’t need to be transformed

• Compare eye space and surface-local space lighting:
• Eye space lighting: the light vector or eye vector are

“free”, but you must transform each normal into
eye space

• Surface-local space lighting: the normal is free, but
you must transform the light and eye vectors into
surface-local space

29

Per-Pixel Lighting

• Getting back to the original point…
• We really want to evaluate the lighting equation

per-pixel
• Rather than passing in normals per-vertex, we’ll

fetch them from a texture map
• We simulate surface features with illumination only

per-vertex normals per-pixel normals

simulated
surface

30

Per-Pixel Lighting (2)

• The texture map containing normals (normal
map) clearly uses normals that are not aligned
with the +z axis in surface-local space
• This makes the tangent and binormal vectors

important (see discussion later)
• With GeForce2 we have enough horsepower to

evaluate the illumination equation at each pixel –
but we don’t have so much horsepower that we
can do it in eye space!
• That would require transforming each normal into

eye space (after fetching it from the texture map)

31

Per-Pixel Lighting (2)

• The better solution is to light in surface-local space
• Fetched normals are already in the correct space
• Light and eye vector interpolate nicely as long as

the tangent and binormal are “well behaved”
• All remaining arithmetic can be evaluated with

register combiners
• limited range and precision not a big penalty

• Minor limitation: as with object space per-vertex
lighting, you can’t have a non-uniform scale
without requiring a per-normal transform and
renormalize

• don’t do lots of non-uniform scaling -- it won’t behave correctly

32

Per-Pixel Lighting (3)

• GeForce3 is capable of eye space lighting per-
pixel
• The NV_texture_shader extension provides a 3x3

“texel matrix” that can be used to transform
fetched normals from surface-local space into eye
space for lighting calculations

• Supports non-uniform scale with renormalization
per-pixel!

• In addition, GeForce3 can do specular, diffuse,
and decal register combiners-style per-pixel
lighting in a single pass – an operation that
requires 3 passes on GeForce2!

33

Tangent and Binormal

• Whether we implement per-pixel lighting in
surface-local space or eye space, the tangent and
binormal vectors need to be well-behaved from
vertex to vertex

• Specifically,
and

T1

T2

B2B1

() 1,, 21 ≈TTalerp
() 1,, 21 ≈BBalerp

T1

T2
B2

B1

good bad

34

Tangent and Binormal (2)

• Another way to look at the problem case:

T1

T2
B2

B1 T1

T2 B2

B1

B2

T1

T2

B1

x-x

x-x

-y

y

-y

y

surface-local space
for vertex 1

surface-local space
for vertex 2

l2l2

l1l1

The vectors we
interpolate over
the polygon are:

very
denormalized

-x

-y

y

x

l1l1

l2l2

35

Tangent and Binormal (3)

• In the previous case, we considered transforming
the light into the surface-local space of each vertex
and interpolating it for the per-pixel light vector --
this is what we would do for GeForce2

• For GeForce3, we can interpolate the 3x3 matrix
over the surface and transform the normals by it
– for this case if the tangent and binormal are not
well-behaved, other anomalous behavior will
result
• Normal “twisting”
• Incorrect bump scale/smoothing
• The interpolated matrix should be “nearly

orthonormal”

36

Implementation topics

• Please check out the NVIDIA OpenGL SDK
presentations for information on these related
topics:
• How do you compute a texture space surface-local

matrix for textured polygonal models?
• How do you animate per-pixel shaded surfaces?

37

Questions?

Cass Everitt
cass@nvidia.com
www.nvidia.com/Developer

