
Mark J. Kilgard

More Advanced Hardware
Rendering Techniques

More Advanced Hardware
Rendering Techniques

Mark J. Kilgard
Graphics Software Engineer
NVIDIA Corporation

Where we left off last year …
• Last year’s rendering talk discussed

• Bump-mapping skinned polygonal models

• Shadow mapping with dual-texturing hardware

Perlith Knight model credit:
Andrew "ALPHAwolf" Gilmour

Review: GPU Bump
Mapping Basics

• GPU bump mapping technique
• Uses ARB_multitexture, NV_register_combiners,

and ARB_texture_cube_map extensions
• Uses tangent-space lighting technique
• Ambient, diffuse, and specular lighting terms
• Modulated texture decal, self-shadowing term
• Robust, minimal filtering artifacts
• Well-suited for GeForce 256 and GeForce2 GPUs

• See “A Practical and Robust Bump-mapping
Technique for Today’s GPUs” white paper
• www.nvidia.com/developer

Anatomy of the Three
“GPU Bump Mapping” Passes

×××××××× ++

11stst passpass
diffusediffuse

22ndnd passpass
decaldecal

33rdrd passpass
specularspecular

Register Combiners
Review

• The per-pixel math for the GPU bump mapping
technique depends on register combiners

Brief review/overview of register combiners …

What are
Register Combiners?

• Extremely flexible per-fragment math
• Signed math with range conversions
• Dot products, A*B+C*D, mux operations
• Inputs are filtered texels, interpolated colors, fog
• Lots and lots of adders and multipliers
• Constants, scale & bias
• RGB and Alpha handled separately in parallel
• Register model of operation

• “an instruction set for per-pixel math”

Register Combiners
Overview

general
combiner

stages

final combiner

Registers

Alpha Portioninitialize
registers

stage #0

stage #1
(optional)

AB+CD, AB, CD

AB+CD, AB, CD

AB+CD, AB, CD

AB+CD, AB, CD

AB+(1-A)C+D, EF, G RGBA
fragment

Registers

Registers

RGB Portion

General Combiner
RGB Portion Operations

zero

primary color

secondary color

constant color 0

constant color 1

fog

spare 1

spare 0

texture 0

texture 1
A B + C D

A B mux C D
-or-

A B

A • B
-or-

C • D

C D
-or-

A B C D

input
map

input
map

input
map

not writeable

RGB A RGB A

input registers

computations

output registers

scale
and
bias

input
map

not readable

zero

primary color

secondary color

constant color 0

constant color 1

fog

spare 1

spare 0

texture 0

texture 1

General Combiner
Alpha Portion Operations

zero

primary color

secondary color

constant color 0

constant color 1

fog

spare 1

spare 0

texture 0

texture 1
A B + C D

A B mux C D
-or-

A B

C D

A B C D

input
map

input
map

input
map

not writeable

RGB A RGB A

input registers

computations

output registers

scale
and
bias

input
map

not readable

zero

primary color

secondary color

constant color 0

constant color 1

fog

spare 1

spare 0

texture 0

texture 1

Why Register Combiners
Are Worth Learning/Using

• Expect 10s of millions of register combiner boxes
• GeForce2 MX is mass-market GPU

• Expected to displace TNT2 GPUs soon
• Now even powerful per-pixel 3D for laptops

• Look forward to Xbox and GeForce3
• Multi-platform: Windows, Linux, & Mac

• Render per-pixel effects not otherwise possible!

End of our brief
review/overview of
register combiners.

Yet Another Reason to
Learn/Use Register Combiners

Register combiners are now
even more powerful now!

GeForce3 and Xbox
Enhanced Register Combiners

….

Four more general
combiner stages
not even shown.

Eight general
combiners total!

Also, two
unique RGBA
constants per
combiner stage!

And four texture
results
available.

GPU Bump Mapping
Texture Requirements

• Diffuse pass needs two textures
• Normal map encodes surface-space normal

perturbations
• Normalization cube map for normalizing the

surface-space light vector
• Decal pass just needs one decal texture
• Specular pass needs two textures

• Needs same normal map as the first pass
• Uses same texture coordinates

• Needs same normalization cube map for
normalizing the surface-space half-angle vector

• Has different texture coordinates from diffuse
• Four unique texels are fetched

Collapsing the Technique to
One Rendering Pass

• Would require
• 4 texture units

• Decal & normal map 2D textures
• 2 normalization cube maps

• 4 general combiner stages
• As will be shown …

• Advantages
• Application sends and transforms geometry once
• Eliminates frame buffer blending
• GPU bump mapping becomes efficient building

block for even more complex multi-pass
algorithms

The Benefit of More
Combiners and Textures

×××××××× ++

11stst passpass
diffusediffuse

22ndnd passpass
decaldecal

33rdrd passpass
specularspecular

Just one pass Just one pass
does it all!does it all!

1999 & 2000:
GeForce 1 & 2

!Two textures
!Two general combiners

2001 & beyond:
GeForce3 & Xbox

!Four textures
!Eight general combiners

The Required
Per-Pixel Math

• Here’s the required per-pixel math
• Ambient = constant
• Diffuse = min(8*max(0,Lz), 1) * max(0, L dot N’)
• Specular = min(8*max(0,Lz), 1) * max(0, H dot N’)^8
• Final = (Diffuse + Ambient) * Decal + Specular

• GeForce 256 & GeForce2 require three passes to
fully implement this math
• Limited by dual-texturing

• GeForce3 does same math in a single pass
• Quad-texturing & 4 general register

combiner stages collapses 3 passes to 1

Same Math in a Single
Pass on GeForce3 (1)

• Initial register combiner register values
• constant0.rgb = ambient
• primaryColor.rgb = lightColor
• secondaryColor.rgb = specularMaterial * lightColor
• expand(tex0.rgb) = N'

= perturbed normal from normal map
• tex0.a = dimFactor(N')
• expand(tex1.rgb) = L

= surface space light vector
• expand(tex2.rgb) = H

= surface space half-angle vector
• tex3.rgb = decal texture
• tex3.a = glossiness

= alpha of the decal texture

Same Math in a Single
Pass on GeForce3 (2)

• General register combiner 0:
• spare0.rgb = N' dot L

= expand(tex0.rgb) dot expand(tex1.rgb)
• spare1.rgb = N' dot H

= expand(tex0.rgb) dot expand(tex2.rgb)
• spare0.a = selfShadow

= 8*Lz
= 4*(tex1.blue+tex1.blue)

• General register combiner 1:
• spare0.rgb = (N' dot L) * selfShadow

= spare0.rgb * spare0.alpha
• primColor.rgb = decal * lightColor

= tex3.rgb * primColor.rgb
• spare0.a = selfShadow * glossiness

= spare0.alpha * tex3.alpha
• spare1.a = (N' dot H)^2

= spare1.blue * spare1.blue

Same Math in a Single
Pass on GeForce3 (3)

• General register combiner 2:
• secColor.rgb = ambient * decal

= constant0.rgb * tex3.rgb
• tex0.rgb = (specularMaterial*lightColor) *

(selfShadow*glossiness)
= secColor.rgb * spare0.alpha

• spare0.alpha = dimFactor(N') * ((N' dot L)*selfShadow)
= tex0.alpha * spare0.blue

• spare1.alpha = (N' dot H)^4
= spare1.alpha * spare1.alpha

• General register combiner 3:
• spare0.rgb = (dimFactor(N')*((N' dot L)*selfShadow)) *

(decal*lightColor)
= spare0.alpha * primColor.rgb

• spare1.rgb = (N' dot H)^8
= spare1.alpha * spare1.alpha

• spare1.alpha = specularSelfShadow
= 8*Hz
= 4*(tex2.blue+tex2.blue)

Same Math in a Single
Pass on GeForce3 (4)

• Final register combiner:
• rgb = A*B + (1-A)*C + D

= A*B + (1-A)*0 + D
= A*E*F + D
= A*E*F + (spare0.rgb + secColor.rgb)
= tex0.rgb * spare1.a * spare1.rgb +

(spare0.rgb + secColor.rgb)
= (((specularMaterial*lightColor) *

(selfShadow*glossiness))
* specularSelfShadow * (N' dot H)^8)
+ ((N' dot L)*selfShadow) *

(decal*lightColor)
+ (ambient*decal)

• alpha = 1

Exactly matches math in
3-pass approach

Big pile o’
per-fragment
math

GeForce3 Performance
Analysis & Comparison

• GeForce 256 & GeForce2 render dual-textured passes with two
general combiners enabled at half speed
• Diffuse pass + blended Decal pass + blended Specular pass
• Drop blended passes’ rate by 25% for blending overhead
• (2 clks / 4 pixels) + (1 clk / (75% * 4 pixels))

+ (2 clks / (75% * 4 pixels))
• 2 pixels / 3 clks * 200 Mhz = 133 Mega-pixels/second

• GeForce3 renders quad-textured at half speed
• Just one pass required, so no blending
• 2 pixels / clk * 200 Mhz = 400 Mega-pixels/second!

• Peak rate analysis, but shows the substantial
advantage achievable through pass collapsing

GPU Bump Mapping for
More than Just Doughnuts

• The doughnut has the advantage of having a nice
parametric representation for orienting tangent
space
• Partial derivatives in terms

of parametric variables exist
• Games tend to use ad hoc polygonal models

• No explicit parametric basis available
• But game models do have textured decal “skins”
• Insight: Infer an ad hoc tangent space from the

model’s mapping between vertices and skin
texture coordinates!

• Credit: Sim Dietrich & Doug Rogers

Review:
Skinned Polygonal Models

• Example: Quake 2 models in the “.md2” format
• Decal skin texture, typically 128x128 linear filtered
• Shared vertex list

• each vertex has (s,t) texture coordinate into the skin
• A set of key frames

• each triangle is three vertex indices
• each frame vertex is (x,y,z) and a quantized normal

• Low polygon count, usually 400-800 polygons per
model

• Note: “Skinned” in this context refers to a model and
a texture with a specific correspondence
• Not skinning as in vertex blending

Examples of Quake 2
Model Keyframes

Quake2 interpolates between keyframes

Example of Quake 2
Model Skin Texture

Texture coordinates mapTexture coordinates map
triangles to skintriangles to skin

Note clever packing ofNote clever packing of
decal skin. Only halfdecal skin. Only half
face because trianglesface because triangles
“mirror” the face“mirror” the face

Standard Quake 2
Model Rendering

• Texture keyframe with skin decal

++

Interpolated
keyframe
of model
geometry Skin texture

Image (pre-lit)

The result

GPU Bump Mapped
Quake 2 Model

• Bump-map model with bump, gloss, & decal skin

++

Bump
skin

Decal
skin
(not pre-lit)

Gloss
skin

Interpolated
keyframe
of model
geometry WOW result!

×××××××× ××××××××) + () + ((() =) =

11stst passpass
DiffuseDiffuse

33rdrd passpass
Glossed SpecularGlossed Specular

22ndnd passpass
DecalDecal

Final result!Final result!

Bump Mapping
Skinned Polygon Models

• Three passes generated diffuse & specular bump
mapping

Of Course,
Can Be One Pass Now

• Same 4 texture, 4 general combiner approach works

All in just one
rendering pass!

More Bump Mapped
Knight Examples

• Various light positions and keyframe interpolations

And just one
pass on

GeForce3!

All lighting is
per-pixel!

How is Bump Mapping on
Skinned Models Done?

• Requires deriving a surface-local space from the
polygonal model and the texture coordinates that
map to the skin texture

• First, let’s review tangent space and how it is
used for conventional GPU bump mapping …

What is Tangent Space?

• Very important concept
• It is a coordinate space that varies over a rendered

object
• A “surface-local” coordinate space

• Assumes the (unperturbed) surface normal is
always (0, 0, 1)

• But that’s not enough to define a coordinate system
• Needs a tangent vector in the plane of the surface to

orient the coordinate system
• Tangent space is very convenient for lighting with

a perturbed normal
• very good for bump mapping

More about Tangent Space

• Normals, tangents, and binormals
• Say the surface is defined by a bivariate vector

parametric equation, (x, y, z) = F(u, v)
• The tangent is the normalized vector

(∂∂∂∂x/ ∂∂∂∂u, ∂∂∂∂y/ ∂∂∂∂u, ∂∂∂∂z/ ∂∂∂∂u)
• The normal is the cross product of the tangent

vector and the normalized vector
(∂∂∂∂x/ ∂∂∂∂v, ∂∂∂∂y/ ∂∂∂∂v, ∂∂∂∂z/ ∂∂∂∂v)

• The binormal is the cross product of the tangent
and normal

• The tangent, binormal, and normal form an
orthonormal basis

• In English, that’s just a coordinate system

Parametric Approach to
Tangent Space

• Forming tangent space
• It is easy with an explicit parametric representation

• Such as a torus
• Just compute the vectors from the previous slide

from the parametric representation
• To be practical, we just compute a tangent space

basis at vertices
• Assumes reasonable tessellation around curvature

Tangent Space Basis is a
Gateway for Vectors

• Object-space vector to tangent-space

TxTx

TyTy

TzTz

BxBx

ByBy

BzBz

NxNx

NyNy

NzNz

Lox Loy LozLox Loy LozLtx Lty LtzLtx Lty Ltz ==

How to transform a light vector inHow to transform a light vector in
object space to tangent spaceobject space to tangent space

Light direction in
tangent space

Light direction in
object space

Tangent
Binormal

Normal

Vertices of
Skinned Polygonal Models

• Each vertex consists of
• (x, y, z) object-space position
• corresponding (s, t) on the skin texture
• And each triangle in the model has three such

vertices
• Insight!

• Per polygon, compute the following plane
equations

• A0 x + B0 s + C0 t + D0 = 0
• A1 y + B1 s + C1 t + D1 = 0
• A2 z + B2 s + C2 t + D2 = 0

Compute Partial Derivatives
From Polygon Plane Equations

• Make a per-polygon tangent and binormal
• Tangent is normalization of (∂∂∂∂x/ ∂∂∂∂s, ∂∂∂∂y/ ∂∂∂∂s, ∂∂∂∂z/ ∂∂∂∂s)

• or normalization of (-B0/A0, -B1/A1, -B2/A1)
• Binormal is normalization of (∂∂∂∂x/ ∂∂∂∂t, ∂∂∂∂y/ ∂∂∂∂t, ∂∂∂∂z/ ∂∂∂∂t)

• or normalization of (-C0/A0, -C1/A1, -C2/A1)
• Normal is the cross product of the tangent and binormal

• Important! You need to negate the vector if the area
of the triangle in texture space is opposite of the area
of the triangle in object space

Mirrored face implies one model’s
face polygons will have negative
area in texture space

Aside About Bump Mapping
Keyframed Models

• Quake 2 linearly interpolates models between
discrete keyframes

• This requires computing plane equations for the
interpolated polygons
• Naïve approach: Interpolate vertices, then

compute the plan equation for each polygon
• Faster approach: Pre-compute the plane

equations for all polygons in all keyframes
• Because all the interpolation is linear, merely

interpolate the pre-computed plane equations
between keyframes

More Information on
Texture-Space Bump Mapping

• See article by Sim Dietrich titled “Hardware Bump
Mapping” in Game Programming Gems (edited by
Mark A. DeLoura)

• On NVIDIA’s Developer web site
• OpenGL md2bump example
• OpenGL md2shader example
• www.nvidia.com/developer

Applying the GPU Bump
Map Technique

• The approach
• Compute tangent space on a polygon-by-polygon

basis
• To match the per-vertex lighting on flat surface

resize the normal, binormal, and tangent vectors to
match the model’s per-vertex normal in tangent
space

• Use this 3x3 matrix to transform object-space light
and half-angle vectors into object space

• Perform the GPU bump map technique
• Use single-pass version if hardware is available

Painting the
Bump Skin

• Example for the knight
• Same topology as decal skin, easy-to-author

Bump skin height-field Decal skin

Converting Height-Field to a
Normal Map

• Normal map constructed from the knight’s bump
skin height-field
• Convert height-field to normal map using finite

differencing
• Normals in the [-1..1] range are compressed to the

[0..1] range and [x y z] is shown encoded as [R G B]

The mostly chalk blue
appearance is because
the “straight up” normal
is [0.5 0.5 1.0]

Warning about
Pre-lit Decal Skins

• Most Quake 2 decal skins are “pre-lit”
• Skins for bump mapping should encode materials,

not colors
• Because bump mapping supplies the per-pixel

lighting!
• So eliminate pre-lighting from decal skins
• Otherwise, you get double lighting

• Inform your artists about this issue

Decal Skin
Comparison

• Pre-lit skins versus non-pre-lit skins

Original pre-lit knight
decal skin

Modified “un-lit” knight
decal skin for bump mapping

Gloss Map Modulates
Per-fragment Specular

• Alpha channel of decal hides “free” gloss map
• Per-fragment modulation of specular pass
• Used on knight to avoid shiny

face, belt, and cloth
• Same skin topology

as other maps

Decal
skin

Gloss
skin

Assumptions for
Bump Mapping Skinned Models

• Things that should be approximately true
• The normal and binormal are not guaranteed to be

orthogonal
• but hopefully will be close since artists would

otherwise be working on contorted skins (so ok
assumption)

• Model is reasonably tessellated, particularly in
regions of high curvature change (usually ok
assumption)

• Good continuity of light and half-angle tangent-
space vectors across polygons (poor assumption)

Tangent Space
Vector Continuity

• Visualizing this assumption shows it not that good
• Vectors shown in RGB as range-compressed vectors

Light
source

Light
source

Tangent-space
light vector

Tangent-space
half angle vector

Color
discontinuities
at polygon
edges indicated
poor continuity

Worst-case Tangent
Vector Discontinuities

• Change across polygons

AA

AA
BB

BB

Polygons in
texture space

Polygons in
object space

Arrows indicate
direction of increasing
“t” texture coordinate

t

s

Tangent Continuity
Solutions

• Reorient and repack all polygons in skin textures

Credit: Cass Everitt

Example of a repacked
normal map

Other Examples of Bump
Mapped Skinned Models

• Not just for doughnuts and knights!

Review: Shadow Mapping
• Last year, presented dual-texture shadow

mapping technique [Heidrich 99]
• Required two texture units to operate
• Limited depth precision
• Poor filtering, only point sampling

• This year, shadow mapping is supported by latest
GPU, the GeForce3
• Better filtering
• High depth precision
• Hardware shadow mapping requires a single

texture unit
• Multi-vendor OpenGL extensions available

Situations Suited for
Shadow Mapping

• Shadow mapping works well when
• Light is a spotlight
• Scene geometry is complex
• Light is relatively distant from objects it illuminates

• Shadow mapping is ill-advised when
• Omni-directional lighting is required
• Shadows must be crisp and free of sampling

artifacts
• Objects very close to the light

• Near-ideal application for shadow mapping
• Boxing or wrestling game with overhead light

Boxing Game with
Shadow Mapping

Light view frustum’s
far clip plane

Light view frustum’s
near clip plane

Action stays confined
to the illuminated

region

Light itself is a
spotlight, not

omni-directional

Let Us Consider
Omni-directional Shadowing

• Situation: a light source centered in a room
• Dynamic characters in the room
• Everything should shadow everything

• This is a situation for stenciled shadow volumes

Light
source

Light
source

Review:
Stenciled Shadow Volumes

• A single point light source splits the world in two
• Shadowed regions
• Unshadowed regions
• Volumetric shadow technique

• A shadow volume is the boundary between these
shadowed and unshadowed regions
• Determine if an object is inside the boundary of the

shadowed region and know the object is shadowed
• First described by [Crow 77]

Visualizing Shadow
Volumes

• Occluders and light source cast out a shadow
volume
• Objects within the volume should be shadowed

Light
source

Scene with shadows from
an NVIDIA logo casting a

shadow volume

Visualization of the
shadow volume

Shadow Volume
Algorithm

• High-level view of the algorithm
• Given the scene and a light source position,

determine the shadow volume (harder than it
sounds)

• Render the scene in two passes
• Draw scene with the light enabled,

updating only fragments in unshadowed region
• Draw scene with the light disabled,

updated only fragments in shadowed region
• But how to control update of regions?

2D Cutaway of a
Shadow Volume

Shadowing
object

Shadow
volume
(infinite extent)

Partially
shadowed
object

Light
source

Eye position
(note that
shadows are
independent of
the eye position)

Surface inside
shadow volume
(shadowed)

Surface outside
shadow volume
(illuminated)

Tagging Pixels as
Shadowed or Unshadowed

• High-level algorithm does not say how to
update only either pixels in or out of the
shadow volume!

• The stenciling approach
• Clear stencil buffer to zero and depth buffer to 1.0
• Render scene to leave depth buffer with closest Zs
• Render shadow volume into frame buffer with

depth testing but without updating color and
depth, but inverting a stencil bit

• This leaves stencil bit set within shadow!

Stencil Inverting of
Shadow Volume

• Why inverting stencil works

Eye
position

Light
source

Shadowing
object

Two inverts, left zero

One invert, left one

Zero inverts, left zero

Visualizing Stenciled
Shadow Volume Tagging

red = stencil value of 1
green = stencil value of 0

Shadowed scene Stencil buffer contents

Computing
Shadow Volumes

• Harder than you might think
• Easy for a single triangle, just project out three

infinite polygons from the triangle, opposite the
light position

• But shadow volume polygons should not intersect
each other for invert trick to work

• This makes things hard
• For complex objects, projecting object’s 2D

silhouette is a good approximation (flat objects are
easy)

• Static shadow volumes can be pre-compiled

Computing Shadow Volumes
For Polygonal Models

• High-level: determine “possible silhouette”
edges of the model
• Transform light into object space
• Compute the plane equation for every polygon in

the model (can be pre-computed for static models)
• For every polygon in the model, determine if the

object-space light position is behind or in front of
the polygon’s plane

• I.e., Is the planar distance from the polygon’s plane
to the light positive or negative?

• Search for edges where polygons have opposite
facingness toward the light

• These edges are possible silhouette edges

Examples of Possible
Silhouette Edges for Models

An object viewed from the
same basic direction that the
light is shining on the object
has an identifiable light-view
silhouette

An object’s light-view
silhouette appears quite
jumbled when viewed form a
point-of-view that does not
correspond well with the
light’s point-of-view

For Shadow Volumes
With Intersecting Polygons

• Use a stencil enter/leave counting approach
• Draw shadow volume twice using face culling

• 1st pass: render front faces and increment when
depth test passes

• 2nd pass: render back faces and decrement when
depth test passes

• This two-pass way is more expensive than invert
• And burns more fill rate drawing shadow volumes
• Inverting is better if all shadow volumes have no

polygon intersections (very rare)

Why Increment/Decrement
Stencil Volumes Work

• Example in 2D

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

Problems with
Near Plane Clipping

zero

zero

+1+1
+2

+2
+3

Near clip
plane

Far clip
plane

Missed shadow
volume intersection
due to near clip
plane clipping

Capping Shadow Volumes at
The Near Clip Plane

zero

zero

+1+1
+2

+2
+3

Missed shadow volume intersection now
occurs on the near clip plane because
shadow volume edge is capped; keeps
shadow volume enter/leave counts
correct

3D version of
the problem is
harder than 2D
case!

Shadow Volume Near Plane
Clipping Artifacts

• Typically, shadow artifacts when light is behind
objects

Correct shadows:
Near plane capped properly

Incorrect shadows:
Near plane NOT capped

Incorrect shadows: Projection of
silhouette edges to the near clip
plane shows capping is
responsible for the artifacts

Light source behind demon’s head

Alternative to Near Plane
Capping: Carmack’s Reverse

• Conventional shadow volume stencil usage
• Increment stencil when depth test passes for front

facing shadow volume polygons
• Decrement stencil when depth test passes for back

facing shadow volume polygons
• John Carmack [1998?] reverses this usage

• Increment stencil when depth test fails for back
facing shadow volumes

• Decrement stencil when depth test fails for front
facing shadow volume polygons

Implications of
Carmack’s Reverse

• No longer have to worry about near clip plane
capping

• But the reverse shifts the problem to that the far
clip plane clipping shadow volumes
• Approach assumes that shadow volumes are

truncated and capped after a certain finite distance
that can never extend beyond the far clip plane

• Typically ok for attenuated lights
• Works ok because it is easier to move the far clip

plane further out than move the near clip plane
closer in

More Implications of
Carmack’s Reverse

• Requires always truncating the shadow volumes
and capping them some distance out

• Setting the far clip plane far in the distance to
avoid shadow volume intersections does
compromise the available depth buffer precision

• A light very close to a shadowing polygon can
cast a shadow so large that it fails to extend far
enough

Polygons Very Close to the
Light Source Cause Problems

Capped shadow
volumes eventually
collapse into an
increasingly
marginal volume
when the light gets
extremely close

Capped shadow
volumes work ok
when the light is a
reasonable distance
from an occluder

A New Robust Technique for
Shadow Volume Capping

• Use stenciled shadow volume conventionally
• Rather than using Carmack’s Reverse

• Exploit rasterization with w=0 to draw semi-
infinite polygons
• Details follow

• Adjust depth range and projection matrix to
ensure crack free near clip plane capping
• Details follow

• Result: Robust stenciled shadow volume
algorithm

Rasterize This Polygon

(1,3,z0,1)

(-1,-3,z1,1)

(2,-2,z2,1)

Rasterize This Polygon

(1,3,z0,1)

(-1,-3,z1,1)

(2,-2,z2,1)

Rasterize This Polygon,
One Vertex has W=0

(1,3,z0,1)

(-1,-3,z1,1)
(2,-2,z2,0)

Rasterize This Polygon,
One Vertex has W=0

(1,3,z0,1)

(-1,-3,z1,1)
(2,-2,z2,0)

(1,3,z0,1)

(-1,-3,z1, 0)
(2,-2,z2,0)

Rasterize This Polygon,
Two Vertices have W=0

(1,3,z0,1)

(-1,-3,z1,0)
(2,-2,z2,0)

OpenGL Renders W=0
Polygons Correctly

• OpenGL implementations are required to render
triangles properly when vertices have w=0

• Because of how the “possible silhouettes” for
shadow volumes project on the near clip plane,
rendering triangles with w=0 provides correct
capping
• Because we really need to be rendering semi-

infinite polygons
• That’s what w=0 vertices are all about

Near Clip Plane
Capping Cases

• A “possible silhouette” is a loop of vertices on an
occluding model

• Given a light position, this loop can be projected
onto the near clip plane
• We are only interested in projecting AWAY from the

light (shadows just project away from a light)
• Three possibilities

1. No vertices on the loop project away to the near clip
plane (trivial case, no capping required)

2. All vertices on the loop project away to the near clip
plane (easy capping case)

3. Some but not all of the loop vertices project away
onto the near clip plane (hard capping case)

Handling the “Trivial” None
Near Clip Plane Capping Case

• None of the rays cast away from the light source
intersect with the near clip plane

• Render a quad strip loop using “possible
silhouette” vertices and infinite vertices (with
w=0) where x, y, and z are the direction away from
the light
• The w=0 vertices are easier to compute than trying

to extend the shadow volume some sufficiently
large finite distance

• Avoid all worries that the large finite distance used
may not actually be sufficient

Handling the “Easy”
Near Clip Plane Capping Case

• Intersect each ray cast away from the light source
with the near clip plane

• Render a quad strip loop using “possible
silhouette” vertices and the near clip plane
intersection positions

• Project all the model’s triangles that are within
the “possible silhouette” loop (i.e., facing away
from the light) to the near clip plane and render
them

Handling the “Hard” Near
Clip Plane Capping Case (1)

• In this case, the “possible silhouette” loop
projects AWAY onto the near clip plane for some
loop vertices, but not all

• Render a quad strip loop using “possible
silhouette” vertices and a projected position
• If the ray cast from a loop vertex away from the

light intersects the near clip plane, use the
intersection position for the projected position

• Send two vertices for the quad strip loop: the loop
vertex and its projected position

• Otherwise, …
• Send two vertices for the quad strip loop: the loop

vertex and its direction away from the light for
XYZ and with w=0

Handling the “Hard” Near
Clip Plane Capping Case (2)

• For each triangle within the “possible silhouette”
loop (i.e., facing away from the light) …
• If all three vertices do not project AWAY to the near

clip plane, skip this triangle
• If all three vertices do project AWAY to the near

clip plane, render a triangle from these projected
vertices

• If one or two vertices project AWAY to the near clip
plane, but not all three, these are handled as
described on the next two slides

Handling the “Hard” Near
Clip Plane Capping Case (3)

• If exactly one vertex projects AWAY to the near clip
plane, render a triangle with this projected vertex
and two vertices with w=0 as described

• The two remaining vertices are determined by
computing the plane containing the light position,
the single projected vertex position on the near clip
plane, and one of the two remaining loop vertices

• Then take the cross product of the direction of this
plane and the near clip plane

• Render a triangle with the single projected vertex
position and two other vertices such that the XYZ of
these two vertices is the direction vector result from
the cross product and w=0

Handling the “Hard” Near
Clip Plane Capping Case (4)

• If exactly two vertices project AWAY to the near
clip plane, render a quad with these two projected
vertices and two other vertices with w=0 as
described

• Determine the third vertex by computing the plane
containing the light position, one of the two
projected vertices, and the unprojected loop vertex

• Then take the cross product of the direction of this
plane and the near clip plane

• The third vertex is such that XYZ is the direction
vector results from the cross product and w=0

• Compute the fourth vertex in the same manner using
the remaining projected vertex

Remaining Issues
• We must be extra careful to not introduce cracks

when capping a stencil shadow volume at the
near clip plane
• We expect to draw the model in object space so

would naturally render the shadow volume and cap
it in object space too

• The near clip plane capping must not introduce
any T-junctions

• So far, we say that we are drawing the polygons
at the near clip plane to cap our shadow volumes
• However, the near clip plane is a razor’s edge

where polygons exactly or nearly coincident with
the near clip plane may indeed be clipped

Building a “Ledge” at the
Front of the Depth Buffer (1)

• We would like to configure the depth buffer and
projection matrix as follows:

• The scene would be drawn in the range [0.1 .. 1.0]
• The shadow volumes would be drawn in the

range [0.05 .. 1.0]
• Shadow volume capping would be drawn at 0.05
• Depth values from the scene and shadow

volumes must be comparable

n’=0.0 n=0.1 f=1.0

0.05

Scene depth range

Shadow volume depth range

Building a “Ledge” at the
Front of the Depth Buffer (2)

• Setting depth range and projection matrix

glDepthRange(f, n);
gluPerspective(fov, aspect, N, F);

• gluPerspective builds 4x4 matrix

fov/aspectfov/aspect

00

00

00

00

fovfov

00

00

00

00

(F+N)/(N(F+N)/(N--F)F)

--11

00

00

(2*F*N)/(N(2*F*N)/(N--F)F)

00

Note: The Z row and
only the Z row
depends on F and N

X and Y positions can
& will be bit exact if
only Z row changes

Building a “Ledge” at the
Front of the Depth Buffer (2)

• Given n, f, N, and F, and a closer depth range near value n',
can we determine a value N' for the gluPerspective call that
will make the depth values using n, f, N, and F comparable
to the depth values generated using n', f, N', and F ?

• Being comparable mathematically means:

(FN)/(N(FN)/(N--F) z + (2*F*N)/(NF) z + (2*F*N)/(N--F)F)

--11

(f(f--n)n)

22

(n+f)(n+f)

22
++**

=
(F(FNN')/()/(NN'--F) z + (2*F*F) z + (2*F*NN')/()/(NN'--F)F)

--11

(f(f--nn'))
22

((nn'+f)+f)

22
++**

Building a “Ledge” at the
Front of the Depth Buffer (3)

• The expression

does simplify so that z cancels out of the expression. This
means z is comparable. Moreover, N' can be expressed in
terms of n, f, N, F, and n':

(FN)/(N(FN)/(N--F) z + (2*F*N)/(NF) z + (2*F*N)/(N--F)F)

--11

(f(f--n)n)

22

(n+f)(n+f)

22
++**

=
(F(FNN')/()/(NN'--F) z + (2*F*F) z + (2*F*NN')/()/(NN'--F)F)

--11

(f(f--nn'))
22

((nn'+f)+f)

22
++**

-- (f (f -- n) * F * Nn) * F * N

n * N n * N -- f * F f * F -- nn' * (F * (F -- N)N)
NN' = =

Combining Shadow Volumes
With Bump Mapped Models

md2shader demo/example

Conclusions

• GPU bump mapping now possible in a single pass
• And still works as 3-pass approach

• GPU bump mapping works on skinned polygonal
models common in games

• Stenciled shadow volumes can be combined with
GPU bump mapping
• Shadow volumes support omni-directional lights
• Robust technique available for near plane capping

