
GDC Tutorial:
Advanced OpenGL Game Development

March 8, 2000

GDC Tutorial:GDC Tutorial:
Advanced OpenGL Game DevelopmentAdvanced OpenGL Game Development

March 8, 2000March 8, 2000

A Practical and Robust
Bump-mapping Technique for

Today’s GPUs

Mark J. Kilgard
Graphics Software Engineer
NVIDIA Corporation

“Hardware Bump Mapping”
mostly hype so far
Previous techniques
• Prone to aliasing artifacts
• Do not correctly handle surface self-shadowing
• Cut too many corners, i.e. fail to renormalize, etc.
• Too expensive: many passes (OIM),

needs accumulation buffer or glCopyPixels
• Only handle infinite, non-attenuated, non-spotlight lights
• Assume local viewer
• Correct only for essentially flat surfaces
• Difficult to implement and author

Previous techniquesPrevious techniques
•• Prone to aliasing artifactsProne to aliasing artifacts
•• Do not correctly handle surface selfDo not correctly handle surface self--shadowingshadowing
•• Cut too many corners, i.e. fail to renormalize, etc.Cut too many corners, i.e. fail to renormalize, etc.
•• Too expensive: many passes (OIM),Too expensive: many passes (OIM),

needs accumulation buffer or glCopyPixelsneeds accumulation buffer or glCopyPixels
•• Only handle infinite, nonOnly handle infinite, non--attenuated, nonattenuated, non--spotlight lightsspotlight lights
•• Assume local viewerAssume local viewer
•• Correct only for essentially flat surfacesCorrect only for essentially flat surfaces
•• Difficult to implement and authorDifficult to implement and author

Demo!

Overview of the
Technique
Uses new NVIDIA GPU features
• Cube maps - for per-pixel normalization

– EXT_texture_cube_map extension

• Register combiners - for per-pixel dot products
and additional math

– NV_register_combiners

• And dual-textured - for normalization cube map
and 2D normal map

– ARB_multitexture

Uses new NVIDIA GPU featuresUses new NVIDIA GPU features
•• Cube maps Cube maps -- for perfor per--pixel normalizationpixel normalization

–– EXT_texture_cube_map extensionEXT_texture_cube_map extension

•• Register combiners Register combiners -- for perfor per--pixel dot productspixel dot products
and additional mathand additional math

–– NV_register_combinersNV_register_combiners

•• And dualAnd dual--textured textured -- for normalization cube mapfor normalization cube map
and 2D normal mapand 2D normal map

–– ARB_multitextureARB_multitexture

Features of the technique
Correctly handles
• Surface self-shadowing for both diffuse and specular

contributions

• Diffuse minification so that bumped objects in the distance
look dimmer than equivalent smooth distant objects

• Mipmap filtering of normal maps minimizes aliasing

• Local, attenuated, and/or spot-light light sources
with local viewer

• Ambient and surface decals

Correctly handlesCorrectly handles
•• Surface selfSurface self--shadowing for both diffuse and specular shadowing for both diffuse and specular

contributionscontributions

•• Diffuse minification so that bumped objects in the distance Diffuse minification so that bumped objects in the distance
look dimmer than equivalent smooth distant objectslook dimmer than equivalent smooth distant objects

•• Mipmap filtering of normal maps minimizes aliasingMipmap filtering of normal maps minimizes aliasing

•• Local, attenuated, and/or spotLocal, attenuated, and/or spot--light light sourceslight light sources
with local viewerwith local viewer

•• Ambient and surface decalsAmbient and surface decals

Anatomy of the technique
Three passes (or just two if no specular)Three passes (or just two if no specular)Three passes (or just two if no specular)

×××××××××××× +++

diffusediffusediffuse decaldecaldecal specularspecularspecular

High-level view
Tangent space per-pixel lighting [Peercy 97]
• CPU supplies tangent space light vector or half-angle vector

as (s,t,r) texture coordinates

– linearly interpolated

– normalized by an RGB8 cube map texture
• Normal map is RGBA8 2D texture

– RGB contains “compressed” normalized perturbed normal

– Alpha contains averaged normal shortening

• But no hard-wired per-pixel “lighting engine”!

Tangent space perTangent space per--pixel lighting [Peercy 97]pixel lighting [Peercy 97]
•• CPU supplies tangent space light vector or halfCPU supplies tangent space light vector or half--angle vector angle vector

as (s,t,r) texture coordinatesas (s,t,r) texture coordinates

–– linearly interpolatedlinearly interpolated

–– normalized by an RGB8 cube map texturenormalized by an RGB8 cube map texture

•• Normal map is RGBA8 2D textureNormal map is RGBA8 2D texture

–– RGB contains “compressed” normalized perturbed normalRGB contains “compressed” normalized perturbed normal

–– Alpha contains averaged normal shorteningAlpha contains averaged normal shortening

•• But no hardBut no hard--wired perwired per--pixel “lighting engine”!pixel “lighting engine”!

Per-pixel lighting
building blocks
Cube maps enable per-pixel vector normalization
• Cube map normalizes interpolated (s,t,r) into RGB

– (s,t,r) is interpolated per-vertex light or half-angle vector

• Combiners expand RGB from [0,1] range to [-1,1] range

– expansion done by register combiners

• Optimization: If infinite viewer or infinite light used, half-angle
can be computed within the cube map!

• 32x32x6 RGB8 cube map texture is sufficient

Cube maps enable perCube maps enable per--pixel vector normalizationpixel vector normalization
•• Cube map normalizes interpolated (s,t,r) into RGBCube map normalizes interpolated (s,t,r) into RGB

–– (s,t,r) is interpolated per(s,t,r) is interpolated per--vertex light or halfvertex light or half--angle vectorangle vector

•• Combiners expand RGB from [0,1] range to [Combiners expand RGB from [0,1] range to [--1,1] range1,1] range

–– expansion done by register combinersexpansion done by register combiners

•• OptimizationOptimization: If infinite viewer or infinite light used, half: If infinite viewer or infinite light used, half--angle angle
can be computed within the cube map!can be computed within the cube map!

•• 32x32x6 RGB8 cube map texture is sufficient32x32x6 RGB8 cube map texture is sufficient

Per-pixel lighting
building blocks
Register combiners perform per-pixel math
• Signed math for dot products

– L dot N’ for diffuse, H dot N’ for Blinn specular

– L and H properly normalized by cube map

– Pre-normalized N’ supplied by normal map

• Uses tangent space Lz for geometric surface self-shadowing

• Constant color for adding in ambient contribution

• Successive squaring for specular exponent

Register combiners perform perRegister combiners perform per--pixel mathpixel math
•• Signed math for dot productsSigned math for dot products

–– L dot N’ for diffuse, H dot N’ for Blinn specularL dot N’ for diffuse, H dot N’ for Blinn specular

–– L and H properly normalized by cube mapL and H properly normalized by cube map

–– PrePre--normalized N’ supplied by normal mapnormalized N’ supplied by normal map

•• Uses tangent space LUses tangent space Lzz for geometric surface selffor geometric surface self--shadowingshadowing

•• Constant color for adding in ambient contributionConstant color for adding in ambient contribution

•• Successive squaring for specular exponentSuccessive squaring for specular exponent

Surface self-shadowing
Two kinds of self-shadowing
• max(0, L dot N’) based on the perturbed normal

• Also should clamp when L dot N goes negative!

Two kinds of selfTwo kinds of self--shadowingshadowing
•• max(0, L dot N’) based on the perturbed normalmax(0, L dot N’) based on the perturbed normal

•• Also should clamp when L dot N goes negative!Also should clamp when L dot N goes negative!

LLL
NNNN’N’N’

LLL

N’N’N’NNN

Surface should self-shadow
due to perturbed normal,

I.e., L dot N’<0

Surface Surface should selfshould self--shadowshadow
due to perturbed normal,due to perturbed normal,

I.e., L dot N’<0I.e., L dot N’<0

Surface should self-shadow
due to unperturbed normal,

I.e., L dot N<0

Surface Surface should selfshould self--shadowshadow
due to unperturbed normal,due to unperturbed normal,

I.e., L dot N<0I.e., L dot N<0

Surface self-shadowing
Self-shadowing computation
• Technique supports bumped self-shadowing by computing

min(8*max(0,Lz), 1) * max(0, L dot N’)
• Also stashes this self-shadowing term in destination alpha

min(8*max(0,Lz), 1)
• Specular pass blends with DST_ALPHA,ONE computing

min(8*max(0,Lz), 1) * max(0, H dot N’)^8
• Illumination does not appear on geometric “back side”

– Steep ramp avoids winking and popping
at self-shadow boundary

SelfSelf--shadowing computationshadowing computation
•• Technique supports bumped selfTechnique supports bumped self--shadowing by computingshadowing by computing

min(8*max(0,Lz), 1) * max(0, L dot N’)min(8*max(0,Lz), 1) * max(0, L dot N’)
•• Also stashes this selfAlso stashes this self--shadowing term in destination alphashadowing term in destination alpha

min(8*max(0,Lz), 1) min(8*max(0,Lz), 1)
•• Specular pass blends with DST_ALPHA,ONE computingSpecular pass blends with DST_ALPHA,ONE computing

min(8*max(0,Lz), 1) * max(0, H dot N’)^8min(8*max(0,Lz), 1) * max(0, H dot N’)^8
•• Illumination does not appear on geometric “back side”Illumination does not appear on geometric “back side”

–– Steep ramp avoids winking and poppingSteep ramp avoids winking and popping
at selfat self--shadow boundaryshadow boundary

Complete lighting model
More per-pixel math than you might think!
• Ambient = constant
• Diffuse = min(8*max(0,Lz), 1) * max(0, L dot N’)
• Specular = min(8*max(0,Lz), 1) * max(0, H dot N’)^8
• Final = (Diffuse + Ambient) * Decal + Specular

Attenuation and/or spotlight
• Final = (Attenuate*Diffuse + Ambient) * Decal +

Attenuate*Specular

More perMore per--pixel math than you might think!pixel math than you might think!
•• Ambient = constantAmbient = constant
•• Diffuse = min(8*max(0,Lz), 1) * max(0, L dot N’)Diffuse = min(8*max(0,Lz), 1) * max(0, L dot N’)
•• Specular = min(8*max(0,Lz), 1) * max(0, H dot N’)^8Specular = min(8*max(0,Lz), 1) * max(0, H dot N’)^8
•• Final = (Diffuse + Ambient) * Decal + SpecularFinal = (Diffuse + Ambient) * Decal + Specular

Attenuation and/or spotlightAttenuation and/or spotlight
•• Final = (Attenuate*Diffuse + Ambient) * Decal + Final = (Attenuate*Diffuse + Ambient) * Decal +

Attenuate*SpecularAttenuate*Specular

Self-shadowing example

Light leaks onto torus “back side”
due to bad geometric self-shadowing

Light leaks onto torus “back side”Light leaks onto torus “back side”
due to bad geometric selfdue to bad geometric self--shadowingshadowing

Proper geometric
self-shadowing!

Proper geometricProper geometric
selfself--shadowing!shadowing!

Some CPU work required
Per-vertex work
• Model requires per-vertex tangent space basis

– any bump mapping scheme needs
surface normals (N), tangents (T), and binormals (B)

• If light or viewer (in the specular case) changes relative to the
object, CPU re-compute tangent space light and half-angle

– Transform object-space vector by [T B N] 3x3 matrix

• Nice split: CPU does per-vertex work, GPU does transform
and per-pixel work

PerPer--vertex workvertex work
•• Model requires perModel requires per--vertex tangent space basisvertex tangent space basis

–– any bump mapping scheme needsany bump mapping scheme needs
surface normals (N), tangents (T), and binormals (B)surface normals (N), tangents (T), and binormals (B)

•• If light or viewer (in the specular case) changes relative to thIf light or viewer (in the specular case) changes relative to the e
object, CPU reobject, CPU re--compute tangent space light and halfcompute tangent space light and half--angleangle

–– Transform objectTransform object--space vector by [T B N] 3x3 matrixspace vector by [T B N] 3x3 matrix

•• Nice split:Nice split: CPU does perCPU does per--vertex work, GPU does transform vertex work, GPU does transform
and perand per--pixel workpixel work

Issues
Truth in advertising
• Specular exponent only 8 so not too shiny

– banding evident in specular highlights, though easy to hide
artifacts in surface decal and diffuse contribution

• Perturbed normal slightly de-normalized by filtering
– causes very slight dimming, alternative is aliasing
– most objectionable when magnifying, “grated” look

• Not “bumped environment mapping”
– but DX6 bump-env support is a joke

• Requires GeForce 256, Quadro, or any future NVIDIA GPU

Truth in advertisingTruth in advertising
•• Specular exponent only 8 so not too shinySpecular exponent only 8 so not too shiny

–– banding evident in specular highlights, though easy to hide banding evident in specular highlights, though easy to hide
artifacts in surface decal and diffuse contributionartifacts in surface decal and diffuse contribution

•• Perturbed normal slightly dePerturbed normal slightly de--normalized by filteringnormalized by filtering
–– causes very slight dimming, alternative is aliasingcauses very slight dimming, alternative is aliasing
–– most objectionable when magnifying, “grated” lookmost objectionable when magnifying, “grated” look

•• Not “bumped environment mapping”Not “bumped environment mapping”
–– but DX6 bumpbut DX6 bump--env support is a jokeenv support is a joke

•• Requires GeForce 256, Quadro, or any future NVIDIA GPURequires GeForce 256, Quadro, or any future NVIDIA GPU

Claim: practical
Justification for this claim
• Real-time frame rates on current generation GPUs

– tweakable: eliminate specular or decal pass, etc.
• Mixable with other multi-pass rendering techniques

– stenciled shadows, multiple lights, fog, etc.
• Bump map easy to author as an 8-bit gray-scale image

– examples:

Justification for this claimJustification for this claim
•• RealReal--time frame rates on current generation GPUstime frame rates on current generation GPUs

–– tweakable: eliminate specular or decal pass, etc.tweakable: eliminate specular or decal pass, etc.
•• Mixable with other multiMixable with other multi--pass rendering techniquespass rendering techniques

–– stenciled shadows, multiple lights, fog, etc.stenciled shadows, multiple lights, fog, etc.
•• Bump map easy to author as an 8Bump map easy to author as an 8--bit graybit gray--scale imagescale image

–– examples:examples:

Claim: robust
Justification for this claim
• Animates with minimal temporal aliasing

• Models both self-shadowing terms, including for specular

• Diffuse illumination filtered reasonably

• Light and half-angle vectors renormalized per-pixel

• Local, attenuated, and spot-light light sources

• Local viewer

• Overall, very reasonable fidelity to Blinn’s original formulation

Justification for this claimJustification for this claim
•• Animates with minimal temporal aliasingAnimates with minimal temporal aliasing

•• Models both selfModels both self--shadowing terms, including for specularshadowing terms, including for specular

•• Diffuse illumination filtered reasonablyDiffuse illumination filtered reasonably

•• Light and halfLight and half--angle vectors renormalized perangle vectors renormalized per--pixelpixel

•• Local, attenuated, and spotLocal, attenuated, and spot--light light sourceslight light sources

•• Local viewerLocal viewer

•• Overall, very reasonable fidelity to Blinn’s original formulatioOverall, very reasonable fidelity to Blinn’s original formulationn

Source available
on the web already
Bumpdemo source code
• Go to www.nvidia.com Developer Section

– http://www.nvidia.com/developer.nsf/htmlmedia/devMainFR_top.html

• Find and download bumpdemo.zip
– requires GeForce 256 or Quadro to run

• Also download “NVIDIA OpenGL Extension Specifications”
– nvOpenGLspecs.pdf
– Adobe Acrobat, 197 pages
– documents OpenGL extensions used by bumpdemo

Bumpdemo source codeBumpdemo source code
•• Go to www.nvidia.com Developer SectionGo to www.nvidia.com Developer Section

–– http://www.nvidia.com/developer.nsf/htmlmedia/devMainFR_top.htmlhttp://www.nvidia.com/developer.nsf/htmlmedia/devMainFR_top.html

•• Find and download bumpdemo.zipFind and download bumpdemo.zip
–– requires GeForce 256 or Quadro to runrequires GeForce 256 or Quadro to run

•• Also download “NVIDIA OpenGL Extension Specifications”Also download “NVIDIA OpenGL Extension Specifications”
–– nvOpenGLspecs.pdfnvOpenGLspecs.pdf
–– Adobe Acrobat, 197 pagesAdobe Acrobat, 197 pages
–– documents OpenGL extensions used by bumpdemodocuments OpenGL extensions used by bumpdemo

Other novel uses for
cube mapping
Stable specular highlights
• Encode specular & diffuse lighting solution

– Diffuse cube map using normal map texgen

– Specular cube map using reflection map texgen

– Encode unlimited number of directional lights

• Result is stable specular highlights

• Less significant for diffuse lighting

– Average of dot products ≅ dot product of averages

– Excepting clamping

Stable specular highlightsStable specular highlights
•• Encode specular & diffuse lighting solutionEncode specular & diffuse lighting solution

–– Diffuse cube map using Diffuse cube map using normalnormal map texgenmap texgen

–– Specular cube map using Specular cube map using reflectionreflection map texgenmap texgen

–– Encode unlimited number of directional lightsEncode unlimited number of directional lights

•• Result is stable specular highlightsResult is stable specular highlights

•• Less significant for diffuse lightingLess significant for diffuse lighting

–– Average of dot products Average of dot products ≅≅ dot product of averagesdot product of averages

–– Excepting clampingExcepting clamping

Example for
stable specular highlights

Bright, stable
specular highlight,
even at low tessellation.

Poor per-vertex
sampling of the highlight.
Wobbles during animation.

Cube map
lighting

Standard
per-vertex lighting

Another example of
stable specular highlights
High tessellation does not completely fix per-
vertex artifacts
High tessellation does not completely fix perHigh tessellation does not completely fix per--
vertex artifactsvertex artifacts

Still bright and stable. Better sampled, but
still has streaky
artifacts.

Per-pixel specular normal mapping
• Assumes fancy per-pixel dot product operations!

• Cube map encodes normalized half-angle

– Texgen supplies view vector

– Cube map generates normalize(V+L) vector

• Another 2D texture supplies per-pixel surface normals

• Per-pixel specular lighting

• Per-pixel “normalized(V+L) dot N” !

PerPer--pixel specular normal mappingpixel specular normal mapping
•• Assumes fancy perAssumes fancy per--pixel dot product operations!pixel dot product operations!

•• Cube map encodes normalized halfCube map encodes normalized half--angle angle

–– Texgen supplies view vectorTexgen supplies view vector

–– Cube map generates normalize(V+L) vectorCube map generates normalize(V+L) vector

•• Another 2D texture supplies perAnother 2D texture supplies per--pixel surface normalspixel surface normals

•• PerPer--pixel specular lighting pixel specular lighting

•• PerPer--pixel “normalized(V+L) dot N” !pixel “normalized(V+L) dot N” !

Still more novel uses for
cube maps & combiners

One pass per-pixel
diffuse & specular example!

OpenGL per-vertex
lighting with mesh of
thousands of vertices
(note displacement).

Per-pixel specular normal
mapping with cube maps
(flat, but lighting all there).

Example in wireframe

Dense, dense mesh.

One polygon!

Object-space per-pixel
lighting example

Object-space per-pixel
example in wire-frame

The detail is per-pixel!The detail is perThe detail is per--pixel!pixel!

Register combiners
overview

• overrides texture stages/environment, color sum,
and fog in current APIs

• signed math (negative one to positive range)
– extended range through scaling

• dot products for lighting and image processing applications
– designed for specular, diffuse, and ambient per-pixel lighting
– object space bump map lighting
– tangent space bump map lighting
– post-filtering 3x3 color matrix for color space conversions

• register model supports non-linear data flows
– superior to linear chain in current APIs

• effectively, a VLIW instruction set for fragment coloring
• very efficient hardware implementation

•• overrides texture stages/environment, color sum,overrides texture stages/environment, color sum,
and fog in current APIsand fog in current APIs

•• signed math (negative one to positive range)signed math (negative one to positive range)
–– extended range through scalingextended range through scaling

•• dot products for lighting and image processing applicationsdot products for lighting and image processing applications
–– designed for specular, diffuse, and ambient perdesigned for specular, diffuse, and ambient per--pixel lightingpixel lighting
–– object space bump map lightingobject space bump map lighting
–– tangent space bump map lightingtangent space bump map lighting
–– postpost--filtering 3x3 color matrix for color space conversionsfiltering 3x3 color matrix for color space conversions

•• register model supports nonregister model supports non--linear data flowslinear data flows
–– superior to linear chain in current APIssuperior to linear chain in current APIs

•• effectively, a VLIW instruction set for fragment coloringeffectively, a VLIW instruction set for fragment coloring
•• very efficient hardware implementationvery efficient hardware implementation

Register combiners
operational overview

general
combiner

stages

final combiner

RGB Portion Alpha Portioninitialize
registers

stage #0

stage #1
(optional)

AB+CD, AB, CD

AB+CD, AB, CD

AB+CD, AB, CD

AB+CD, AB, CD

AB+(1-A)C+D, EF, G RGBA fragment

General combiners
RGB operation

zero

primary color

secondary color

constant color 0

constant color 1

fog

spare 1

spare 0

texture 0

texture 1
A B + C D

A B mux C D
-or-

A B

A • B
-or-

C • D

C D
-or-

A B C D

input
map

input
map

input
map

not writeable

RGB A RGB A

input registers

computations

output registers

scale
and
bias

input
map

not readable

zero

primary color

secondary color

constant color 0

constant color 1

fog

spare 1

spare 0

texture 0

texture 1

General combiners
Alpha operation

zero

primary color

secondary color

constant color 0

constant color 1

fog

spare 1

spare 0

texture 0

texture 1
A B + C D

A B mux C D
-or-

A B

C D

A B C D

input
map

input
map

input
map

not writeable

RGB A RGB A

input registers

computations

output registers

scale
and
bias

input
map

not readable

zero

primary color

secondary color

constant color 0

constant color 1

fog

spare 1

spare 0

texture 0

texture 1

Final combiner
operation

zero

primary color

secondary color

constant color 0

constant color 1

fog

spare 1

spare 0

texture 0

texture 1

A B C D

RGB A

input registers

computations

A B + (1 - A) C + D

E F

E F

G

spare 0 +
secondary color

input
map

input
map

input
map

input
map

input
map

input
map

input
map

fragment RGB out

fragment Alpha out
G

