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Goal Of This Talk

• The new features of Dx8 and the next generation 
of HW make huge strides in the area of Per-Pixel 
Shading

• Most developers have yet to adopt Per-Pixel 
Shading techniques, and rely on simple multi-
texturing

• The goal of this talk is to introduce you to Per-
Pixel Shading concepts necessary to understand 
and implement these techniques in your app



What is Per-Pixel Shading?

• Dynamic Shading computed on a per-pixel basis

• Per Pixel shading includes a variety of dynamic 
shading techniques

• Bump Mapping
• Per-Pixel Directional Lights
• Per-Pixel Spot Lights
• Per-Pixel Point Lights



A Single Quad Lit Per-Pixel



What this Talk will Cover
• Bump Mapping Overview

• EMBM, Embossing, DOT3
• Bump Mapping as Per-Pixel Shading

• Texture Space 
• A Vertex-Local Coordinate System 
• Animation And Per-Pixel Shading

• Per-Pixel 
• Directional Lights
• Point Lights 
• Distance Attenuation

• Spot Lights



What This Talk Will Cover

• DX8 Pixel Shaders
• How they improve upon Dx7-Style Per-Pixel 

Shading
• Integrating Pixel Shaders



Bump Mapping Overview
• Bump Mapping is a subset of Per-Pixel Lighting

• Bump Mapping examples such as Embossing 
simulate diffuse directional lighting

• Dx6 Environmental Bump Mapping ( EMBM ) 
simulates planar specular reflections

• However, DOT3 Per Pixel Lighting can be used to 
achieve diffuse and/or specular point lights, 
spotlights and volumetric lights as well



DOT3 Overview

• This talk will primarily cover 
D3DTOP_DOTPRODUCT3, or DOT3 effects

• DOT3 is more generally useful for per-pixel 
lighting than either Embossing or EMBM

• DOT3 is a texture blending operation that 
performs a dot product between two vectors
• It yields a value from 0 to 1



Performing a Per-Pixel Dot Product

• Directional Diffuse Lighting is computed by
LightColor * ( LightVector DOT SurfaceNormal )

• Directional Specular Lighting is computed via 
LightColor * ( HalfAngle DOT SurfaceNormal )

• The DOT3 per-pixel operation allows us to 
perform L dot N or H dot N on a per-pixel basis



Per-Pixel Dot Products

• To perform a per-pixel dot product, we require 
three things

• A Light Vector L

• A Surface Normal N

• A Common Coordinate System for L and N



The Light Vector L

• We can store the Light Vector L on a per-vertex 
basis in an iterated color

• We can use either the Diffuse or Specular iterated 
color

• This allows the L vector to be interpolated across 
a triangle, just like a color 
• perspective correction is important for this



The Surface Normal N
• We also want a per-pixel surface normal N
• This is stored in a “Normal Map” which is 

typically derived from a Height Map

Height Map Normal Map



Normal Maps

• Normal Maps are just an array of normalized 
surface vectors encoded as RGB colors

• They are defined such that : 

• X maps to Red
• Y maps to Green
• Z maps to Blue
• Alpha is available for gloss or other scalar values



Screenshot of BumpMaker Tool



Single Quad Lit With Per-Pixel 
Directional and Point Lights



What About a Common Coordinate 
System?

• The Surface Normals are expressed in their own 
coordinate system, such that 
• +X points to the Right
• +Y points Up
• +Z points Out of the screen

• The Light Vector is expressed in World Space

• Either N must be transformed into World Space 
with L, or we must transform L into this Normal 
Map coordinate system



Normals In World Space?

• We can generate Normal Maps in World Space, 
but then our world needs to be more or less 
uniquely textured, wasting texture memory

• This also only works for static geometry – what 
would happen if the geometry rotated?  

• Here is the underlying problem : Texels Don’t 
Rotate



Help, My Texel Won’t Rotate!

• When we rotate Bump-Mapped geometry, the 
texels within the Normal Map don’t rotate along 
with the geometry

• Even if we could rotate each texel, it would be an 
expensive proposition to perform a per-texel 
rotation matrix

• This implies we need a way to move a light vector 
L from World Space into the Normal Map’s 
coordinate Space



Enter Texture Space

• Texture Space is a per-vertex coordinate system 
that expresses how to go from Model Space into 
the Normal Map Coordinate System, where :

• +X Axis points to the Right 
• +Y Axis points Up
• +Z Axis points Out of the screen



Texture Space Diagram

Normal Map – A flat 
plane in S,T direction

SxT

S

T

L and N are expressed in 
different coordinate systems

Solution = Rotate Light position 
into S,T,SxT space.

Result:  New light position for 
each vertex.



How to Author for Texture Space

• The best method for generating Texture Space for 
your geometry is as follows :
• Have the artist apply bump maps in their authoring 

tool – or just use the same mapping as the decal
• Don’t let them use texture mirroring
• Don’t use degenerate projections ( ie stretched 

textures )
• When loading in a model, create an extra set of 3 

3D vectors per vertex
• These will store the axes of the Texture Space basis
• Generate the Texture Space vectors from the vertex 

positions and bump map texture coordinates



How to Generate Texture Space?

• For each triangle in the model :
• Use the x,y,z position and the s,t bump map 

texture coordinates
• Create plane equations of the form :

• Ax + Bs + Ct + D = 0
• Ay + Bs + Ct + D = 0
• Az + Bs + Ct + D = 0

• Solve for the texture gradients dsdx, dsdy, dsdz, 
etc.



Generating Texture Space
• Now treat the dsdx, dsdy, and dsdz as a 3D vector 

representing the S axis < dsdx, dsdy, dsdz >
• Do the same to generate the T axis
• Now cross the two to generate the SxT axis – this 

is the ‘Z’ or up axis of Texture Space, and is 
typically close to parallel with the triangle’s 
normal

• If your SxT and the triangle normal point in 
opposite directions, the artist applied the texture 
backwards – have the artist fix this, or negate the 
SxT axis



Generating Texture Space

• These 3 Axes together make up a 3x3 
rotation/scale matrix

dsdx  dtdx  SxTx
dsdy dtdy SxTy
dsdz  dtdz   SxTz

Putting an XYZ model-space vector through this 3x3 
matrix produces a vector expressed in local 
Texture Space



Per-Triangle Bases
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Per-Triangle Bases
• We now have a coordinate basis for each triangle
• We need them on a per-vertex basis so they can 

vary smoothly across our geometry
• The solution :

• For each vertex, sum up the S vectors from each 
face that shares this vertex

• Do the same for all T and SxT vectors
• Normalize each sum vector
• Optionally scale by the average original magnitude 

of S,T or SxT if your texture map is applied 
anisotropically

• The result is per-vertex Texture Space
• This is analogous to calculating vertex normals 

for lighting



Per-Vertex Texture Space

• Now we have what we need to move a light into a 
local space defined at each vertex via the Texture 
Space Basis Matrix

• For each per-pixel light, we move it’s L or H 
vector into local Texture Space

• On the CPU with C code
• Or on the GPU with a vertex program



The Resulting Per-Vertex Texture 
Space

SxT

SxT
SxT

SxT

S
T

T
S

S

T
S

T

T

S

Per Vertex Texture Space 
is derived From Shared 
Faces



Texture Space In Practice
• The L or H vector is linearly interpolated across 

the polygon in Texture Space :
• In the diffuse or specular color

• It must be normalized before storing in the iterated 
color

• It will get de-normalized across large polygons
• Doesn’t handle anisotropy well

• Or in a set of 3D texture coordinates
• Use a Cube Map to renormalize the vector
• Able to support scaling on textures
• Can avoid CPU or GPU work

• The L or H vector can be renormalized per-pixel  
via a texture, such as a Cube Map, Volume Map or 
Projected Texture



What about Animation?

• When triangles distort, so do their texture 
gradients, invalidating the Model Space->Texture 
Space matrix

• When triangles rotate relative to Model Space, the 
Model Space->Texture Space matrix is invalid 

• Therefore, the Texture Space will need to be 
updated or recomputed during animation

• The obvious approach, and one practical for 
simple models, is to simply go through the 
previous steps for each animation frame
• Regenerate Texture Space for each triangle, then 

each vertex



A Better Way – Update the Bases

• The two most popular animation techniques both 
work with Texture Space bump mapping 
WITHOUT requiring recalculating the entire basis

• Bone-Based Skinning ( Indexed or Not )

• Keyframe Interpolation



Bone-Based Skinning

• For each axis of the Texture Space – S, T and
SxT, “skin” the axis by putting it through the 
same matrix as the vertex normals

• Alternatively, skip the SxT axis and perform S 
cross T instead – can be cheaper if you have 
many bones



Keyframe Interpolation

• Create keyframes for the S, T and SxT axes as 
well

• Linearly interpolate between the S(0) and S(1) 
using the keyframe weight from 0 to 1

( 1 – Weight ) S0 + ( Weight ) * S1
• Now Normalize the result
• To handle scaled or stretched textures

• Rescale by the linearly interpolated length of the 
two keyframe vectors

• NormalizedVector *= 
( 1 – Weight ) LengthOf(S0 ) + ( Weight ) * LengthOf(S1)



Keyframe Interpolation

• The normalizing of the vector approximates a 
spherical interpolation, or SLERP

• The rescaling ensures that any stretching or 
scaling in the textures is preserved  
• especially important if morphing



Texture Space Calculations
• These calculations are a prerequisite for practical 

Per-Pixel Lighting

• The cost of computing and updating Texture 
Space for moving models can seem large

• Keep it in perspective :
• For a certain amount of per-vertex work, you are 

getting tremendous per-pixel detail

• All of the previous techniques for moving lights 
into Texture Space and updating the Texture 
Space vectors for moving objects can be handled 
with Dx8 Vertex Shaders



Texture Space Overview
• Texture Space is necessary to handle arbitrary, 

animating bump mapped geometry correctly

• It allows us to setup the per-pixel dot product

• For each vertex, we rotate the L or H vector into 
local Texture Space, where it is interpolated 
across the polygon as a color

• Now, we can perform L dot N or H dot N per pixel 
and achieve per-pixel lighting



Implementing Per-Pixel Light Types

• Directional Lights

• Spot Lights
• Attenuation

• Point Lights
• Attenuation



Directional Lights

• Directional Lights are the simplest – just perform 
L dot N or H dot N, then multiply by the light color

• LightColor * ( L dot N )

or 

• LightColor * ( H dot N )



Spot Lights

• Spot lights are a little harder
• We need to use a projective texture to represent 

the spotlight’s cosine attenuation from the umbra 
and penumbra

• This is pre-generated as a circular texture map, 
like so :



Spot Light Directional Falloff
 

Penumbra 

Umbra 
penumbra 

Direction of light (-L) 



Spot Light Texture
• The interior should hold the cosine falloff term 

from 1 ( everywhere in the umbra )  ramping down 
to 0 ( at the edge of the penumbra )

• Ensure that the edges of the texture are black

• Set up a ‘Light Plane’ at the spotlight, pointing in 
the same direction as the light

• Set up texture coordinate generation and the 
texture matrix to so that the vertex positions are 
projected onto the Light Plane



Getting Clever
• Since it is a scalar value, one can place the 

cosine falloff term in the texture alpha only

• That frees up the RGB values to hold the L vector

• This has two benefits :
• Per Pixel Spotlights with a single 2D texture

• Handles self-shadowing automatically

• Put the distance attenuation in the diffuse color 
or alpha

• ( SpotLight.RGB DOT3 Normal.RGB ) * 
( SpotLight.Alpha * Diffuse.RGB )



Point Lights

• Point Lights are similar to SpotLights in 
complexity

• They require a per-pixel distance attenuation 
value

• There are four basic ways to achieve this…



Four Attenuation Techniques

• 3D Texture holds Attenuation function
• + Can be an arbitrary function
• - Not all cards have 3D Textures
• - Lots of Texture Memory

Use 2 2D Textures to compute 1 – d*d

• [ 1 – x * x – y * y ] – [ z * z ]

• Or Use 1 texture, and compute z*z in texture 
blender via Diffuse or Specular

• + Works on all cards
• - Not very flexible for attenuation



Alternate 2 Texture Attenuation

• Use 2 2D Textures to compute e ^ - d*d

• [ e ^ ( - x*x – y*y ) ] * [ e ^ ( - z * z ) ]

• + Works on All Cards
• + Smoother Attenuation Function
• + Can use other factors other than e
• - Must use 2 Textures



Last Attenuation Technique

• 3D Texture - Store 3D L vector in RGB of texture, 
put Attenuation Function in Alpha only

• + Less Textures used, easier to reduce passes

• - Not all cards have 3D Textures

• - Lots of Texture Memory

• - May have to Point Sample if close to the Light



Attenuation Tips
• Always keep the edge of the Attenuation textures 

black if using scalars, or use the zero vector if 
encoding vectors, and use CLAMP mode

• Use Alpha Test to eliminate pixels that map to the 
border of the Attenuation Map

• Set up the texture coordinate generation / texture 
matrix to offset to the light’s position and scale 
by 1 / LightRange

• You can use Destination Alpha to hold 
Attenuation for multi-pass effects



1-d*d   e^(-d*d)



Bringing It All Together
• At Author Time

• Apply Bump Maps ( Actually Normal Maps ) to your 
models 

• NEVER Pre-Light Textures
• You can’t combine pre-lit and real-time lights

• Storing global ambient light / shadows in a 
*separate* light map is OK

• At Load Time
• Per Triangle
• Generate Per-Triangle Texture Space

• Per Vertex
• Generate Texture Space Matrices from Per Triangle 

Bases



Bringing It All Together - Runtime

• Per Vertex
• Move L or H into Local Texture Space

• Per Pixel
• Perform Dot Product
• Apply Attenuation
• Apply Light Color



Multiple Per-Pixel Point Lights



What About Dx8 / Pixel Shaders?

• All of the preceding material applies directly to 
Dx8 and more advanced Pixel Shading

• Understanding the preceding sections is 
extremely helpful when investigating Dx8-Level 
Pixel Shading

• Dx8 Pixel Shaders are mostly extensions of the 
same ideas behind DOT3



What’s New With Dx8 Pixel Shaders?

• Math is performed in floating point instead of 
fixed point

• Can perform dependent textures
• Texture1.S = ( Texture0.AR )
• Texture1.T = ( Texture1.GB )

• Can perform a per-pixel reflection vector lookup 
into a CubeMap
• True per-pixel bumpy reflections



Pixel Shaders Allow Per-Pixel Bumpy 
Reflections



Further Topics

• Using Cube Maps To Normalize Light Vectors
• + Keeps Vectors Normalized
• - Takes up a Texture
• See my GDC 2000 presentation on Cube Maps

• Creating Normal Maps from Height Values or 
Other Textures
• See my GDC 2000 presentation on Per-Pixel 

Lighting

• Both of these are employed in the Bump Maker 
tool on NVIDIA’s public developer website



Credits :
Where I First Learned of These Techniques

• Texture Space Generation Idea
• Sim Dietrich

• Texture Space Generation Details
• Sim Dietrich and Doug Rogers

• 3D Texture Attenuation
• John Carmack

• SpotLight Attenuation w/ Normals
• Sim Dietrich

• 1 – d*d Attenuation w/ 1 or 2 Textures
• Sim Dietrich

• e ^ ( -d*d ) Attenuation w/ 2 Textures
• Cass Everitt

• 3D Texture w/ Normals & Attenuation
• Sim Dietrich


