<c-

7ZZVIDIA.

AGDC Per-Pixel Shading

Sim Dietrich

Goal Of This Talk

 The new features of Dx8 and the next generation
of HW make huge strides in the area of Per-Pixel
Shading

Most developers have yet to adopt Per-Pixel
Shading techniques, and rely on simple multi-
texturing

The goal of this talk is to introduce you to Per-
Pixel Shading concepts necessary to understand
and implement these techniques in your app

What is Per-Pixel Shading?

 Dynamic Shading computed on a per-pixel basis

» Per Pixel shading includes a variety of dynamic
shading techniques

- Bump Mapping

- Per-Pixel Directional Lights
- Per-Pixel Spot Lights

- Per-Pixel Point Lights

A Single Quad Lit Per-Pixel

What this Talk will Cover

 Bump Mapping Overview
- EMBM, Embossing, DOT3
- Bump Mapping as Per-Pixel Shading

« Texture Space
- A Vertex-Local Coordinate System
- Animation And Per-Pixel Shading

* Per-Pixel
- Directional Lights

- Point Lights
* Distance Attenuation
- Spot Lights

What This Talk Will Cover

« DX8 Pixel Shaders

- How they improve upon Dx7-Style Per-Pixel
Shading

- Integrating Pixel Shaders

Bump Mapping Overview

Bump Mapping is a subset of Per-Pixel Lighting

Bump Mapping examples such as Embossing
simulate diffuse directional lighting

Dx6 Environmental Bump Mapping (EMBM)
simulates planar specular reflections

However, DOT3 Per Pixel Lighting can be used to
achieve diffuse and/or specular point lights,
spotlights and volumetric lights as well

DOT3 Overview

» This talk will primarily cover
D3DTOP_DOTPRODUCTS3, or DOT3 effects

 DOT3 is more generally useful for per-pixel
lighting than either Embossing or EMBM

 DOT3 is a texture blending operation that
performs a dot product between two vectors

- It yields a value from 0 to 1

Performing a Per-Pixel Dot Product

* Directional Diffuse Lighting is computed by
LightColor * (LightVector DOT SurfaceNormal)

- Directional Specular Lighting is computed via
LightColor * (HalfAngle DOT SurfaceNormal)

 The DOT3 per-pixel operation allows us to
perform L dot N or H dot N on a per-pixel basis

Per-Pixel Dot Products

To perform a per-pixel dot product, we require
three things

A Light Vector L

A Surface Normal N

A Common Coordinate System for L and N

The Light Vector L

 We can store the Light Vector L on a per-vertex
basis in an iterated color

 We can use either the Diffuse or Specular iterated
color

« This allows the L vector to be interpolated across
a triangle, just like a color

- perspective correction is important for this

The Surface Normal N

« We also want a per-pixel surface normal N

 This is stored in a “Normal Map” which is
typlcally derlved from a Height Map

Height Map Normal Map

Normal Maps

 Normal Maps are just an array of normalized
surface vectors encoded as RGB colors

* They are defined such that :

- X maps to Red

- Y maps to Green

- Z maps to Blue

- Alpha is available for gloss or other scalar values

Screenshot of BumpMaker Tool

Texture: [click to load]

C:ADevRelhMyzdk \mediakmarble.tga

Diffuze Armbient
Specular Emizzive

Height/Burmp Map: [click to load]

C:ADevRelhMyedk\mediabmarble_v Calculated Marmal Map

Single Quad Lit With Per-Pixel
Directional and Point Lights

What About a Common Coordinate
System?

 The Surface Normals are expressed in their own
coordinate system, such that

- +X points to the Right
- +Y points Up
- +Z points Out of the screen

* The Light Vector is expressed in World Space

« Either N must be transformed into World Space
with L, or we must transform L into this Normal
Map coordinate system

Normals In World Space?

 We can generate Normal Maps in World Space,
but then our world needs to be more or less
uniquely textured, wasting texture memory

* This also only works for static geometry — what
would happen if the geometry rotated?

* Here is the underlying problem : Texels Don’t
Rotate

Help, My Texel Won’t Rotate!

 When we rotate Bump-Mapped geometry, the
texels within the Normal Map don’t rotate along
with the geometry

Even if we could rotate each texel, it would be an
expensive proposition to perform a per-texel
rotation matrix

This implies we need a way to move a light vector
L from World Space into the Normal Map’s
coordinate Space

Enter Texture Space

« Texture Space is a per-vertex coordinate system
that expresses how to go from Model Space into
the Normal Map Coordinate System, where :

- +X Axis points to the Right
- +Y Axis points Up
- +Z Axis points Out of the screen

Texture Space Diagram

Normal Map — A flat
plane in S,T direction

L and N are expressed in

different coordinate systems _] .
Solution = Rotate Light position

into S,T,SxT space.

Result: New light position for
each vertex.

How to Author for Texture Space

 The best method for generating Texture Space for
your geometry is as follows :
- Have the artist apply bump maps in their authoring
tool — or just use the same mapping as the decal
°* Don’t let them use texture mirroring

* Don’t use degenerate projections (ie stretched
textures)

- When loading in a model, create an extra set of 3
3D vectors per vertex

* These will store the axes of the Texture Space basis

* Generate the Texture Space vectors from the vertex
positions and bump map texture coordinates

How to Generate Texture Space?

* For each triangle in the model :

- Use the x,y,z position and the s,t bump map
texture coordinates

- Create plane equations of the form :

- Ax+Bs+Ct+D=0
- Ay+Bs+Ct+D=0
- AZz+Bs+Ct+D=0

« Solve for the texture gradients dsdx, dsdy, dsdz,
etc.

Generating Texture Space

Now treat the dsdx, dsdy, and dsdz as a 3D vector
representing the S axis < dsdx, dsdy, dsdz >

Do the same to generate the T axis

Now cross the two to generate the SxT axis — this
is the ‘Z’ or up axis of Texture Space, and is
typically close to parallel with the triangle’s
normal

If your SxT and the triangle normal point in
opposite directions, the artist applied the texture
backwards — have the artist fix this, or negate the
SxT axis

Generating Texture Space

These 3 Axes together make up a 3x3
rotation/scale matrix

dsdx dtdx SxTx
dsdy dtdy SxTy
dsdz dtdz SxTz

Putting an XYZ model-space vector through this 3x3
matrix produces a vector expressed in local
Texture Space

Per-Triangle Bases

SxT

Per-Triangle Bases

 We now have a coordinate basis for each triangle

 We need them on a per-vertex basis so they can
vary smoothly across our geometry
* The solution :

- For each vertex, sum up the S vectors from each
face that shares this vertex

- Do the same for all T and SxT vectors
- Normalize each sum vector

- Optionally scale by the average original magnitude
of S,T or SxT if your texture map is applied
anisotropically

- The result is per-vertex Texture Space

- This is analogous to calculating vertex normals
for lighting

Per-Vertex Texture Space

 Now we have what we need to move a light into a
local space defined at each vertex via the Texture

Space Basis Matrix

* For each per-pixel light, we move it’s L or H
vector into local Texture Space

- On the CPU with C code
- Or on the GPU with a vertex program

The Resulting Per-Vertex Texture
Space

Per Vertex Texture Space
is derived From Shared
Faces

4 SxT
SxT ?

Texture Space In Practice

 The L or H vector is linearly interpolated across
the polygon in Texture Space :
* In the diffuse or specular color

- It must be normalized before storing in the iterated
color

- It will get de-normalized across large polygons
- Doesn’t handle anisotropy well

 Orin a set of 3D texture coordinates

- Use a Cube Map to renormalize the vector
* Able to support scaling on textures
* Can avoid CPU or GPU work

- The L or H vector can be renormalized per-pixel
via a texture, such as a Cube Map, Volume Map or
Projected Texture

What about Animation?

When triangles distort, so do their texture
gradients, invalidating the Model Space->Texture
Space matrix

When triangles rotate relative to Model Space, the
Model Space->Texture Space matrix is invalid

Therefore, the Texture Space will need to be
updated or recomputed during animation

The obvious approach, and one practical for
simple models, is to simply go through the
previous steps for each animation frame

- Regenerate Texture Space for each triangle, then
each vertex

A Better Way — Update the Bases

The two most popular animation techniques both
work with Texture Space bump mapping
WITHOUT requiring recalculating the entire basis

 Bone-Based Skinning (Indexed or Not)

« Keyframe Interpolation

Bone-Based Skinning

« For each axis of the Texture Space - S, T and
SxT, “skin” the axis by putting it through the
same matrix as the vertex normals

Alternatively, skip the SxT axis and perform S
cross T instead — can be cheaper if you have
many bones

Keyframe Interpolation

Create keyframes for the S, T and SxT axes as
well

Linearly interpolate between the S(0) and S(1)
using the keyframe weight from 0 to 1

(1—-Weight) SO0 + (Weight) * S1
Now Normalize the result

To handle scaled or stretched textures

- Rescale by the linearly interpolated length of the
two keyframe vectors

- NormalizedVector *=
(1—Weight) LengthOf(S0) + (Weight) * LengthOf(S1)

Keyframe Interpolation

The normalizing of the vector approximates a
spherical interpolation, or SLERP

 The rescaling ensures that any stretching or
scaling in the textures is preserved

- especially important if morphing

Texture Space Calculations

These calculations are a prerequisite for practical
Per-Pixel Lighting

The cost of computing and updating Texture
Space for moving models can seem large

Keep it in perspective :

* For a certain amount of per-vertex work, you are
getting tremendous per-pixel detail

All of the previous techniques for moving lights
into Texture Space and updating the Texture
Space vectors for moving objects can be handled
with Dx8 Vertex Shaders

Texture Space Overview

Texture Space is necessary to handle arbitrary,
animating bump mapped geometry correctly

It allows us to setup the per-pixel dot product

For each vertex, we rotate the L or H vector into
local Texture Space, where it is interpolated
across the polygon as a color

Now, we can perform L dot N or H dot N per pixel
and achieve per-pixel lighting

Implementing Per-Pixel Light Types

* Directional Lights

« Spot Lights
- Attenuation

 Point Lights
- Attenuation

Directional Lights

Directional Lights are the simplest — just perform
L dot N or H dot N, then multiply by the light color

LightColor * (L dot N)

or

LightColor * (H dot N)

Spot Lights

« Spot lights are a little harder

 We need to use a projective texture to represent
the spotlight’s cosine attenuation from the umbra
and penumbra

* This is pre-generated as a circular texture map,
like so :

Spot Light Directional Falloff

Direction of light (-L)

Spot Light Texture

The interior should hold the cosine falloff term
from 1 (everywhere in the umbra) ramping down
to 0 (at the edge of the penumbra)

Ensure that the edges of the texture are black

Set up a ‘Light Plane’ at the spotlight, pointing in
the same direction as the light

Set up texture coordinate generation and the
texture matrix to so that the vertex positions are
projected onto the Light Plane

Getting Clever

Since it is a scalar value, one can place the
cosine falloff term in the texture alpha only

That frees up the RGB values to hold the L vector

This has two benefits :

Per Pixel Spotlights with a single 2D texture
- Handles self-shadowing automatically

Put the distance attenuation in the diffuse color
or alpha

(SpotLight.RGB DOT3 Normal.RGB) *
(SpotLight.Alpha * Diffuse.RGB)

Point Lights

Point Lights are similar to SpotLights in
complexity

They require a per-pixel distance attenuation
value

There are four basic ways to achieve this...

Four Attenuation Techniques

3D Texture holds Attenuation function
- + Can be an arbitrary function

- =-Not all cards have 3D Textures

- - Lots of Texture Memory

Use 2 2D Textures to compute 1 — d*d
- [1-x*x-y"y]-[z"Z]

- Or Use 1 texture, and compute z*z in texture
blender via Diffuse or Specular

- + Works on all cards
- - Not very flexible for attenuation

Alternate 2 Texture Attenuation

 Use 2 2D Textures to compute e * - d*d

- [e? (-xX*x-yYy)]"[e”(-2%2)]

- + Works on All Cards

- + Smoother Attenuation Function

- + Can use other factors other than e
- = Must use 2 Textures

Last Attenuation Technique

« 3D Texture - Store 3D L vector in RGB of texture,
put Attenuation Function in Alpha only

- + Less Textures used, easier to reduce passes
- = Not all cards have 3D Textures
- - Lots of Texture Memory

- - May have to Point Sample if close to the Light

Attenuation Tips

Always keep the edge of the Attenuation textures
black if using scalars, or use the zero vector if
encoding vectors, and use CLAMP mode

Use Alpha Test to eliminate pixels that map to the
border of the Attenuation Map

Set up the texture coordinate generation / texture
matrix to offset to the light’s position and scale
by 1/ LightRange

You can use Destination Alpha to hold
Attenuation for multi-pass effects

eA(-d*d)

Bringing It All Together

« At Author Time

- Apply Bump Maps (Actually Normal Maps) to your
models

- NEVER Pre-Light Textures

°* You can’t combine pre-lit and real-time lights

- Storing global ambient light / shadows in a
separate light map is OK

At Load Time
- Per Triangle

* Generate Per-Triangle Texture Space
- Per Vertex

* Generate Texture Space Matrices from Per Triangle
Bases

Bringing It All Together - Runtime

* Per Vertex
- Move L or H into Local Texture Space

 Per Pixel

- Perform Dot Product
- Apply Attenuation

- Apply Light Color

Multiple Per-Pixel Point Lights

What About Dx8 / Pixel Shaders?

« All of the preceding material applies directly to
Dx8 and more advanced Pixel Shading

« Understanding the preceding sections is
extremely helpful when investigating Dx8-Level
Pixel Shading

- Dx8 Pixel Shaders are mostly extensions of the
same ideas behind DOT3

What’s New With Dx8 Pixel Shaders?

Math is performed in floating point instead of
fixed point

Can perform dependent textures
- Texture1.S = (Texture0.AR)
- Texturel.T = (Texture1.GB)

Can perform a per-pixel reflection vector lookup
into a CubeMap

- True per-pixel bumpy reflections

Pixel Shaders Allow Per-Pixel Bumpy
Reflections

Further Topics

Using Cube Maps To Normalize Light Vectors
- + Keeps Vectors Normalized

- - Takes up a Texture

- See my GDC 2000 presentation on Cube Maps

Creating Normal Maps from Height Values or
Other Textures

- See my GDC 2000 presentation on Per-Pixel
Lighting

Both of these are employed in the Bump Maker
tool on NVIDIA’s public developer website

Credits :

Where | First Learned of These Techniques

Texture Space Generation Idea

- Sim Dietrich

Texture Space Generation Details

- Sim Dietrich and Doug Rogers

3D Texture Attenuation

- John Carmack
SpotLight Attenuation w/ Normals

- Sim Dietrich

1 — d*d Attenuation w/ 1 or 2 Textures

- Sim Dietrich

e A (-d*d) Attenuation w/ 2 Textures

. Cass Everitt
3D Texture w/ Normals & Attenuation

- Sim Dietrich

