
Dynamic TexturingDynamic Texturing
Mark Harris

NVIDIA Corporation

2

What is Dynamic Texturing?

• The creation of texture maps “on the fly” for use
in real time.

• A simplified view:
• Loop:

• Render an image.
• Create a texture from that image.
• Use the texture as you would a static texture.

3

Applications of Dynamic Texturing

• Impostors
• Feedback Effects
• Dynamic Cube / Environment map

generation
• Dynamic Normal map generation
• Dynamic Volumetric Fog
• Procedural Texturing
• Dynamic Image Processing
• Physical (PDE) Simulation

4

Overview

• Copying Texture Data

• Off-Screen Rendering with Pixel Buffers

• Rendering Directly To Textures

• Procedural Texturing

5

The Basics: Copying Texture Data

• How do we get a rendered image into a texture?
• glReadPixels() !!!! glTexImage*() ?

• SLOW!
• glCopyTexImage*()

• Better.
• glCopyTexSubImage*()

• Best (currently).
• Render to Texture

• Coming Soon!

6

glCopyTexSubImage

• Not just for sub-images anymore!

• Performance is better than glCopyTexImage
• Doesn’t require allocation of texture memory.
• Optimized in NVIDIA’s Release10 driver.

7

What About Mipmaps?

• Sometimes we want mipmaps for our dynamic
textures.

• How do we generate them?
• The obvious way: generate them yourself.
• GluBuild2DMipmaps().
• Automatic mipmap generation.

8

Automatic Mipmap Generation!

• SGIS_generate_mipmap extension
• New token GL_GENERATE_MIPMAP_SGIS for

glTexParameter*()
• Set to GL_TRUE, causes mipmap levels to be updated

anytime base level image changes
• Faster than gluBuild2DMipmaps

glBindTexture(GL_TEXTURE2D, tid);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP_SGIS, GL_TRUE);
glCopyTexSubImage2D(GL_TEXTURE_2D, …);

9

Automatic Mipmap Generation:
On NVIDIA GPUs

• Works with glTex[Sub]Image, glCopyTex[Sub]Image.
• Extension supported for ALL texture formats for

ENTIRE GeForce family.
• Only HW-Accelerated when used with

glCopyTex[Sub]Image2D and the following formats:
• GL_RGB8
• GL_RGBA8
• GL_RGB5

• Copies w/ auto-mipmap enabled will copy at 50% the
speed of just updating the base level texture.

• Copies 5x faster with release 10 driver

10

Off-Screen Rendering with Pixel Buffers

• We don’t always want to use the frame buffer to
render our dynamic textures.

• Why not?
• Resolution is limited to the window resolution.
• Might need a different pixel format.
• Can require a lot of OpenGL state juggling.
• Overlapping windows can mess up copies.
• Can’t be used to render to texture (more later).

• Use a pbuffer instead!

11

What is a Pbuffer?

Back Buffer
Non-Visible
Pixel Buffer

On-Screen rendering
surface

pbuffer rendering surface

Front Buffer

RGBA DS bits

For On-Screen rendering surface: buffer dimensions and bit properties are
constrained by the current display mode.

For pbuffer rendering surface: dimensions and bit properties are
independent of the current display mode.

RGBA DS bits

12

Using Pbuffers

• Windows
• WGL_ARB_pixel_format extension
• WGL_ARB_pbuffer extension

• Linux
• Supported in GLX 1.3

• MAC
• Future extension(s)

13

Using Pbuffers

• Setting up pbuffers can be tedious
• Requires windowing system specific calls
• Can be “abstracted” away

• Implement once and reuse!
• Something like glutInitWindowSize() and

glutInitDisplayString() / glutInitDisplayMode()

• Three Key Components – same as for a window
• Creating a pbuffer
• Binding a pbuffer
• Destroying a pbuffer

14

Pbuffer Creation (In Windows)

• Quick Overview
1. Get a valid device context

HDC hdc = wglGetCurrentDC();

2. Choose a pixel format
Specify a set of minimum attributes
• Color, Depth, Stencil bits, etc.
• Can specify single- or double-buffered, just like a window.
• Will usually need only single buffer (save RAM!).

Then call wglChoosePixelFormat()
• Returns a list of formats which meet minimum requirements.
• fid = pick any format in the list.

15

Pbuffer Creation (In Windows)

• Quick Overview (cont.)
3. Create the pbuffer

HPBUFFER hbuf = wglCreatePbufferARB(hdc, fid, w, h, attr);
“attr” is a list of other properties for your pbuffer.

4. Get the device context for the pbuffer
hdc = wglGetPbufferDCARB(hbuf);

5. Get a rendering context for the pbuffer:
• Either create a new one (pbuffer gets its own GL state!):

hglrc = wglCreateContext(hdc);
• Or use the current context:

hglrc = wglGetCurrentContext();

16

Binding a Pbuffer (In Windows)

• Easy!
wglMakeCurrent(hdc, hglrc);

• Makes the pbuffer device context the current rendering
target for the rendering context.

• Subsequent OpenGL primitives rendered to the off-
screen buffer.

17

Destroying a Pbuffer (In Windows)

• 3 Step Process

1. Delete the rendering context
2. Release the pbuffer’s device context
3. Destroy the pbuffer

wglDeleteContext(hpbufglrc);
wglReleasePbufferDCARB(hbuf, hbufdc);
wglDestroyPbufferARB(hbuf);

18

• Copy-to-Texture via “shared textures”

Retrieving Data from a Pbuffer

Pbuffer rendering
surface

On-Screen
rendering surface

PbufferBack
Front

Host Memory

Render
Context

Render
Context

Texture

current

GPU Memory

19

• Copy-to-Texture via “shared textures”
• Use wglShareLists(hVisibleGLRC, hPbufferGLRC)

• Allows sharing of ALL display list and texture
objects between rendering contexts.

• Call just once immediately after creating the Pbuffer.
• Don’t need if pbuffer uses same GLRC as app

window.

• Bind to pbuffer
• Render to pbuffer
• glCopyTexSubImage2D();
• Bind to on-screen rendering surface
• Render frame

Retrieving Data from a Pbuffer

20

Pbuffers: On NVIDIA GPUs

• Windows
• Hardware accelerated for TNT, TNT2, and the

ENTIRE GeForce family of GPUs.
• Release 10 driver and beyond

• Linux and MAC support coming…

21

Things to Keep in Mind…

• Pbuffers consume Video Memory
• Frame Buffer, Textures, Display Lists, and pbuffers

all in video memory.
• Large/Lots of pbuffers on low-end may limit

performance
• One single-buffered pbuffer is often enough.
• Don’t request depth if you don’t need it.
• Error check the creation routines.

• Keep track of your state!
• Don’t get confused about which context is current

when setting GL state.

22

Example uses for pbuffers

• Shadow Map Creation.
• Rendering dynamic text to a texture.
• “Pre-baked” terrain texturing:

• Each terrain vertex has a set of weights for
blending basis textures:

• w0 * grass + w1 * rocks + w2 * dirt + w3 * water… + ….
• Pre-blend textures using reg. Combiners and / or

multipass into a single texture for each terrain
region.

• Copy to texture using auto-mipmap generation.
• Use to texture terrain.

23

Rendering Directly to Textures

• Our most requested OpenGL feature.
• We’re finally going to have it! (in windows)

• Will be available in an upcoming driver release.
• Implementation of WGL_ARB_render_texture

extension.
• Allows a pbuffer to be bound as a texture.
• Defines three new functions:

• wglBindTexImageARB ()
• wglReleaseTexImageARB ()
• wglSetPbufferAttribARB ()

24

Using WGL_ARB_render_texture

1. Create a pbuffer with appropriate pixel format.
• In wglChoosePixelFormat():

• Specify WGL_DRAW_TO_PBUFFER and either
WGL_BIND_TO_TEXTURE_RGB_ARB or
WGL_BIND_TO_TEXTURE_RGBA_ARB as TRUE.

• In wglCreatePbufferARB():
• Set WGL_TEXTURE_FORMAT_ARB:

• WGL_TEXTURE_RGB_ARB or WGL_TEXTURE_RGBA_ARB
• Set WGL_TEXTURE_TARGET_ARB:

• WGL_TEXTURE_CUBE_MAP_ARB, WGL_TEXTURE_1D_ARB, or
WGL_TEXTURE_2D_ARB

• Use WGL_MIPMAP_TEXTURE_ARB to request space for mipmaps.
• If non-zero and the texture format is WGL_TEXTURE_RGB[A]_ARB, then

storage for mipmaps will be allocated.
• Set pbuffer width and height to size of the level zero mipmap image.

25

Using WGL_ARB_render_texture

2. Create a context for the pbuffer.
• Make the context current to the pbuffer and

initialize the context's attributes.

3. Render to the pbuffer.

4. Make the context current to the window
• Bind a texture object to the appropriate texture

target and set desired texture parameters.

26

Using WGL_ARB_render_texture

5. Call wglBindTexImageARB to bind the pbuffer
drawable to the texture.
• Set <iBuffer> to WGL_FRONT or WGL_BACK

depending upon which color buffer was used for
rendering the texture.

BOOL wglBindTexImageARB (HPBUFFERARB hPbuffer,
int iBuffer)

27

Using WGL_ARB_render_texture

6. Render to the window using the texture.
7. Call wglReleaseTexImageARB to release the

color buffer of the pbuffer. Goto step 3 to
generate more frames.

BOOL wglReleaseTexImageARB (HPBUFFERARB hPbuffer,
int iBuffer)

*** NOTE: you must release the pbuffer from the texture before
you can render to it again. ***

28

Rendering Cube Maps and Mipmaps

• Can use wglSetPbufferAttribARB() to choose which cube map
face or mipmap level to render.

BOOL wglSetPbufferAttribARB (HPBUFFERARB hPbuffer,
const int *piAttribList)

29

Procedural Texturing

• Combine dynamic texture creation
and programmable shading for
endless possibilities!
• Dynamic bump and normal maps

• Feedback Effects:
• Fire, blur, etc.

• Computation:
• Cellular Automata
• Physics

30

Procedural Texturing Concepts

• Rendering to texture (already discussed).
• Sampling a Texel’s Neighbors.

• Use vertex programs and register combiners.
• Use of texture shaders:

• Dependent texture reads, dot products, and other
operations.

• Use of Register Combiners:
• Weighted texture sampling.

31

Sampling a Texel’s Neighbors

• Very powerful and important technique!
• The key to using texture ops for SIMD computation.
• Can think of it as communication between processor

elements.
• Offset texture coordinates by a multiple of the texel

dimensions.
• Ideal candidate for a vertex program.

• Initialize offsets based on dimensions of texture:
• float texelWidth = 1.0f / (float)textureWidth;

float texelHeight = 1.0f / (float)textureHeight;

32

Sampling a Texel’s Neighbors

• Example: sampling 4 nearest neighbors.

• Load the offsets into VP constant memory:
glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 40, -texelWidth, 0, 0, 0); // left
glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 41, texelWidth, 0, 0, 0); // right
glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 42, 0, texelHeight, 0, 0); // top
glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 43, 0, -texelHeight, 0, 0); // bottom

• Render a quad which exactly covers
the render buffer with texture
coordinates from (0,0) to (1,1)

Quad

33

Sampling a Texel’s Neighbors

• Vertex Shader writes different texture
coordinates to each texture stage

• Each of the four coordinates is offset
by vector in constant memory: c[40],
c[41], c[42], or c[43].

• In a vertex program, add offsets to
input texture coordinates, creating 4
sets of independent texture
coordinates:

ADD o[TEX0], c[40], v[TEX0];
ADD o[TEX1], c[41], v[TEX0];
ADD o[TEX2], c[42], v[TEX0];
ADD o[TEX3], c[43], v[TEX0];

(1,1)

tex coord = (0,0)

Quad

c[43]

c[40]

c[42]

c[41]

v[TEX0]

34

Sampling a Texel’s Neighbors

• Use register combiners to
combine the samples.

• Bind same texture to all
four inputs.

• Example nvparse RC1.0
script to average four
samples:

const0 = (0.25, 0.25, 0.25, 0.25);
{

rgb
{

discard = tex0 * const0;
discard = tex1 * const0;
spare0 = sum();

}
}
{

rgb
{

discard = tex2 * const0;
discard = tex3 * const0;
spare1 = sum();

}
}
out.rgb = spare0 + spare1;
out.a = spare1.a;

35

Procedural Texturing Example
• Fire effect using feedback:

• Blur and scroll upward
• by sampling and averaging neighbors

with downward offset.
• Drive flames with a “seed” texture of

bright embers.

Blur + ScrollBlur + Scroll

Texture 1

Texture 2

Source embers

36

Detailed Example: Game Of Life

• Cellular Automata
• Useful for generating noise and other animated

patterns to use in blending.
• The Game Of Life is used as the “embers” texture

in the fire demo!
• Game Of Life demo:

• Uses three rendering passes per generation.
• Dependent texture address texture shader.
• Register combiners / vertex program to sample all

8 neighbors of a texel.

37

Rules of the Game of Life

• A cell will be “alive” in the next generation if:
• The cell is alive in the current generation and has

two or three living neighbors, or
• The cell is not alive in the current generation and

has exactly three neighbors.

38

The Game Of Life

• How the Game of Life demo operates:

76543210

Blue Channel
On / Off State

Dependent GB texture address operation

G,B=(1, 1)

G,B=(0, 0)

Green Channel
Neighbor Count

39

The Game Of Life

• Pass One: discard all but blue.
• Also bias a little to ensure correct addressing.

• Pass Two: count neighbors of each texel.
• add count to green channel.

• Pass Three: Determine next generation:
• use sum of passes one and two as input for

dependent GB address lookup into rules texture.

40

The Game Of Life

• How do we count the neighbors of a texel?
• Use the neighbor sampling from before, slightly

modified.

• Instead of sampling like this:

• Change offsets to sample all 8 neighbors:
• Must enable linear texture filtering.

41

The Game Of Life

• Use results of first two passes to do a dependent
lookup into the “rules texture”.

• Value in blue channel acts as t-coordinate.
• Encodes “cell is alive in current generation”.

• Value in green channel acts as s-coordinate.
• Encodes number of living neighbors of each cell.

76543210

0
1

Alive / Dead Status

Number of Neighbors

Result is either black or white.

42

More complex Procedural Shading

• Game of Life is just a simple example.
• Possibilities are endless!

• Can use texture operations to do physical simulation!
• Dynamic bump-mapped waves.
• Neighbor sampling allows finite-

difference integration of simple PDEs!
• Demo maintains 3 textures:

• Force, velocity, and height.
• Neighbor sampling determines force.
• Force applied to velocity.
• Velocity applied to height.

43

For More Information…

• Questions to: jspitzer@nvidia.com

• NVIDIA Developer Website
• http://www.nvidia.com/developer
• Pbuffer and auto mipmap gen presentations.
• Performance presentation.
• Texture shader and Vertex program presentations.
• Demos, demos, demos.

• GL Game Of Life demo.
• Several D3D Demos using procedural textures.
• More always coming.

