

At a high level, this is what our architecture looks like:

At it’s core.. our platform consists of specially designed highly performant and highly
reliable GRID GPUs, hosted in server class systems. This runs on a custom
virtualization SW stack, that enables us to utilize our high quality geforce drivers, and
geforce experience

Each game runs in it’s own virtualization environment, safe from other tenants on the
cloud. A web service ties together a cluster of this rendering power. And our low
latency streaming technology that whttp://unity3d.com/events/roadshowe call
Gamestream delivers that to the SHIELD devices.

All of this scaled out, made reliable, monitored and secure on the Amazon web
services platform.

Allows GRID some external control of the game in order handle situations unique to
cloud gaming – Save files when a user disconnects or quits, for example.

Modules and what challenges they address

Program control

 Allows us to take action for the user if something happens to them – disconnection from our
service, for example.

 Pause the game and wait for the user to return.

 Save game state and shut down

User saves

 Since file system is virtualized, we need to move game saves and user preferences to cloud
storage

 Implements a cloud storage solution for developers

Game Settings

 Since we share VMs and don’t have language specific installs, we set the games locale at
runtime.

 Disable changing of certain user settings, such as fullscreen/windowed mode.

Determining and set optimal graphics options (future)

User Interface

 Screens are smaller and devices have no keyboards

 Native virtual keyboard allows for easy text entry.

Keeping Games Patched

 Don’t want user waiting to download a patch and we want to keep all games up to date

 Check if the current version is runable – fence game if not.

Pre-patching games so they are always ready to play

Account Federation

 Lower barriers to entry for users – single sign-on solution that works for users and game
developers

Modules and what challenges they address

Program control

 Allows us to take action for the user if something happens to them – disconnection from our
service, for example.

 Pause the game and wait for the user to return.

 Save game state and shut down

User saves

 Since file system is virtualized, we need to move game saves and user preferences to cloud
storage

 Implements a cloud storage solution for developers

Game Settings

 Since we share VMs and don’t have language specific installs, we set the games locale at
runtime.

 Disable changing of certain user settings, such as fullscreen/windowed mode.

Determining and set optimal graphics options (future)

User Interface

 Screens are smaller and devices have no keyboards

 Native virtual keyboard allows for easy text entry.

Keeping Games Patched

 Don’t want user waiting to download a patch and we want to keep all games up to date

 Check if the current version is runable – fence game if not.

Pre-patching games so they are always ready to play

Account Federation

 Lower barriers to entry for users – single sign-on solution that works for users and game
developers

The SDK package provides a file with method stubs you can include into your project
directly. Stubs return a “Not Implemented” result by default

Including the stub files and linking to the library is super easy.

When application developer implements these methods, they should return
“Success” or “Failure” as appropriate

Not Implemented is default value – it let’s GRID know that level of control is not
available.

Success means the requested operation completed successfully – response to this
can block for otherwise asynchronous operations

Failure mean the requested operation was attempted but failed

Developer implemented methods can be implemented in stages as appropriate – not
everything needs to be done in order for it to work.

Developer determines level of integration that’s right for them – developer is free to
implement as many or as few methods as is appropriate for their game and business
model

SDK methods

Red means developer implemented method

RequestApplicationPause called on client disconnects – allow the game to determine
how to handle this.

LockUserOptions used to disable options that are not available or not appropriate to
change when running under grid.

-Passes a set of flags – but generally this is going to be used to disable graphics
setting changes such as resolution or windowed mode.

SetLocale tells the game what language-culture to run in (standard <lang>-
<COUNTRY> format)

-Does require all supported languages to be pre-installed and dynamically selectable

Should return false only if the game is unplayable at the current patched level – not
all clients require the game to be completely up to date

We don’t do any in-session patching – if a client is detected as unplayable, we fence
the game and will trigger a game patch

Eventually developers will be able to upload builds and schedule them for release

Provide a virtualized location to write save files to. Files will be restored to this
location on subsequent sessions.

For games that require a user to log-in, we can improve the user experience by doing
single-sign-on. Similar to a log-in through Facebook method, this allows GRID to
become a source for user data and avoids having the user to input a lot of data at
run-time.

