il
! I"I
)
| |||||||||||
[
{
'm"""ﬂ
f

n‘.'

GDC Tutorial:
Advanced OpenGL Game Development

A Practical and Robust
Bump-mapping Technique for
Today’s GPUs

March 8, 2000

\EDevelope

@@ "uﬂamﬂ IGBpE

Mark J. Kilgard
Graphics Software Engineer
NVIDIA Corporation

“Hardware Bump Mapping”
mostly hype so far

Previous techniques

Prone to aliasing artifacts
Do not correctly handle surface self-shadowing
Cut too many corners, I.e. fail to renormalize, etc.

Too expensive: many passes (OIM),
needs accumulation buffer or glCopyPixels

Only handle infinite, non-attenuated, non-spotlight lights
Assume local viewer

Correct only for essentially flat surfaces
Difficult to implement and author

Demo!

Overview of the
Technique

Uses new NVIDIA GPU features

¢ Cube maps - for per-pixel normalization
— EXT _texture_cube map extension

* Register combiners - for per-pixel dot products
and additional math

— NV _register_combiners

* And dual-textured - for normalization cube map
and 2D normal map

— ARB_multitexture

Features of the technique

Correctly handles

Surface self-shadowing for both diffuse and specular
contributions

Diffuse minification so that bumped objects in the distance
look dimmer than equivalent smooth distant objects

Mipmap filtering of normal maps minimizes aliasing

Local, attenuated, and/or spot-light light sources
with local viewer

Ambient and surface decals

evelo ers

@EFBGDENGB 00

Anatomy of the technique

Three passes (or just two If no specular)

diffuse

High-level view

Tangent space per-pixel lighting [Peercy 97]

« CPU supplies tangent space light vector or half-angle vector
as (s,t,r) texture coordinates

— linearly interpolated
— normalized by an RGB8 cube map texture
* Normal map is RGBAS8 2D texture
— RGB contains “compressed” normalized perturbed normal

— Alpha contains averaged normal shortening

« But no hard-wired per-pixel “lighting engine”!

Per-pixel lig

building blocks

hting

Cube maps enable per-pixel vector normalization

« Cube map normalizes interpolated (s,t,r) into RGB

— (s,t,r) Is Iinterpolated per-vertex light or half-angle vector

« Combiners ex
— expansion C

e Optimization:

pand RGB from [0,1] range to [-1,1] range

one by register combiners

f infinite viewer or infinite light used, half-angle

can be computed within the cube map!

« 32x32x6 RGB8 cube map texture is sufficient

Per-pixel lighting
building blocks

Register combiners perform per-pixel math
« Signed math for dot products
— L dot N’ for diffuse, H dot N’ for Blinn specular

— L and H properly normalized by cube map

— Pre-normalized N’ supplied by normal map

* Uses tangent space L, for geometric surface self-shadowing

Constant color for adding in ambient contribution

Successive squaring for specular exponent

Surface self-shadowing

Two kinds of self-shadowing

 max(0, L dot N’) based on the perturbed normal

* Also should clamp when L dot N goes negative!

N" N N N

VA)ZL

Surface should self-shadow Surface should self-shadow

due to perturbed normal, due to unperturbed normal,
l.e., L dot N'<O l.e., L dot N<O

Surface self-shadowing

Self-shadowing computation

« Technique supports bumped self-shadowing by computing
min(8*max(0,Lz), 1) * max(0, L dot N’)

Also stashes this self-shadowing term in destination alpha
min(8*max(0,Lz), 1)

« Specular pass blends with DST_ALPHA,ONE computing
min(8*max(0,Lz), 1) * max(0, H dot N')"8

 lllumination does not appear on geometric “back side”

— Steep ramp avoids winking and popping
at self-shadow boundary

Complete lighting model

More per-pixel math than you might think!
 Ambient = constant

Diffuse = min(8*max(0,Lz), 1) * max(0, L dot N’)

e Specular = min(8*max(0,Lz), 1) * max(0, H dot N")"8
* Final = (Diffuse + Ambient) * Decal + Specular

Attenuation and/or spotlight

* Final = (Attenuate*Diffuse + Ambient) * Decal +
Attenuate*Specular

Self-shadowing example

i S

iiw m i -f
il i
) I __-_ il
¥ ‘ |
al I
W
..__1.__.-. L
_ __‘ | LT
mEl L .-_-1 ..
._—. i _ L {F L

Some CPU work required

Per-vertex work
* Model requires per-vertex tangent space basis

— any bump mapping scheme needs
surface normals (N), tangents (T), and binormals (B)

« If light or viewer (in the specular case) changes relative to the
object, CPU re-compute tangent space light and half-angle

— Transform object-space vector by [T B N | 3x3 matrix

* Nice split: CPU does per-vertex work, GPU does transform
and per-pixel work

Issues

Truth In advertising
« Specular exponent only 8 so not too shiny

— banding evident in specular highlights, though easy to hide
artifacts in surface decal and diffuse contribution

« Perturbed normal slightly de-normalized by filtering
— causes very slight dimming, alternative is aliasing
— most objectionable when magnifying, “grated” look
* Not “bumped environment mapping”
— but DX6 bump-env support is a joke
* Requires GeForce 256, Quadro, or any future NVIDIA GPU

Claim: practical

Justification for this claim

+ Real-time frame rates on current generation GPUs

— tweakab
* Mixable wit

e: eliminate specular or decal pass, etc.
n other multi-pass rendering technigues

— stencileo

shadows, multiple lights, fog, etc.

Claim: robust

Justification for this claim

« Animates with minimal temporal aliasing

* Models both self-shadowing terms, including for specular
 Diffuse illumination filtered reasonably

 Light and half-angle vectors renormalized per-pixel

* Local, attenuated, and spot-light light sources

 Local viewer

Overall, very reasonable fidelity to Blinn’s original formulation

Source available
on the web already

Bumpdemo source code

« Go to www.nvidia.com Developer Section

— http://www.nvidia.com/developer.nsf/htmimedia/devMainFR_top.html

* Find and download bumpdemo.zip
— requires GeForce 256 or Quadro to run
« Also download “NVIDIA OpenGL Extension Specifications”

— nvOpenGLspecs.pdf
— Adobe Acrobat, 197 pages
— documents OpenGL extensions used by bumpdemo

Other novel uses for
cube mapping

Stable specular highlights

* Encode specular & diffuse lighting solution
— Diffuse cube map using normal map texgen
— Specular cube map using reflection map texgen
— Encode unlimited number of directional lights

* Result is stable specular highlights

« Less significant for diffuse lighting

— Average of dot products LJdot product of averages

— EXxcepting clamping

Example for
stable specular highlights

Cube map Standard
lighting per-vertex lighting
. -
/
Bright, stable Poor per-vertex
specular highlight, sampling of the highlight.

even at low tessellation. Wobbles during animation.

Another example of
stable specular highlights

High tessellation does not completely fix per-
vertex artifacts

'R e

Still bright and stable. Better sampled, but
still has streaky
artifacts.

Still more novel uses for
cube maps & combiners

Per-pixel specular normal mapping

« Assumes fancy per-pixel dot product operations!

Cube map encodes normalized half-angle
— Texgen supplies view vector

— Cube map generates normalize(V+L) vector

Another 2D texture supplies per-pixel surface normals

Per-pixel specular lighting

Per-pixel “normalized(V+L) dot N” !

One pass per-pixel
diffuse & specular example!

Develo

@E’nriuﬂamﬂmaﬂ

OpenGL per-vertex
lighting with mesh of
thousands of vertices
(note displacement).

Per-pixel specular normal
mapping with cube maps
(flat, but lighting all there).

~dense mesh

One polygon!

Dense

=
ok
Sl
-l#:l-'l'g_t"-l‘“

13
i

o,

Tun,
e

u
Ty

N wire

Example

Object-space per-pixel
lighting example

IS per-pixe

___._ __. _

X

"

i

: =

QO

f po | ©

_ i O

Q| A =

m _ f. i | -
©
.
)
b
=
=
=

Object-space per-pixel

example

Register combiners
overview

overrides texture stages/environment, color sum,

and fog in current APIs

signed math (negative one to positive range)

— extended range through scaling

dot products for lighting and image processing applications
— designed for specular, diffuse, and ambient per-pixel lighting
— object space bump map lighting

— tangent space bump map lighting

— post-filtering 3x3 color matrix for color space conversions
register model supports non-linear data flows

— superior to linear chain in current APIs

effectively, a VLIW instruction set for fragment coloring

very efficient hardware implementation

Register combiners
operational overview

initialize
registers
" l

stage #0
general
combiner
stages

stage #1

(optional)

N~

final combiner

\

v

AB+CD, AB, CD

'

AB+CD, AB, CD

RGB Portion Alpha Portion
\ 4
AB+CD, AB, CD
I |
\ 4
AB+CD, AB, CD
I |
\ 4
\ 4

AB+(1-A)C+D, EF, G —» RGBA fragment

General combiners
RGB operation

input registers | ‘ ‘
RGB A | RGB

A
input input input input
primary color map map map map
secondary color % % % *
A B C D
texture O
AB+CD
texture 1 -0r- — 4
AB mux CD
spare O =
spare 1 =
A B scale |
fog -0r-] ;‘_”d
as
A+ B ' 4 As
constant color O
constant color 1 CD
zero ol B
CeD

output registers

primary color
secondary color
texture O
texture 1

spare O

Spare 1

fog

constant color 0

constant color 1

Zero

General combiners
Alpha operation

E'EI'L.'JBG

\EDevelope

DEII""IGBh

input registers
RGB A

primary color

secondary color

texture O

texture 1

spare O

spare 1

fog

constant color O

constant color 1

Zero

not readable

input input
map map

voov

A B

AB+CD
Or
AB mux CD

AB

CD

input
map

v

C

input
map

scale
and
bias

Y

output registers

RGB A

not writeable

primary color
secondary color
texture O
texture 1

spare 0

spare 1

fog

constant color O
constant color 1

Zero

Final combiner
operation

| |
Input registers input input
map map
RGB A + +
primary color E =
secondary color < b E—
EF
47
texture O
< . E— spare O +
«
texture 1 secondary color
input input input input input
spare O map map map map map
spare 1 ¢ ¢ ¢ ¢ ¢
A B C D) G
fog

constant color O

constant color 1

Zero

AB+(1-A)C+D fragment RGB out .

fragment Alpha out
© >

