
Optimization for DirectX9 Optimization for DirectX9
GraphicsGraphics

Ashu Rege

Last Year: Batch, Batch, Batch

• Moral of the story: Small batches BAD

• What is a “batch”
– Every DrawIndexedPrimitive call is a batch
– All render, texture, shader, ... state is same

Simple Test App

• Degenerate Triangles (no fill cost)
• Post TnL Cache Vertices (no xform cost)
• Static Data (minimal AGP overhead)
• Fixed (~100 K) Tris/Frame
• Vary Number of Batches

Last Year’s Graph Updated
Measured Performance: Different Batch-Sizes

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

10 60 11
0

16
0

30
0

80
0

13
00

triangles/batch

m
ill

io
n

tr
ia

ng
le

s/
s

3GHz Pentium 4; RADEON 9800 XT

3Ghz Pentium 4; NVIDIA GeForce FX 5950 Ultra

Axis scale changeAxis scale change

This Year: Son Of A Batch

• What makes an app ‘batchy’?
– Too many state changes

• What kinds of state changes?

• Techniques to reduce batches

State Changes

• Analysis of some popular games

• Top State Changes:
– Texture State
– Vertex Shaders and Vertex Shader Constants
– Pixel Shaders and Pixel Shader Constants

Do State Changes Really Matter?

• Cost of state changes
• Comparison with no state changes
• One state change:

– Factor of 4 drop in fps (on average)
• Multiple state changes:

– Another factor of 2-5 drop

How To Sort?

• Seems like an n-dimensional problem

• Should I sort by texture, pixel shader,
vertex shader, ... what?

Texture v. Pixel Shader

Different

Textures

Different Pixel Shaders

Collapse One Of The Axes

Different

Textures

Different Pixel Shaders

Texture Atlases

(0,0) (0.5,0) (1,0)

Texture A Texture B(0,0) (1,0)

(1,1)(0,1)

(0,0)

(0,1)

(1,0)

(1,1)

Texture Atlas

(0,1) (0.5,1) (1,1)

Basic Idea

• Select batch-breaking textures
• Pack into one or more texture atlases
• Update the uv-coordinates of models

• Convert multiple DIP calls into one

What About Mip-Maps?

• What happens to the lowest 1x1 level?
– Smearing?

• Tool-chain should generate mip-maps
before packing

• Use special purpose mip-map filters

What About Lower Levels?
1 16x16 Sub-Texture

12 8x8 Sub-Textures

4x4 Level

2x2 Level

Smearing

Auto-Generation of Mip-Maps

• 2x2 Box filter can also work for power-of-2
textures
– Both atlas and sub-textures in it are pow2
– Textures should not cross pow2 lines

Proper Placement For Box Filter

‘4’ power-of-2
lines

32x32
Atlas

‘16’ power-
of-2 line

‘8’ power-
of-2 lines

A 16x16
sub-texture
cannot
cross any
‘16’ power-
of-2 lines.

What About Lower Levels?
1 16x16 Sub-Texture

12 8x8 Sub-Textures

4x4 Level

2x2 Level

Smearing

Possible Solutions

• Terminate mip chain to fit smallest sub-
texture
– Image Quality and Performance Issues

• Use only sub-textures of same size
– May be inflexible

• But there’s good news...

Cannot Access Lower Levels
• A triangle’s texture coordinates never

span across sub-textures

• Worst case: pixel-sized triangle spanning
entire sub-texture

• Only “1-texel” level is accessed
– Fill it with valid data

Cannot Access Lower Levels

Pixel Sized Quad

• DirectX raster rules make it unlikely for smaller
quad (or tri) to generate pixel

Other Issues

• Address modes such as clamp?
– Use ddx, ddy in pixel-shader to emulate modes

• Smearing due to filtering
– Texels on border of sub-textures get smeared
– Aniso can help: smaller footprint
– Do re-mapping of texcoords in pixel shaders
– Pad textures with border texels

DirectX9 Instancing API
• What is it?

– Single draw call to draw multiple instances of the
same model

• Why should you care?
– Avoid DIP calls and minimize batching overhead

• What do you need?
– DirectX 9.0c
– VS 3.0/PS 3.0 support

When To Use Instancing

• Many Instance of Same Model
– Forest of trees, particle systems, sprites

• Encode per-instance data in auxiliary stream
– Colors, texture coordinates, per-instance consts

• Not as useful if batching overhead is low
– Fixed overhead to instancing

How Does It Work?
• Vertex stream frequency divider API

• Primary stream is a single copy of the model
data

• Secondary stream: per instance data
– pointer is advanced for each rendered instance

Vertex Data

Per instance data
VS_3_0

0

1

Simple Instancing Example
• 100 poly trees

– Stream 0 contains just the one tree model
– Stream 1 contains model WVP transforms

• Possibly calculated per frame based on the instances in the
view

– Vertex Shader is the same as normal, except you use the
matrix from the vertex stream instead of the matrix from VS
constants

• If you are drawing 10k trees that’s a lot of draw call
savings!
– You could manipulate the VB and pre-transform verts, but

it’s often tricky, and you are replicating a lot of data

Some Test Results
Instancing versus Single DIP calls

0 500 1000 1500 2000 2500

Batch Size

FP
S

Instancing
No Instancing

1 million diffuse shaded polys in each run

Test Summary
• Big win for small batch sizes
• Fixed overhead for instancing
• Cross-over point changes depending on

CPU and GPU, engine overhead etc.

More Information
• White paper and tools soon for texture

atlases on www.nvidia.com/developer
• “Profiling Your DirectX Application” in

NVIDIA sponsored session on Wed.

Questions?
• Contact: arege@nvidia.com

