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Last Year: Batch, Batch, Batch

• Moral of the story: Small batches BAD

• What is a “batch”
– Every DrawIndexedPrimitive call is a batch
– All render, texture, shader, ... state is same



Simple Test App

• Degenerate Triangles (no fill cost)
• Post TnL Cache Vertices (no xform cost)
• Static Data (minimal AGP overhead)
• Fixed (~100 K) Tris/Frame
• Vary Number of Batches



Last Year’s Graph Updated 
Measured Performance: Different Batch-Sizes
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This Year: Son Of A Batch 

• What makes an app ‘batchy’?
– Too many state changes

• What kinds of state changes?

• Techniques to reduce batches



State Changes 

• Analysis of some popular games

• Top State Changes:
– Texture State
– Vertex Shaders and Vertex Shader Constants
– Pixel Shaders and Pixel Shader Constants



Do State Changes Really Matter? 

• Cost of state changes
• Comparison with no state changes
• One state change: 

– Factor of 4 drop in fps (on average)
• Multiple state changes: 

– Another factor of 2-5 drop



How To Sort? 

• Seems like an n-dimensional problem

• Should I sort by texture, pixel shader, 
vertex shader, ... what?



Texture v. Pixel Shader 
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Collapse One Of The Axes 
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Texture Atlases 

(0,0)                                              (0.5,0)      (1,0)

Texture A Texture B(0,0) (1,0)

(1,1)(0,1)

(0,0)

(0,1)

(1,0)

(1,1)

Texture Atlas

(0,1)                                                (0.5,1)    (1,1)



Basic Idea 

• Select batch-breaking textures
• Pack into one or more texture atlases
• Update the uv-coordinates of models

• Convert multiple DIP calls into one



What About Mip-Maps? 

• What happens to the lowest 1x1 level?
– Smearing?

• Tool-chain should generate mip-maps 
before packing 

• Use special purpose mip-map filters



What About Lower Levels? 
1 16x16 Sub-Texture 

12 8x8 Sub-Textures

4x4 Level

2x2 Level

Smearing



Auto-Generation of Mip-Maps 

• 2x2 Box filter can also work for power-of-2 
textures
– Both atlas and sub-textures in it are pow2
– Textures should not cross pow2 lines



Proper Placement For Box Filter 

‘4’ power-of-2 
lines

32x32 
Atlas

‘16’ power-
of-2 line

‘8’ power-
of-2 lines

A 16x16 
sub-texture 
cannot 
cross any 
‘16’ power-
of-2 lines.



What About Lower Levels? 
1 16x16 Sub-Texture 

12 8x8 Sub-Textures

4x4 Level

2x2 Level

Smearing



Possible Solutions 

• Terminate mip chain to fit smallest sub-
texture
– Image Quality and Performance Issues

• Use only sub-textures of same size
– May be inflexible 

• But there’s good news...



Cannot Access Lower Levels
• A triangle’s texture coordinates never 

span across sub-textures

• Worst case: pixel-sized triangle spanning 
entire sub-texture

• Only “1-texel” level is accessed
– Fill it with valid data



Cannot Access Lower Levels 

Pixel Sized Quad

• DirectX raster rules make it unlikely for smaller 
quad (or tri) to generate pixel



Other Issues

• Address modes such as clamp?
– Use ddx, ddy in pixel-shader to emulate modes

• Smearing due to filtering
– Texels on border of sub-textures get smeared
– Aniso can help: smaller footprint
– Do re-mapping of texcoords in pixel shaders
– Pad textures with border texels



DirectX9 Instancing API
• What is it?

– Single draw call to draw multiple instances of the 
same model

• Why should you care?
– Avoid DIP calls and minimize batching overhead

• What do you need?
– DirectX 9.0c
– VS 3.0/PS 3.0 support



When To Use Instancing

• Many Instance of Same Model
– Forest of trees, particle systems, sprites

• Encode per-instance data in auxiliary stream
– Colors, texture coordinates, per-instance consts

• Not as useful if batching overhead is low
– Fixed overhead to instancing



How Does It Work?
• Vertex stream frequency divider API

• Primary stream is a single copy of the model 
data

• Secondary stream: per instance data
– pointer is advanced for each rendered instance

Vertex Data

Per instance data
VS_3_0

0

1



Simple Instancing Example
• 100 poly trees

– Stream 0 contains just the one tree model
– Stream 1 contains model WVP transforms

• Possibly calculated per frame based on the instances in the 
view

– Vertex Shader is the same as normal, except you use the 
matrix from the vertex stream instead of the matrix from VS 
constants

• If you are drawing 10k trees that’s a lot of draw call 
savings!
– You could manipulate the VB and pre-transform verts, but 

it’s often tricky, and you are replicating a lot of data



Some Test Results
Instancing versus Single DIP calls
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Test Summary
• Big win for small batch sizes
• Fixed overhead for instancing
• Cross-over point changes depending on 

CPU and GPU, engine overhead etc.



More Information
• White paper and tools soon for texture 

atlases on www.nvidia.com/developer
• “Profiling Your DirectX Application” in 

NVIDIA sponsored session on Wed.



Questions?
• Contact: arege@nvidia.com


