
GeForce 6 Series OpenGL ExtensionsGeForce 6 Series OpenGL Extensions
Simon Green

NVIDIA Technical Developer Relations

Overview

Brief History of Programmability OpenGL
Why extensions?
New NVIDIA extensions for GeForce 6 series

NV_vertex_program3
NV_fragment_program2
Multiple draw buffers
Floating point filtering and blending
Render to vertex array

Demos!

Why Extensions?

Vendors want to expose as much hardware
functionality as possible
Lets early adopters try new features as soon as
possible
Proven functionality is then incorporated into
multi-vendor extensions

Life of an Extension

GL_NVX_foo – eXperimental
GL_NV_foo – vendor specific
GL_EXT_foo – multi-vendor
GL_ARB_foo
Core OpenGL

History of Programmability in OpenGL

EXT_texture_env_combine
NV_register_combiners GeForce 256
NV_vertex_program GeForce 3
NV_texture_shader GeForce 3
NV_texture_shader3 GeForce 4
NV_vertex_program2 GeForce FX
NV_fragment_program GeForce FX
ARB_vertex_program
ARB_fragment_program

New Extensions

Two new program extensions
NV_vertex_program3
NV_fragment_program2

Superset of DirectX 9 VS 3.0 and PS 3.0 functionality
Exposed as options to ARB_vertex_program /
ARB_fragment_program

OPTION NV_vertex_program3;
OPTION NV_fragment_program2;

No new entry points, can use named parameters,
temporaries etc.
Previous program exts. also now available as options

Functionality will also be exposed in Cg 1.3 and the
OpenGL Shading Language

GL_NV_vertex_program3

New features:
Textures lookups in vertex programs!
Index-able vertex attributes and result arrays

MOV R0, vertex.attrib[A0.x+3];

MOV result.texcoord[A0.x+7], R0;

More flexible skinning, animation (blend shapes)
Additional condition code register (2 total)
Can push/pop address registers on stack

For loop nesting, subroutine call / return
PUSHA A0; POPA A0;

Up to 512 instructions

Vertex Texture

Supports mip-mapping
Need to calculate LOD yourself
Use TXL instruction (explicit LOD)

Currently supports GL_NEAREST filtering only
Can do own filtering in shader if necessary

Multiple vertex texture units
glGetIntegerv(MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB)

4 units supported on GeForce 6800
Uses standard 2D texture targets

glBindTexture(GL_TEXTURE_2D, displace_tex);

Currently must use LUMINANCE_FLOAT32_ATI or RGBA_FLOAT32_ATI
texture formats

Vertex Texture Applications
Simple displacement mapping

Note – not real adaptive displacement mapping
Hardware doesn’t tessellate for you
Terrain, ocean surfaces

Render to vertex texture
Provides feedback path from fragment program to vertex
program

Particle systems
Calculate particle positions using fragment program, read
positions from texture in vertex program, render as points

Character animation
Can do arbitrarily complex character animation using
fragment programs, read final result as vertex texture
Not limited by vertex attributes – can use lots of bones,
lots of blend shapes

Vertex textures are NOT practical for use as extra constant
memory

Vertex Texture Example

!!ARBvp1.0
OPTION NV_vertex_program3;
PARAM mvp[4] = { state.matrix.mvp };
PARAM scale = program.local[0];
TEMP pos, displace;
vertex texture lookup
TEX displace, vertex.texcoord, texture[0], 2D;
MUL displace.x, displace.x, scale;
displace along normal
MAD pos.xyz, vertex.normal, displace.x, vertex.position;
MOV pos.w, 1.0;
transform to clip space
DP4 result.position.x, mvp[0], pos;
DP4 result.position.y, mvp[1], pos;
DP4 result.position.z, mvp[2], pos;
DP4 result.position.w, mvp[3], pos;
MOV result.color, vertex.color;
MOV result.texcoord[0], texcoord;
END

Vertex Texture Demo

GL_NV_vertex_program3 Performance

Branching
Dynamic branches only have ~2 cycle overhead on
GeForce 6800

Even if vertices take different branches (MIMD hardware)
Use this to avoid unnecessary vertex work (e.g. skinning)

Vertex texture
Look-ups are not free!
Only worth using vertex texture it if texture coordinates or
texture contents are dynamic

otherwise values could be baked into vertex attributes
Coherency of texture access affects performance

If you don’t need random access, may be get better
performance using render to vertex array with VBO/PBO

Try to cover texture fetch latency with other
non-dependent instructions

Covering Vertex Texture Fetch Latency

!!ARBvp1.0
OPTION NV_vertex_program3;
PARAM mvp[4] = { state.matrix.mvp };
PARAM scale = program.local[0];
TEMP pos, displace;
vertex texture lookup
TEX displace, vertex.texcoord, texture[0], 2D;
MUL displace.x, displace.x, scale;
displace along normal
MAD pos.xyz, vertex.normal, displace.x, vertex.position;
MOV pos.w, 1.0;
transform to clip space
DP4 result.position.x, mvp[0], pos;
DP4 result.position.y, mvp[1], pos;
DP4 result.position.z, mvp[2], pos;
DP4 result.position.w, mvp[3], pos;
MOV result.color, vertex.color;
MOV result.texcoord[0], texcoord;
END

GL_NV_fragment_program2

New features:
Branching

Limited static and data-dependent branching
Fixed iteration-count loops

Subroutine calls: CAL, RET
New instructions: NRM, DIV, DP2
Texture lookup with explicit LOD (TXL)
Indexed input attributes
Facing register (front / back)

can be used for two-sided lighting
Up to 65,536 instructions

Instruction Set
ABS absolute value
ADD add
BRK break out of loop instruction
CAL subroutine call
CMP compare
COS cosine with reduction to [-PI,PI]
DDX partial derivative relative to X
DDY partial derivative relative to Y
DIV divide vector components by scalar
DP2 2-component dot product
DP2A 2-comp. dot product w/scalar add
DP3 3-component dot product
DP4 4-component dot product
DPH homogeneous dot product
DST distance vector
ELSE start if test else block
ENDIF end if test block
ENDLOOP end of loop block
ENDREP end of repeat block
EX2 exponential base 2
FLR floor
FRC fraction
IF start of if test block
KIL kill fragment
LG2 logarithm base 2
LIT compute light coefficients
LOOP start of loop block
LRP linear interpolation
MAD multiply and add
MAX maximum
MIN minimum
MOV move
MUL multiply
NRM normalize 3-component vector
PK2H pack two 16-bit floats
PK2US pack two unsigned 16-bit scalars

PK4B pack four signed 8-bit scalars

PK4UB pack four unsigned 8-bit scalars

POW exponentiate

RCP reciprocal

REP start of repeat block

RET subroutine return
RFL reflection vector

RSQ reciprocal square root

SCS sine/cosine without reduction

SEQ set on equal

SFL set on false

SGE set on greater than or equal

SGT set on greater than

SIN sine with reduction to [-PI,PI]

SLE set on less than or equal

SLT set on less than

SNE set on not equal

STR set on true
SUB subtract

SWZ extended swizzle

TEX texture sample

TXB texture sample with bias

TXD texture sample w/partials

TXL texture same w/explicit LOD

TXP texture sample with projection

UP2H unpack two 16-bit floats

UP2US unpack two unsigned 16-bit scalars

UP4B unpack four signed 8-bit scalars

UP4UB unpack four unsigned 8-bit scalars

X2D 2D coordinate transormation
XPD cross product

Fragment Program Branching

Three types of instruction blocks
LOOP / ENDLOOP

Uses loop index register A0.x
REP / ENDREP

Repeats a fixed number of times
IF / ELSE / ENDIF

Conditional execution based on condition codes
BRK instruction can be used to conditionally exit loops or
exit shader early
Blocks may be nested

Looping Limitations

Loop count cannot be computed at runtime
Must be a program parameter (i.e. constant)

Number of iterations & nesting depth are limited
Loop index register A0.x only available inside current loop

can only be used to index vertex attributes
if you want to do something else you can maintain your
own loop counter

Can’t index into constant memory in fragment programs
Can read data from texture instead
Think of texture as fragment program’s random access
read-only memory

Branching Examples

LOOP {8, 0, 1}; # loop count, initial, increment
ADD R0, R0, fragment.texcoord[A0.x];

ENDLOOP;

REP repCount;
ADD R0, R0, R1;

ENDREP;

MOVC RC, R0;
IF GT.x;
MOV R0, R1; # executes if R0.x > 0

ELSE;
MOV R0, R2; # executes if R0.x <= 0

ENDIF;

Subroutine Calls

CAL
Call subroutine, pushes return address on stack

RET
address is popped off stack, execution continues at return
address
execution stops if stack is empty, or overflows
can use as early exit from top level

Note – no data stack
No recursion!

Labels
Name followed by colon
Execution will start at “main:” if present

Looping Example
!!ARBfp1.0
OPTION NV_fragment_program2;
...
loop over lights
MOV lightIndex.x, 0.0;
REP nlights;

TEXC lightPos, lightIndex, texture[0], RECT; # read light pos from texture
TEX lightColor, lightIndex, texture[1], RECT; # read light color from texture
IF EQ.w; # lightPos.w == 0

CAL dirlight;
ELSE;

CAL pointlight;
END
ADD lightIndex.x, lightIndex, 1.0; # increment loop counter

ENDREP;
MOV result.color, color;
RET;

pointlight:
…
RET;

dirlight:
…
RET

Fragment Program Branching Applications

“Uber” shaders
Avoids writing separate shaders for different
numbers, types of lights
Can help to increase batch size

Image processing
Variable width filters
For fixed width, probably faster to unroll loops

Early exit in complex shaders
Ray tracing
Volume rendering

can stop marching along ray when pixel is opaque
GP-GPU simulations

Multiple Lights Demo

Fragment Program Branching Performance

Static branching is fast
But still may not be worth it for short branches (less
than ~5 instructions)
Can use conditional execution instead

Divergent (data-dependent) branching is more
expensive

Depends on spatial coherency of branching - which
pixels take which branches

More Performance Tips

Use half-precision where possible
OPTION ARB_precision_hint_fastest

or
SHORT TEMP normal;

Use NRM instruction for normalizing vectors,
rather than DP3/RSQ/MUL

Very fast for half-precision data
Always use write masks

mul r0.x, r0.x, r2.w (not mul r0, r0.x, r2.w)

Floating Point Filtering and Blending

GeForce 6 series has fully-featured support for
floating point textures

Supports all texture targets, including cube maps, non-
power-of-2 textures with mip-maps
Texture filtering for 16-bit float formats – including tri-
linear, anisotropic filtering
Blending for 16-bit float formats – all blending modes
supported

Exposed currently using ATI extensions:
GL_ATI_texture_float
WGL_ATI_pixel_format_float
These will be replaced with new ARB float extensions

FP16 Blending Example

FP16 Applications

High-Dynamic-Range Imagery
16-bit integer texture formats are not enough for
very high dynamic ranges – can cause banding

Multi-pass algorithms
e.g. one pass per light

Interactive HDR paint
fp16 Photoshop

HDR With Int 16 Format

Dynamic range: 200,000:1

HDR With FP 16 Format

Dynamic range: 200,000:1

Multiple Draw Buffers

Equivalent to Direct3D Multiple Render Targets (MRT)
Exposed via ATI_draw_buffers extension
Allows outputting up to 4 colors from a fragment program in
a single pass:

MOV result.color[0], color;
MOV result.color[1], N;
MOV result.color[2], pos;
MOV result.color[3], H;

Outputs are written to GL_AUX buffers
Need to request a pixel format with aux buffers
All must be same format, share a single depth buffer
AUX buffers are allocated lazily to save memory

Useful for deferred shading, reducing number of passes in
general purpose algorithms
Supported in Cg 1.3, GLslang soon

Draw Buffers Example

Render To Vertex Array

Allows the GPU to interpret floating point frame buffer data
as geometry – data stays resident on GPU
Applications

GPU-based simulation – cloth, particles, soft bodies
3 possible implementations today:

VAR / PDR
presented at GDC 2003 for cloth simulation, now obsolete

VBO / PBO
uses new vertex / pixel buffer object extensions
works on all NV3x hardware
fast – 90M vertices / second measured on GeForce 6800!

Vertex texture (NV_vertex_program3)
easy, only works with GeForce 6 series

Uber/super buffers extension coming soon

Render To Vertex Array Examples

Render To Vertex Array using VBO/PBO

Create buffer object for each vertex attribute you
want to render to

use GL_STREAM_COPY usage flag
Bind buffer object to pixel pack (destination) buffer
Render vertex data to floating point pbuffer
Do glReadPixels from pbuffer to buffer object

Implemented as fast copy in video memory by the
driver

Bind buffer object to vertex array
Set vertex array pointers
Draw geometry
There will be example code in the new SDK

Conclusion

NV_vertex_program3 and NV_fragment_program2
expose the latest in programmable shading in
OpenGL
Available on Windows, Linux and MacOS (soon)
Functionality will be available in vendor-
independent extensions and OpenGL Shading
Language
Start thinking about these features now, future
hardware will be even faster and more flexible
Check out
http://developer.nvidia.com/object/nvidia_opengl_specs.html

