
Expected talk length: 30 minutes

Welcome to “Bringing Borderlands 2 and Pre-Sequel to The SHIELD Platform”. My name is
Justin Kim, and I am an engineer with NVIDIA’ s Developer Technology group. Our group
works on technologies and optimizations to help developers on all NVIDIA platforms,
including Geforce and now, SHIELD.

This talk is for AAA developers who either are currently making a game or have already
made a game and are interested in bringing it to this new platform. In particular, I will be
going into specifics for Unreal Engine 3 games, since that is what these two titles used as
their foundation, but hopefully some of the lessons will be applicable elsewhere. I will
cover what is necessary to get your game built and running on SHIELD, and some strategies
to improve and optimize performance for the platform. Whereas before, mobile/Android
versions of games were either very limited ports or their own standalone games, with the
ever-increasing capabilities of devices like SHIELD, we want to demonstrate that it is
feasible to port a full AAA game with minimal changes to this platform. The hope is that
simplifying the porting process will make it more appealing to developers wanting
maximum platform exposure for minimal commitment. Ideally, with our tools and
ecosystem, we would like for Android to be the easiest porting platform for a AAA
developer already working in a normal PC environment.

Introducing our cast of characters, first is BL2 and Pre-Sequel!

Here’s just some details on the games themselves. The only notable detail is that for our
purposes, we started with the D3D9 PC build with no built-in GL support. It may very well
be the case that your game is also D3D only with no Linux support. If so, you would also be
in a similar situation.

Next is our collection of SHIELD devices. Specifically, we are targeting the SHIELD Tablet
and SHIELD Console with this game, running on Tegra K1 and X1, respectively.

UE3 does already have some level of Android support. However, it is not as fully featured
as we would like, and as of starting, the Android version of the engine did not have all of
the capabilities necessary to run this game at the level we wanted.

There are many parts of the existing Android code that we did reuse and found very
helpful. Specifically, Android integration into the Unreal build toolchain is good, and saves
a lot of headaches related to Android-specific build processes and the NDK. This point was
particularly helpful to someone like myself, who had made a grand total of one Android
NDK application before starting this project. The good integration prevents lots of lost
man-hours wrestling with Android, and those who are already familiar with the Unreal
build framework will find it easy to configure Android compilation. Also, the java side of
the application, that is, app creation, input handling, event callbacks, etcetera is well
implemented and can be used mostly as-is, with minor modifications as you add more
features that you might want.

As for things we want to add or replace, we needed to add Android support for all relevant
libraries (because not all had it out of the box), and had to replace the OpenGL ES2 mobile
renderer, more on that later.

Unreal Engine 3 comes with support for many useful libraries, and you may also have
added a few of your own during development. However, it certainly is not a guarantee that
those libraries will have Android support out of the box. Many commonly used game
libraries added Android support only in recent years, and so for UE3’s built-in libraries, your
mileage will vary depending on the specific build of your engine. With a newer build, you
are more likely to have Android versions of libraries you need (although the binaries may
not necessarily be built). Not only does it save you time spent integrating a newer version
with possible API changes, it will also save you the trouble of having to possibly re-license a
newer version to replace an incompatible one.

This list is of the libraries that we specifically had to upgrade to newer versions due to
missing Android support. Scaleform alone was one of our biggest problem-causers. If you
already have an Android compatible version of Scaleform in your version of UE3, it will save
you a lot of trouble. For us, hooking in a new version with Android support had a different
API, which required a number of changes, and then on top of that, didn’t behave the same
way as the old version that we had (either due to library changes or developer-specific
changes).

Stock Unreal Engine 3 comes with support for D3D9, OpenGL 3.2, and OpenGL ES (as well as D3D11 and
various console renderers). However, our version of Borderlands 2 and Pre-Sequel! only had D3D9 support at
the beginning. Certainly, many developers eschew OpenGL support for PC. To maximize compatibility across
Android devices, we decided to run the game on an OpenGL ES 3.1 renderer. This version of OpenGL ES
supports nearly all of the OpenGL features that the UE3 renderer calls for, and so was a good starting point
for development.

This matrix shows what is supported for these different rendering APIs across the relevant platforms. Most
notably, SHIELD is unique among Android platforms in that it supports full desktop-class OpenGL. This
feature proved to be a big help in development, since it allowed us to make easy apples-to-apples
comparisons between PC and Android while maintaining the biggest features set. Also, being able to easily
toggle between GL 3.2 and ES 3.1 on SHIELD helped quickly track down ES-specific issues. OpenGL ES support
on PC is technically emulated, but it is a subset of desktop GL, so shouldn’t have many problems if you decide
to use it. Still, we found it easier and more useful to develop mainly using full OpenGL and moving to ES later.
If you are developing exclusively for SHIELD, there really isn’t a reason to use ES instead of full OpenGL. You
may even prefer full OpenGL since you could upgrade to a 4.x context and use some of the more advanced
features. However, the Android Extension Pack and other extensions will also allow some of these features
on OpenGL ES if you do want to use them there as well.

You may be wondering why we didn’t just use the stock UE3 mobile OpenGL ES 2.0 renderer. This is the
renderer used in mobile UE3 games to date, but we found that it uses a much reduced set of functionality
compared to the desktop version, and significantly diverges in terms of codepath and content. These
limitations didn’t align with our goals of simplifying porting to be as close to PC development as possible, and
bringing full AAA experiences to SHIELD. We’ve emphasized the fact that our Tegra K1 and X1 processors use
the exact same graphics architecture as our Geforce desktop cards, which has proven to be an advantage
both because of the raw performance and because it makes fully featured driver support easier. We have
also put significant effort into providing a high quality OpenGL driver which is now available on both
platforms. With so much effort put into bringing all of these features to both platforms, we wanted to be
able to treat them as similarly as we could. This meant that we wanted to bring the full PC features to SHIELD
and see what it could do, rather than going the usual route of cutting things down for mobile from the get-go.

This part of the talk is essentially “How to Port Your Game to OpenGL”. If you already have
OpenGL support (maybe due to a Linux port or just because), you’ll save yourself a big
chunk of work. Otherwise, if you stripped OpenGL out of your original project, you will
now need to add it back in.

Copy over the OpenGLDrv project from the corresponding stock UE3 build, hook it in,
recook, add –opengl to command line, and done!

Actually, chances are you won’t be done. If you didn’t originally develop your game with GL support, chances
are your rendering will be incorrect in some way. The stock UE3 rendering code actually plays pretty well
with the GL backend (taking care of inversions, etc.), so chances are most issues are due to developer-specific
code that you added for custom graphics and effects. The most common problems are texture space vertical
inversions and clip space z differences. Texture space problems can again be split into three categories,
static, dynamically generated, and full screen render buffers. Static textures should more or less already
work since it is unlikely that you as a developer messed with that code. However, it is much more likely that
you have custom code for generating certain dynamic textures for your custom rendering that assumes a
D3D texture space, which should be flipped at creation time. For fullscreen effects (ambient occlusion, for
example), look for string “ScaleBias” to find the scaling/bias factors used to transform from screen space to
texture space for full screen effects that appear to output inverted results (ambient occlusion, for example).
Also, check for any functions that draw a fullscreen quad with texture coordinates as vertex attributes and
make sure those are flipped. For clip space, look to multiply all projection matrices by a correction factor
(times 2, minus 1) in the Z axis. Finally, we found that OpenGL and D3D had slightly different behavior with
NaNs and infs in the shader. Just to be safe, make sure you are taking the proper precautions to avoid
generating these values (abs before square root, add epsilon to divisions).

One example of runtime texture inversion, our item card was upside down because scaleform rendered to
texture right side up (assume D3D), but sampled it as if it was upside down (OpenGL). For render buffer
inversion, we saw ambient occlusion being flipped in the final render. With NaNs/infs, we saw nearly single
pixels of such values being created somewhere in the render pipeline and then being smeared all across the
screen by various postprocess effects.

Remember, two inversions can add up to make it look normal at times.

NSight is an excellent tool for tracking down the sources of rendering artifacts, particularly if you have a black
screen, it will let you know where in the frame it is introduced (chances are not the whole thing will be black).

Some more example bugs we ran into for possibly common issues:

Top left: NaN value introduced during lighting calculation propagated into large bar across
screen

Bottom left: NaN value introduced during HDR calculation made certain objects pure white

Top right: Changes in Scaleform library resulted in bad behavior

Bottom right: A collection of broken post-process, inversions, and broken instanced
rendering for foliage

Like I mentioned earlier, UE3’s existing Android support is significantly limited, mainly due
to the cut-down OpenGL ES 2.0 renderer. These limitations are mostly due to the
constraints of the Android platform at the time, many of which are no longer as significant
with more advanced devices like SHIELD. For developers, it would be easiest to just use the
same code and shaders for both PC and Android, and that is the capability that we want to
offer. Our approach was to implement a whole new RHI (rendering hardware interface)
using EGL for Android which supports both OpenGL 3.2 (or theoretically any version) and
OpenGL ES 3.1. Switching is as simple as changing some flags at context creation. This is a
non-trivial amount of work, but the good news is you only need to do it once and then can
reuse it for all UE3 Android games in the future. The end result is that we can render the
exact same thing on both PC and Android using the same textures and the same shaders
(the shader cache files are identical).

We would certainly be willing to share this code with interested developers, so please get
in contact if that is the case.

As per our chart on slide 8, we can debug visual errors on Android by comparing similar
platforms to isolate the source of the problem to a specific area (usually either Android or
OpenGL). Since we’ve implemented an Android renderer with full PC-level functionality, it
is much easier to make an equal comparison.

Does PC D3D work? If not, it’s probably some overall bug that your main release should fix
normally.

Does PC GL match? If not, it’s an OpenGL-specific error, likely one of the ones mentioned
on the previous slides.

Does Android GL match? If not, the Android codepath has a problem, check for #if
(!)ANDROID, #if (!)CONSOLE, etcetera.

Does Android ES match? If not, it’s some ES-specific issue, likely something is stricter for ES
that is not a problem for GL.

If you have a fairly bug-free PC release, in order of frequency, GL problems > Android
problems > ES problems.

These three slides show a comparison between the various NSight debugger views for PC
D3D, PC GL, and SHIELD. The interfaces are all identical and make it easy to do specific
comparisons between platforms. Also shown is an example texture to demonstrate how
we should expect textures to be flipped on GL versus D3D.

If you’ve made it here, let’s take a moment to appreciate the fact that we have your full,
uncut game running on an Android device with a mobile processor. Performance will most
certainly not be as good as PC, but now we can work to optimize and tune the game to
make it perform better on this specific platform.

Once we got our game working, we had pretty low framerates and noticeable hitching
during play. In particular, we noticed the render thread spending a lot of time in the
OpenGL driver. By running with a Null GPU, which does nothing for render commands and
returns instantly, we found that the best-case scenario for a zero-overhead driver and
unbounded GPU would be around 40FPS with no further changes to the engine. This
means that the difference between the Null GPU case and the CPU bound case was all
coming from the driver overhead.

The GPU was certainly working hard as well, so there was some tuning to be done there.
We believe the hitching to be caused by caching of shaders and assets.

The game thread was running fast enough to be of little to no concern.

To improve the render thread performance, we had to revisit the OpenGL renderer. The
renderer is actually very good in terms of functional parity with the D3D9 renderer, ease of
understanding and debugging, and handling API idiosyncrasies, but it does not have
particularly good performance. Due to many of the advances that we have made in
improving CPU-side GL performance, there’s a lot of opportunities to make things faster.
The same approaches you can take to improve GL performance on PC will carry over to
Android, and there is a large existing body of knowledge on how to optimize OpenGL driver
overhead.

The slow GL renderer is actually still a great tool for bringing your game up to functional
correctness, as many of these optimizations will make your application more difficult to
debug. It is a good idea to make all API-level optimizations switchable at compile time.

Here is our plan of attack for adding these OpenGL optimizations. We’ve already added
MultiDrawIndirect support, which on its own has a small gain in performance, but also is a
key component in following improvements. We plan to then change uniforms from
individual glUniform calls to one large uniform buffer object into which the shaders can
index by vertex ID (since gl_DrawID is not accessible on OpenGL ES). This is probably the
biggest potential performance gain, both due to reduction and draw calls and elimination
of glUniform binds. Finally, we can leverage these changes to index bindless textures in a
similar way, giving additional performance benefit. These optimizations are significant
work, to be sure, but they are just implementations of a handful of known techniques.

We also want to consider GPU performance bottlenecks. There are a number of
techniques to improve GPU performance, and their effectiveness is determined by which
parts of the GPU tend to be most bottlenecked in your game.

For example, if your main draw pass is taking a long time in Fragment Shader and ROP, you
may want to consider a Z-prepass to reduce that workload. If post-process passes are
taking a long time due to complicated shaders, we can try reducing the quality of those
effects. If Fragment Shader, Raster, and ROP are struggling in general, we could try
reducing resolution. If textures are taking up too much memory or the unit is
bottlenecking, reduce texture resolution. If SM is taking a long time on complex shaders
(used often), look into optimizing those individual shaders close-up.

The best approach for you will depend on how your game specifically stresses the graphics
hardware, which is dependent on many design aspects (art style, geometric complexity,
etcetera).

NSight frame profiler is a great tool for finding GPU bottlenecks. It will tell you specifically
which units are struggling on particular draw calls, and you can intuit your solutions from
there.

Some miscellaneous notes for minor items that may save you some time.

Both OpenGL and OpenGL ES support the ARB_debug_output extension, which will help greatly in
tracking down GL-specific incompatibilities and errors. It is particularly useful in debugging errors
due to OpenGL ES’s increased strictness compared to regular GL.

OpenGL ES does not support BGRA pixel formats out of the box, though it is a fairly common
extension. Unreal Engine 3 uses this format for many of its uncompressed textures, so you will
need to handle it accordingly, either by supporting the extension or by swizzling your data manually
(we recommend at cook time).

OpenGL doesn’t have a dedicated bump map texture format like D3D9 does (PF_V8U8), use
GL_RG8_SNORM which does the same thing.

ARM NEON allows for SSE-style vectorization for CPU work, which can give you a small boost in CPU
performance, but requires some wrangling to integrate it into the UE3 math headers.

Array cookie size (size added to the raw data of an array with new[]) is 8 bytes on ARM, but 4 on
other platforms.

Android memory alignment is only guaranteed up to BIGGEST_ALIGNMENT of 8 bytes, but UE3
originally tries to align to 16 byte boundaries.

You will need to re-implement or modify most of your online integration code for Android.
It’s more or less the same thing you would need to do for Xbox Live or Playstation Network.
Google Play and the SHIELD store will have their own processes for handling these different
online features.

