
Dx8 Pixel ShadersDx8 Pixel Shaders

Sim Dietrich

NVIDIA Corporation

sim.dietrich@nvidia.com

Two Quads Lit Per-Pixel

Dx8 Pixel Shading Topics

• Dx7 Pixel Pipeline
• Dx8 Pixel Pipeline
• What is a Pixel Shader?
• Instruction overview

DX7 Texture Stage Pipeline

Texture 0

Texture 1

Triangle
Rasterizer

2 Texture
Stages

Specular / fog
Computed

Alpha
Blending

Dx7 Texture Stages

• On Dx7-class hardware, you can’t use the “Pixel
Shader” API

• You can use the old dx6 & dx7-style Texture Stage
API

• pDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);

• But, there are two new new color ops available
• D3DTOP_MULTIPLYADD
• D3DTOP_LERP

Dx7-Style Multi-pass effects

• Most interesting effects are enabled through
multi-pass techniques

• DOT3 is often multi-pass under D3D
• Full texture blending functionality of hardware is

sometimes hidden for the sake of API
compatibility, so more passes

• You typically end up burning a stage or two trying
to control the look of the DOT3 effect anyway

• For instance, adding ambient or per-vertex colors

DX8 Pixel Shading Pipeline

TexAddrOp 0

TexAddrOp 1

TexAddrOp 2

TexAddrOp 3

Triangle
Rasterizer

8 Texture
Blend
Ops

Specular / Fog
Computed

Alpha
Blending

Dx8 Pixel
Shaders

What is a Pixel Shader?
• A Pixel Shader is a byte stream of instructions compiled

from a text file

• You can compile the pixel shader at runtime during
development, and then change to pre-compiled byte-
streams for release mode

• Assemble a Pixel shader like so :

• D3DXAssembleShader(strParsedProgram.c_str(), // source
strParsedProgram.size() - 1, //size
0, // no flags
&pConstants, // constant floats
pCode, // where to put code
&pCompileErrors); // get errors

Dx8 Pixel Shaders
• Now ask D3D for a handle to the compiled pixel

shader :

pD3DDev->CreatePixelShader(pCode!!!!GetBufferPointer(),
&m_dwMyHandle);

• Now select this pixel shader program like so:

• pD3DDev->SetPixelShader(m_dwMyHandle);

• Be sure to delete it

pD3DDev->SetPixelShader(0);
pD3DDev->DeletePixelShader(m_dwMyHandle);

DX8 Pixel Shaders

• Three types of Instructions
• Constant Definitions

• Similar to Setting the TFACTOR

• Texture Address Ops
• Fetching Texels
• Floating Point Math

• Texture Blending Ops
• Combining texels, constant colors and iterated

colors to produce SrcColor and SrcAlpha

Dx8 Pixel Shader Versions

• Version 1.1 – GeForce3
• Up to 8 instructions
• Texture registers can be read from and written to
• EMBM takes only a single texture address slot

• Version 1.0 – Unknown Hardware
• Up to 4 instructions
• Texture registers are read-only
• EMBM takes two texture address slots

Pixel Shader Parts
• Using the Pixel Shader API, there are two parts to

each program
• Up to 4 Texture Address Ops – Essentially here is

where you say what each set of 4 texture
coordinates are doing

• This controls HOW the texels are fetched

• Up to 8 Texture Blending Ops – Similar to
TextureStageStates

• This is AFTER the texels are fetched and filtered
• There is no loopback to the Texture Address Ops

Setting Constants
def c#, x, y, z, w

Sets the Constant, from 0 to 7, with the
appropriate floating point value :

def c0, 1.0f, 4.0f, -10.0f, 1.0f

Constants are clamped in the range [-1..1]

A single color/alpha instruction pair can only
reference two constants

Texture Address Ops

• Each Texture Address Op represents the use of a
particular set of texture coordinates

• Texture Address Ops can be used either to :

• Look up a filtered texel color
• Use as a vector
• Use as the part of a matrix

Simple Texture Lookup

• Could be projective, or a cubemap, or a volume
texture

• Just fetches a filtered texel color

• tex t0

tex t0
mov r0, t0 // just output color

Bump Environment Map

• texbem tDest, tSrc0

• U += 2x2 matrix(dU)
• V += 2x2 matrix(dV)
• Then Sample at (U, V)

tex t0 // sample offset map
texbem t1, t0 // perform offset & sample
mov r0, t1 // output perturbed value

Bump Environment Map 2x2 Matrix

• The 2x2 Matrix modifies the direction and scale of
the dU and dV terms from the bump map

• The 2x2 Matrix is set via SetTextureStageState
calls

D3DTSS_BUMPENVMAT00
D3DTSS_BUMPENVMAT01
D3DTSS_BUMPENVMAT10
D3DTSS_BUMPENVMAT11

Bump Environment Map Luminance

• texbeml tDest, tSrc0

• U += 2x2 matrix(dU)
• V += 2x2 matrix(dV)
• Then Sample at (U, V) & Apply Luminance

tex t0 // sample offset map
texbeml t1, t0 // perform offset & sample

// Also apply luminance & offset
mov r0, t1 // output perturbed & scaled value

texbeml - continued

• The Luminance is set via a SetTextureStage State
call

• D3DTSS_BUMPENVLSCALE
• This is the amount to scale the fetched color by

• D3DTSS_BUMPENVLOFFSET
• This is the amount to add to fetched color

texbem & texbeml
• These instructions implement Environmental

Bump Mapping (EMBM)

• EMBM is great for planar surfaces, but breaks
down on anything convex or complicated

• EMBM uses an implicit 2D tangent basis, whereas
you really need a 3D tangent basis to handle all
objects and orientations

• That said, for water and planar surfaces, it’s the
way to go

texcoord

• Clamps the texture coordinates to the range
[0.0, 1.0] and output as a color

• texcoord tDest

texcoord t0 // pass in texture coordinates as
a color
tex t1 // sample a regular texture

mov r0, t1
mul r0, r0, t0 // modulate color and texture

texcoord

• Useful for passing in vectors without having to
use a cubemap or iterated color

texcoord t0 // grab L vector in tangent space
tex t1 // grab N vector in tangent space
mov r1, t1_bx2
dp3_sat r0, r1, t0_bx2 // Compute Clamp(L dot N)

• Can be used for 1 – d*d distance calculation for
attenuation as well

texcoord t0 // turn into color
dp3 r1, t0_bx2, t0_bx2 // compute d^2
mov r0, 1 - r1 // compute 1-d^2

Texture Kill (Clip Plane)
texkill tDest

Kill the pixel if at least one of s,t,r,q is < 0

tex t0 // sample a normal texture
tex t1 // sample a normal texture

texcoord t2 // clip out per-pixel based on
// s,t,r & q

mov r1, t1
mul r0, r1, t0 // this will get skipped if the

// pixel is killed

texm3x2pad

• Texm3x2pad t1, t0
• “padding” instruction as part of the

texm3x2tex instruction – performs a dot
product of t0’s color with these texture
coordinates

• S coordinate of next stage’s texture =
t1 DOT t0

texm3x2tex : Dependent Texture

• Take previous dot product from “pad” instruction
as the S coordinate

• Perform dot product of t0’s color with this texture
coordinate and use as T

• Sample from a 2D texture using (S, T)

tex t0 // sample normal map
texm3x2pad t1, t0_bx2 // t2.s = t1.texcoord dot t0.rgb
texm3x2tex t2, t0_bx2 // t2.t = t2.texcoord dot t0.rgb

• mov r0, t2 // output result of lookup

texm3x2tex
• This is possibly the most useful new instruction
• You pass in two vectors as texture coordinates

(usually L and H), and sample another vector
(usually N)

• The 3rd texture is sampled using
• (L dot N) as the S texture coordinate
• (H dot N) as the T texture coordinate

• This gives you BRDF-like anisotropic lighting on a
per-pixel basis

• Great for velvet, brushed metal or any material that
has intensity or hue shifts that vary with angle

• Of course, if your surface is not bumpy, then just
do this per-vertex instead

texm3x2tex

• Here is a N.L N.H texture used for Anisotropic
Lighting

texm3x2tex

• You can also use it for toon shading. Rather than
H dot N for the vertical dimension, perform E dot
N instead. This allows the silhouette detection to
pick up even the silhouette edges of bump maps

Simple 2D Dependent Texture

• texreg2ar tDest, tSrc
• Sample from (tSrc.A, tSrc.R)

• texreg2gb tDest, tSrc
• Sample from (tSrc.G, tSrc.B)

tex t0 // sample regular texture
texreg2ar t1, t0 // t1.S = t0.Alpha, t1.T = t0.Red
texreg2gb t2, t0 // t2.S = t0.Green, t2.T = t0.Blue

dp3_sat r0, t1_bx2, t2_bx2

Game Of Life Using texreg2gb

3x3 Texture Address Ops

• Texm3x3pad
• Padding for 3x3 matrix operation
• Uses the 3D texture coordinate as a row of the

matrix
• Texm3x3spec

• Compute Non-Local Viewer Specular reflection
about Normal from Normal Map

• tex t0 ; Normal Map
• texm3x3pad t1, t0 ; 1st row of matrix
• texm3x3pad t2, t0 ; 2nd row of matrix
• texm3x3spec t3, t0, c0 ; 3rd row, reflect & sample
• mov r0, t3

Local Viewer Reflection
• Texm3x3vspec

• Compute Local Viewer Specular reflection about
Normal from Normal Map

• Eye vector comes from q coordinates of the 3 sets
of 4D textures

• tex t0 ; Normal Map
• texm3x3pad t1, t0 ; 1st matrix row, x of eyevector
• texm3x3pad t2, t0 ; 2nd matrix row, y of eyevector
• texm3x3vspec t3, t0 ; 3rd row & eye z, reflect &

sample
• mov r0, t3

texm3x3vspec

• This instruction is the one to use for bumpy
reflective surfaces

• It is the most complex, and slowest instruction,
but arguably also the most visually stunning

Procedural Normal Maps using
tex3x3vspec

3x3 Per-Pixel Vector Rotation

• texm3x3tex
• Rotate vector through 3x3 matrix, then sample a

CubeMap or 3D texture

• tex t0 ; Normal Map
• texm3x3pad t1, t0 ; 1st matrix row
• texm3x3pad t2, t0 ; 2nd matrix row
• texm3x3tex t3, t0 ; 3rd matrix row & sample
• mov r0, t3

Texture Blending Ops

• After all Texture Address Ops, you can have up to
8 texture blending instruction slots

• Each slot can hold a color and an alpha operation
to be executed simultaneously

• These are analogous to the old TextureStageState
COLOROP and ALPHAOPs

Texture Blending Ops
add dest, src1, src2

dest = src1 + sr2

sub dest, src1, src2
dest = src1 – src2

lrp dest, factor, src1, src2
dest = (factor)src1 + (1-factor)src2

dp3 dest, src1, src2
dest = (src1.x * src2.x + src1.y * src2.y …)

dp3
• This is the workhorse instruction

• It is used for all per-pixel lighting calculations in
the texture blending unit

• Typically you want to _sat your dot3 in lighting
calculations to prevent lights behind a surface
from showing up, so mostly you will use
something like :

dp3_sat r0, t0_bx2, r1

• The bx2 modifier is there to take an 8 bit unsigned
value and expand it to 1.8 signed format

• Note that the registers keep their sign bit, so be
sure to use _bx2 only once after storing the
signed value

Texture Blending Ops
mul dest, src0, src1

dest = src0 * src1

mad dest, src0, src1, src2
dest = (src0 * src1 + src2)

mov dest, src
dest = src

cnd dest, r0.a, src1, src2
if (r0.a > 0.5) { dest = src1; }

else { dest = src2; }

Argument Modifiers

• Alpha Replicate
• r0.a

• Invert
• 1 – r0

• Negate
• -r0

• Bias – subtract 0.5
• r0_bias

• Signed Scale – 2 * (x – 0.5f)
• r0_bx2

Instruction Modifiers
_x2 // double result
_x4 // quadruple result
_d2 // halve result
_sat // clamp < 0 to 0 and > 1 to 1

You can use _sat together with scaling :
For instance :

add_x2_sat r0, r1, t2

Common Example :
dp3_sat r1, r0_bx2, t0_bx2

Simultaneous Color/Alpha

• You can dual issue color and alpha instructions

• Only applies for blending ops, not for address
ops

• Use the ‘+’ plus sign to indicate simultaneous
execution

• mul r0.rgb, c1.rgb, c2.rgb
+ add r1.a, t0.a, t1.a

Example Pixel Shader

• ps.1.1 ; DirectX8 Version
• tex t0 ; sample normal map
• texm3x2pad t1, t0_bx2 ; N dot L
• texm3x2tex t2, t0_bx2 ; N dot H and sample
• add r0, t2, c0 ; add in ambient
• mov r0.a, t0.a ; normal map alpha into r0

Additional Pixel Shader Notes

• The result of a pixel shader is always r0
• SRCCOLOR = r0.rgb
• SRCALPHA = r0.a

• You can combine rgb & alpha operations to occur
concurrently with “+”
• add r0.rgb, t1.rgb t0.rgb
+ mul r0.a, r1.a, t1.a

• You are in charge of your own specular add,
SPECULAR_ENABLE is ignored

• Fog is still automatic

Vertex & Pixel Shaders

• It is common to write Vertex Shaders that use the
legacy TextureStageState pipeline to do the
texture blending

• However, almost all Pixel Shaders have a Vertex
Shader to set things up properly
• Calculating & Packing L and H vectors

• Passing in Texture Space vectors

• Calculating and/or setting up Attenuation

Questions…

?
Sim Dietrich

Sim.Dietrich@nvidia.com

www.nvidia.com/Developer.nsf

