
AGDC Per-Pixel ShadingAGDC Per-Pixel Shading
Sim Dietrich

Goal Of This Talk

• The new features of Dx8 and the next generation
of HW make huge strides in the area of Per-Pixel
Shading

• Most developers have yet to adopt Per-Pixel
Shading techniques, and rely on simple multi-
texturing

• The goal of this talk is to introduce you to Per-
Pixel Shading concepts necessary to understand
and implement these techniques in your app

What is Per-Pixel Shading?

• Dynamic Shading computed on a per-pixel basis

• Per Pixel shading includes a variety of dynamic
shading techniques

• Bump Mapping
• Per-Pixel Directional Lights
• Per-Pixel Spot Lights
• Per-Pixel Point Lights

A Single Quad Lit Per-Pixel

What this Talk will Cover
• Bump Mapping Overview

• EMBM, Embossing, DOT3
• Bump Mapping as Per-Pixel Shading

• Texture Space
• A Vertex-Local Coordinate System
• Animation And Per-Pixel Shading

• Per-Pixel
• Directional Lights
• Point Lights
• Distance Attenuation

• Spot Lights

What This Talk Will Cover

• DX8 Pixel Shaders
• How they improve upon Dx7-Style Per-Pixel

Shading
• Integrating Pixel Shaders

Bump Mapping Overview
• Bump Mapping is a subset of Per-Pixel Lighting

• Bump Mapping examples such as Embossing
simulate diffuse directional lighting

• Dx6 Environmental Bump Mapping (EMBM)
simulates planar specular reflections

• However, DOT3 Per Pixel Lighting can be used to
achieve diffuse and/or specular point lights,
spotlights and volumetric lights as well

DOT3 Overview

• This talk will primarily cover
D3DTOP_DOTPRODUCT3, or DOT3 effects

• DOT3 is more generally useful for per-pixel
lighting than either Embossing or EMBM

• DOT3 is a texture blending operation that
performs a dot product between two vectors
• It yields a value from 0 to 1

Performing a Per-Pixel Dot Product

• Directional Diffuse Lighting is computed by
LightColor * (LightVector DOT SurfaceNormal)

• Directional Specular Lighting is computed via
LightColor * (HalfAngle DOT SurfaceNormal)

• The DOT3 per-pixel operation allows us to
perform L dot N or H dot N on a per-pixel basis

Per-Pixel Dot Products

• To perform a per-pixel dot product, we require
three things

• A Light Vector L

• A Surface Normal N

• A Common Coordinate System for L and N

The Light Vector L

• We can store the Light Vector L on a per-vertex
basis in an iterated color

• We can use either the Diffuse or Specular iterated
color

• This allows the L vector to be interpolated across
a triangle, just like a color
• perspective correction is important for this

The Surface Normal N
• We also want a per-pixel surface normal N
• This is stored in a “Normal Map” which is

typically derived from a Height Map

Height Map Normal Map

Normal Maps

• Normal Maps are just an array of normalized
surface vectors encoded as RGB colors

• They are defined such that :

• X maps to Red
• Y maps to Green
• Z maps to Blue
• Alpha is available for gloss or other scalar values

Screenshot of BumpMaker Tool

Single Quad Lit With Per-Pixel
Directional and Point Lights

What About a Common Coordinate
System?

• The Surface Normals are expressed in their own
coordinate system, such that
• +X points to the Right
• +Y points Up
• +Z points Out of the screen

• The Light Vector is expressed in World Space

• Either N must be transformed into World Space
with L, or we must transform L into this Normal
Map coordinate system

Normals In World Space?

• We can generate Normal Maps in World Space,
but then our world needs to be more or less
uniquely textured, wasting texture memory

• This also only works for static geometry – what
would happen if the geometry rotated?

• Here is the underlying problem : Texels Don’t
Rotate

Help, My Texel Won’t Rotate!

• When we rotate Bump-Mapped geometry, the
texels within the Normal Map don’t rotate along
with the geometry

• Even if we could rotate each texel, it would be an
expensive proposition to perform a per-texel
rotation matrix

• This implies we need a way to move a light vector
L from World Space into the Normal Map’s
coordinate Space

Enter Texture Space

• Texture Space is a per-vertex coordinate system
that expresses how to go from Model Space into
the Normal Map Coordinate System, where :

• +X Axis points to the Right
• +Y Axis points Up
• +Z Axis points Out of the screen

Texture Space Diagram

Normal Map – A flat
plane in S,T direction

SxT

S

T

L and N are expressed in
different coordinate systems

Solution = Rotate Light position
into S,T,SxT space.

Result: New light position for
each vertex.

How to Author for Texture Space

• The best method for generating Texture Space for
your geometry is as follows :
• Have the artist apply bump maps in their authoring

tool – or just use the same mapping as the decal
• Don’t let them use texture mirroring
• Don’t use degenerate projections (ie stretched

textures)
• When loading in a model, create an extra set of 3

3D vectors per vertex
• These will store the axes of the Texture Space basis
• Generate the Texture Space vectors from the vertex

positions and bump map texture coordinates

How to Generate Texture Space?

• For each triangle in the model :
• Use the x,y,z position and the s,t bump map

texture coordinates
• Create plane equations of the form :

• Ax + Bs + Ct + D = 0
• Ay + Bs + Ct + D = 0
• Az + Bs + Ct + D = 0

• Solve for the texture gradients dsdx, dsdy, dsdz,
etc.

Generating Texture Space
• Now treat the dsdx, dsdy, and dsdz as a 3D vector

representing the S axis < dsdx, dsdy, dsdz >
• Do the same to generate the T axis
• Now cross the two to generate the SxT axis – this

is the ‘Z’ or up axis of Texture Space, and is
typically close to parallel with the triangle’s
normal

• If your SxT and the triangle normal point in
opposite directions, the artist applied the texture
backwards – have the artist fix this, or negate the
SxT axis

Generating Texture Space

• These 3 Axes together make up a 3x3
rotation/scale matrix

dsdx dtdx SxTx
dsdy dtdy SxTy
dsdz dtdz SxTz

Putting an XYZ model-space vector through this 3x3
matrix produces a vector expressed in local
Texture Space

Per-Triangle Bases

SxT
SxT

S
T

T
S

T

S

Per-Triangle Bases
• We now have a coordinate basis for each triangle
• We need them on a per-vertex basis so they can

vary smoothly across our geometry
• The solution :

• For each vertex, sum up the S vectors from each
face that shares this vertex

• Do the same for all T and SxT vectors
• Normalize each sum vector
• Optionally scale by the average original magnitude

of S,T or SxT if your texture map is applied
anisotropically

• The result is per-vertex Texture Space
• This is analogous to calculating vertex normals

for lighting

Per-Vertex Texture Space

• Now we have what we need to move a light into a
local space defined at each vertex via the Texture
Space Basis Matrix

• For each per-pixel light, we move it’s L or H
vector into local Texture Space

• On the CPU with C code
• Or on the GPU with a vertex program

The Resulting Per-Vertex Texture
Space

SxT

SxT
SxT

SxT

S
T

T
S

S

T
S

T

T

S

Per Vertex Texture Space
is derived From Shared
Faces

Texture Space In Practice
• The L or H vector is linearly interpolated across

the polygon in Texture Space :
• In the diffuse or specular color

• It must be normalized before storing in the iterated
color

• It will get de-normalized across large polygons
• Doesn’t handle anisotropy well

• Or in a set of 3D texture coordinates
• Use a Cube Map to renormalize the vector
• Able to support scaling on textures
• Can avoid CPU or GPU work

• The L or H vector can be renormalized per-pixel
via a texture, such as a Cube Map, Volume Map or
Projected Texture

What about Animation?

• When triangles distort, so do their texture
gradients, invalidating the Model Space->Texture
Space matrix

• When triangles rotate relative to Model Space, the
Model Space->Texture Space matrix is invalid

• Therefore, the Texture Space will need to be
updated or recomputed during animation

• The obvious approach, and one practical for
simple models, is to simply go through the
previous steps for each animation frame
• Regenerate Texture Space for each triangle, then

each vertex

A Better Way – Update the Bases

• The two most popular animation techniques both
work with Texture Space bump mapping
WITHOUT requiring recalculating the entire basis

• Bone-Based Skinning (Indexed or Not)

• Keyframe Interpolation

Bone-Based Skinning

• For each axis of the Texture Space – S, T and
SxT, “skin” the axis by putting it through the
same matrix as the vertex normals

• Alternatively, skip the SxT axis and perform S
cross T instead – can be cheaper if you have
many bones

Keyframe Interpolation

• Create keyframes for the S, T and SxT axes as
well

• Linearly interpolate between the S(0) and S(1)
using the keyframe weight from 0 to 1

(1 – Weight) S0 + (Weight) * S1
• Now Normalize the result
• To handle scaled or stretched textures

• Rescale by the linearly interpolated length of the
two keyframe vectors

• NormalizedVector *=
(1 – Weight) LengthOf(S0) + (Weight) * LengthOf(S1)

Keyframe Interpolation

• The normalizing of the vector approximates a
spherical interpolation, or SLERP

• The rescaling ensures that any stretching or
scaling in the textures is preserved
• especially important if morphing

Texture Space Calculations
• These calculations are a prerequisite for practical

Per-Pixel Lighting

• The cost of computing and updating Texture
Space for moving models can seem large

• Keep it in perspective :
• For a certain amount of per-vertex work, you are

getting tremendous per-pixel detail

• All of the previous techniques for moving lights
into Texture Space and updating the Texture
Space vectors for moving objects can be handled
with Dx8 Vertex Shaders

Texture Space Overview
• Texture Space is necessary to handle arbitrary,

animating bump mapped geometry correctly

• It allows us to setup the per-pixel dot product

• For each vertex, we rotate the L or H vector into
local Texture Space, where it is interpolated
across the polygon as a color

• Now, we can perform L dot N or H dot N per pixel
and achieve per-pixel lighting

Implementing Per-Pixel Light Types

• Directional Lights

• Spot Lights
• Attenuation

• Point Lights
• Attenuation

Directional Lights

• Directional Lights are the simplest – just perform
L dot N or H dot N, then multiply by the light color

• LightColor * (L dot N)

or

• LightColor * (H dot N)

Spot Lights

• Spot lights are a little harder
• We need to use a projective texture to represent

the spotlight’s cosine attenuation from the umbra
and penumbra

• This is pre-generated as a circular texture map,
like so :

Spot Light Directional Falloff

Penumbra

Umbra
penumbra

Direction of light (-L)

Spot Light Texture
• The interior should hold the cosine falloff term

from 1 (everywhere in the umbra) ramping down
to 0 (at the edge of the penumbra)

• Ensure that the edges of the texture are black

• Set up a ‘Light Plane’ at the spotlight, pointing in
the same direction as the light

• Set up texture coordinate generation and the
texture matrix to so that the vertex positions are
projected onto the Light Plane

Getting Clever
• Since it is a scalar value, one can place the

cosine falloff term in the texture alpha only

• That frees up the RGB values to hold the L vector

• This has two benefits :
• Per Pixel Spotlights with a single 2D texture

• Handles self-shadowing automatically

• Put the distance attenuation in the diffuse color
or alpha

• (SpotLight.RGB DOT3 Normal.RGB) *
(SpotLight.Alpha * Diffuse.RGB)

Point Lights

• Point Lights are similar to SpotLights in
complexity

• They require a per-pixel distance attenuation
value

• There are four basic ways to achieve this…

Four Attenuation Techniques

• 3D Texture holds Attenuation function
• + Can be an arbitrary function
• - Not all cards have 3D Textures
• - Lots of Texture Memory

Use 2 2D Textures to compute 1 – d*d

• [1 – x * x – y * y] – [z * z]

• Or Use 1 texture, and compute z*z in texture
blender via Diffuse or Specular

• + Works on all cards
• - Not very flexible for attenuation

Alternate 2 Texture Attenuation

• Use 2 2D Textures to compute e ^ - d*d

• [e ^ (- x*x – y*y)] * [e ^ (- z * z)]

• + Works on All Cards
• + Smoother Attenuation Function
• + Can use other factors other than e
• - Must use 2 Textures

Last Attenuation Technique

• 3D Texture - Store 3D L vector in RGB of texture,
put Attenuation Function in Alpha only

• + Less Textures used, easier to reduce passes

• - Not all cards have 3D Textures

• - Lots of Texture Memory

• - May have to Point Sample if close to the Light

Attenuation Tips
• Always keep the edge of the Attenuation textures

black if using scalars, or use the zero vector if
encoding vectors, and use CLAMP mode

• Use Alpha Test to eliminate pixels that map to the
border of the Attenuation Map

• Set up the texture coordinate generation / texture
matrix to offset to the light’s position and scale
by 1 / LightRange

• You can use Destination Alpha to hold
Attenuation for multi-pass effects

1-d*d e^(-d*d)

Bringing It All Together
• At Author Time

• Apply Bump Maps (Actually Normal Maps) to your
models

• NEVER Pre-Light Textures
• You can’t combine pre-lit and real-time lights

• Storing global ambient light / shadows in a
separate light map is OK

• At Load Time
• Per Triangle
• Generate Per-Triangle Texture Space

• Per Vertex
• Generate Texture Space Matrices from Per Triangle

Bases

Bringing It All Together - Runtime

• Per Vertex
• Move L or H into Local Texture Space

• Per Pixel
• Perform Dot Product
• Apply Attenuation
• Apply Light Color

Multiple Per-Pixel Point Lights

What About Dx8 / Pixel Shaders?

• All of the preceding material applies directly to
Dx8 and more advanced Pixel Shading

• Understanding the preceding sections is
extremely helpful when investigating Dx8-Level
Pixel Shading

• Dx8 Pixel Shaders are mostly extensions of the
same ideas behind DOT3

What’s New With Dx8 Pixel Shaders?

• Math is performed in floating point instead of
fixed point

• Can perform dependent textures
• Texture1.S = (Texture0.AR)
• Texture1.T = (Texture1.GB)

• Can perform a per-pixel reflection vector lookup
into a CubeMap
• True per-pixel bumpy reflections

Pixel Shaders Allow Per-Pixel Bumpy
Reflections

Further Topics

• Using Cube Maps To Normalize Light Vectors
• + Keeps Vectors Normalized
• - Takes up a Texture
• See my GDC 2000 presentation on Cube Maps

• Creating Normal Maps from Height Values or
Other Textures
• See my GDC 2000 presentation on Per-Pixel

Lighting

• Both of these are employed in the Bump Maker
tool on NVIDIA’s public developer website

Credits :
Where I First Learned of These Techniques

• Texture Space Generation Idea
• Sim Dietrich

• Texture Space Generation Details
• Sim Dietrich and Doug Rogers

• 3D Texture Attenuation
• John Carmack

• SpotLight Attenuation w/ Normals
• Sim Dietrich

• 1 – d*d Attenuation w/ 1 or 2 Textures
• Sim Dietrich

• e ^ (-d*d) Attenuation w/ 2 Textures
• Cass Everitt

• 3D Texture w/ Normals & Attenuation
• Sim Dietrich

