

After the release of Maxwell in September last year, a number of press articles
appeared that describe VXGI simply as a technology to improve lighting in games.
While that is certainly true, it doesn’t tell you anything about what VXGI really is. So
I’m going to clarify what it is now.

First of all, VXGI is a software library implementing a complicated rendering
technique. It is not built into the driver, you cannot use a switch in the NVIDIA control
panel to have it automatically applied to any game like you can with FXAA for
example. It has to be integrated into the rendering engine, and sometimes the
integration can be challenging. So we integrated VXGI into Unreal Engine 4 for you to
be able to use it relatively easily.

VXGI takes the geometry in your scene and uses it to compute indirect diffuse and
indirect specular illumination. That is done using an algorithm known as Voxel Cone
Tracing. It is similar to SVOGI, or Sparse Voxel Octree Global Illumination, with one
important difference: instead of an octree, we use a clip-map, which is much faster
and which allows us to process large and fully dynamic scenes in real time. No
preprocessing of any kind is required.

Now let me explain why computing global illumination is so hard, why real-time GI is
such a big deal and what prevented it from happening 10 years ago.

The problem is, physical light emitters produce an immense number of photons per
second. And the number of different paths that a photon can take from the emitter to
the observer is virtually infinite. So we use integral approximations that deal with rays
or beams, but even with them the problem is still computationally hard.

Direct illumination is relatively easy to compute because there is only a single path
that leads from the emitter to the observer with one reflection.

One bounce indirect illumination is much harder because there are many possible
paths from the emitter to the final surface visible to the observer.

This is a different path for the same emitter, observer, and the final visible surface –
one of the many.

There are paths with more than two reflections, and computing them makes two or N
bounce indirect illumination. The exact solution gets exponentially more expensive as
the number of steps increase. So we have to use coarse approximations to make GI
computation times practical, and even more coarse approximations to make it
happen in real time.

Now let’s talk about the algorithm that is used in VXGI, without getting too deep into
the details.

The algorithm consists of three basic steps: opacity voxelization; emittance
voxelization; and cone tracing. Let’s take a look at each of the steps using the well
known Cornell Box scene as an example.

First of all, the algorithm deals with voxel data. And the structure that we store the
voxel data in is very important. Previous implementations of voxel cone tracing used
an octree, which is memory efficient but very slow to update. Other implementations
used cascaded 3D textures. Our version uses a clip-map, which is similar to a
cascaded texture. It differs from a regular mip-map in the finer levels of detail, which
are clipped to cover a smaller region of space – hence the name, clip-map. So several
finer levels of a clip-map have the same size in voxels, and have the same spatial
resolution as finer levels of a mip-map. When such clip-map is centered around the
camera, its finer levels of detail cover regions that are close to the camera, and
coarser levels of detail cover larger areas that are further away. Due to perspective
distortion, we don’t really need high resolution data far away from the camera, which
maps to clip-map geometry nicely.

Our clip-map is scalable: the size and number of clipped levels varies, as does voxel
format. Various combinations of these parameters result in memory requirements
ranging from megabytes to gigabytes of video memory, where the most detailed and
expensive options produce higher quality diffuse and especially specular reflections.

The first step of the VXGI algorithm is opacity voxelization and downsampling. It
means that scene geometry is converted to a map which encodes approximate
opacity of space, averaged over voxels. So, for example a cube whose size matches
one voxel will produce a fully opaque voxel. But after downsampling, in the next
coarser LOD, the opacity of the enclosing voxel will be only 25%. One more level up
and it’s only 6.25%, and so on.

To perform voxelization, the application renders the scene with special matrices,
geometry and pixel shaders provided by VXGI, at a resolution equal to the clip-map
size. The voxel map is updated by pixel shader threads using atomic operations on a
UAV.

The next algorithm step is emittance voxelization and downsampling. Emittance
voxels basically store the amount of light that geometry in their volume reflects or
emits into all directions. For example, if there is a straight wall going through a slab of
voxels parallel to one of the major planes, the color of the voxels should match the
diffuse color of the wall shaded in screen space. Downsampling does not affect the
color of the wall as long as it doesn’t become smaller than a voxel.

On these pictures, you can see that the colors on the right is different from the colors
on the left. This is not a bug; this is a result of anti-aliased voxelization that distributes
reflected color between two adjacent voxels, and you only see the closest voxel on
the pictures.

The final step of the algorithm is cone tracing. Cone tracing is a process that
computes approximate surface irradiance coming from a set of directions, given the
primary direction and the cone angle. It is roughly described by the equation on the
slide. It marches along the given direction, taking samples from the emittance texture
that contribute to irradiance. In order to reduce light leaking, occlusion is also
calculated as the product of opacities from all the previous samples.

Cone tracing is basically a primitive, a function that lets you calculate irradiance.
There are many possible uses for such function. We give you access to this function in
your shaders and we also implement two primary use cases: computing diffuse and
specular indirect illumination channels for a G-buffer.

Diffuse tracing shoots several cones from every visible surface, into a set of directions
covering the hemisphere.

Specular tracing shoots one cone from every visible specular surface in the reflected
view direction. The angle of this cone depends on surface roughness: for rough
surfaces, a wide cone is used; for finer surfaces, a narrow cone is used. There is a
lower limit on surface roughness, however, because the spatial resolution of our
voxel representation is insufficient to compute perfect mirror-like reflections.

You can see the results of diffuse and specular cone tracing passes on these pictures.
Indirect diffuse channel is on the left. There is a red tint on the left sphere, it comes
from the red left wall; and there’s a green tint on the right sphere, it comes from the
green right wall. But the walls themselves are not red or green on this picture
because it shows indirect irradiance only, not outgoing radiance, so their albedo does
not affect the picture.

Indirect specular channel is on the right. Specular reflections are computed only for
specular objects, which are determined by the roughness channel in the G-buffer. You
can see a fuzzy reflection of the whole scene in each sphere.

Combining the indirect illumination channels with direct illumination and adding tone
mapping and a light bloom produces the image on the left. On the right is the
reference rendering of the same scene produced by Nvidia Iray, a GPU ray tracer. The
images look pretty similar, although there are some minor differences. More
importantly, the right image was rendered in about 10 minutes, while the left image
is rendered at about 500 frames per second on a modern high-end GPU.

The next section of my talk is more practical, it describes engine integration, that is,
what do you have to do in order to enable VXGI in your game or application.

The integration process consists of five major steps, and I’ll shortly describe all of
them in detail. First, you need to connect VXGI with the rendering API using a
translation layer, RHI. Then you create a VXGI interface object and test that the
rendering API works properly, the matrices are in the correct layout and so on using
the built-in voxelization test scene. After that you can move on to implementing
custom voxelization for your scene and computing the indirect illumination channels
for the G-buffer.

The first step, as mentioned before, is connecting VXGI with the rendering API such as
Direct3D 11. Actually, that is the only API that is supported by VXGI right now, but
we’re working on OpenGL 4.4 support as well. So, VXGI uses an abstraction layer over
the rendering API, and your application has to implement that layer. We provide a
reference implementation of D3D11 RHI for simple engines with our samples, and a
different implementation inside the UE4 integration. You can take one of those and
use it as is, or you can modify it to fit your needs – it’s provided in source code form.

The RHI is a relatively simple interface, and one of its important properties it that it’s
stateless. VXGI always provides a structure describing the full state, including shaders,
resource bindings and so on, necessary for completing each draw or dispatch call.

When you have an RHI implementation, you can create the VXGI interface object
using one of the few functions exported by its DLL. Along with the backend, the
function takes voxelization parameters, such as clip-map resolution and voxel storage
format, and some other minor things.

You can test whether the backend works properly by voxelizing a built-in test scene.
The call sequence for that is presented on the slide, and it should produce an opaque
cube emitting white light, with position and size specified by the caller. The final call,
renderDebug, renders a ray-marched visualization of the voxel textures, similar to
those screenshots from Cornell Box earlier in this presentation. If you also render the
G-buffer and perform diffuse and specular cone tracing using this cube, you should
see an image similar to one presented on the slide.

The next step in VXGI integration is implementing custom voxelization. To voxelize
geometry, you need to create at least two VXGI shader sets: one geometry shader
and one pixel shader. Geometry shaders are generated by VXGI from a list of
attributes that need to be passed from the vertex shader to the pixel shader. Pixel
shaders are combined from your source code that computes material parameters and
our code that updates the voxel texture, but for simplicity you can use a built-in
default pixel shader that assumes that all materials are opaque and emit white color
– just like the test cube.

After creating the voxelization shaders once, you need to voxelize your scene on
every frame. It’s not strictly necessary to do it on every frame unless some objects
change or the clip-map is moved, but normally some amount of voxelization does
happen on every frame.

So, to voxelize the scene, you need to switch VXGI into the right state, then fill out the
VXGI material information structure which includes references to voxelization
shaders, and convert that structure to drawing state. Apply that state, add your vertex
shader and other resources, for example material textures needed for the pixel
shader, and draw your geometry. Then switch VXGI into the emittance voxelization
state and repeat the voxelization process – you can draw a different set of objects for
that, or use different materials.

When voxelization is finished, VXGI is ready to compute indirect lighting. It is
computed by objects called tracers, and you can have as many of them as necessary,
one per view. For example, you can have two tracers for stereo rendering. Tracers
implement temporal filtering, which uses information from previous frames, so don’t
create new tracers on every frame.

To use a tracer, you need to provide it with G-buffer channels, including depth and
normal, and the view and projection matrices. Optionally you can use two more
channels, one for smoother normals that use materials without normal maps;
another for a far-away environment map that can be used for specular reflections if
the traced cones do not hit anything.

Computing indirect illumination channels is easy, just call one of these methods –
computeDiffuseChannel or computeSpecularChannel. These methods accept
structures that contain a lot of tuning parameters that affect quality and
performance. These parameters are documented in the VXGI header file.

Compose the indirect channels with your direct lighting, add post-processing effects
and that’s it!

As I mentioned before, voxelization pixel shaders can be generated by combining
VXGI code that updates the voxel structure and your code that shades materials.
More specifically, your vertex shader generates any attributes required for the
materials, and our geometry shader passes them through to the pixel shader. The
pixel shader main function with all its inputs and resources is written by you. Use the
resources, compute the reflected plus emitted color just like you would for forward
screen-space shading, and then instead of outputting the result into SV_Target, call
StoreVoxelizationData function, defined externally, to let our code write the result to
the voxel clip-map.

Another important type of shader that you can create with VXGI is one that uses the
cone tracing primitive. It can be a pixel or compute shader, and it can call the
TraceCone function to compute irradiance coming to any point from any direction,
any number of times.

There are many possible uses of the cone tracing function, such as advanced world-
space material effects like refraction, building dynamic light maps or reflection probes
in real time which may be more efficient than doing G-buffer based tracing.

Here is an example of such material using a custom cone tracing shader. On the left
you can see a dragon model rendered with standard VXGI diffuse and specular
tracing. On the right is the same dragon rendered with a custom reflection and
refraction material. It looks really good and works fast, although there is the same
problem as with specular reflections: we do not have enough voxel resolution to
produce perfect mirror reflections or perfect refractions, only fuzzy ones are possible.

The next section of my talk is about the integration of VXGI into Unreal Engine 4.

For your convenience, we have integrated VXGI into Unreal Engine 4, and it is already
available for free on Github to everyone who has their Github account associated
with their Unreal Engine account. Just check out the repository from the URL on the
slide, switch to the VXGI branch and build it.

It supports almost all features VXGI itself does, such as indirect diffuse and specular
illumination in a fully dynamic environment, all kinds of lights and emissive materials.
Certain features such as temporal filtering of cone tracing results have not been
integrated yet, but we’re working on it.

We provide the Cornell Box scene that is already set up with VXGI as an example. To
enable VXGI in your maps, follow these steps.

First, you need to make sure that solid objects are voxelized by checking the “Used
with VXGI voxelization” box in all of their materials.

Second, you need to enable voxelization of the lights that you want to contribute to
indirect illumination – and there is a check box “VXGI indirect lighting” in light
parameters for that.

Then you can use one of the debug modes to see whether voxelization works
properly, switch back to normal rendering and enable VXGI diffuse and specular using
these console variables. And that’s it – you should be getting indirect illumination at
this point.

There are many other parameters that control VXGI in Unreal Engine, including: a lot
of diffuse and specular tracing parameters in the post-process volume; some console
variables that control debug visualizations, mostly; and several global parameters in
the BaseEngine.ini file that control voxelization quality.

Since the release of VXGI within Unreal Engine about a month ago, a number of users
started experimenting with it and have generated some good-looking content, which I
would like to share with you.

Here is an interior scene with no indirect illumination, just direct lighting and some
ambient.

This is the same scene with light maps generated by Lightmass – it looks much better.

And the same scene with VXGI instead of Lightmass – the result is very similar, and in
some places it looks even better, but computed in real time.

This is the emittance voxel visualization for that scene, and it includes some directly
lit voxels on the floor and emissive boxes for windows simulating lighting from
objects outside – this is a useful technique called portal lights, and it works well with
VXGI.

This is the Elemental demo with VXGI.

And this is the Effects Cave demo with regular lighting – it looks good already, but we
can add something to it…

VXGI makes it look more interesting, if not more realistic. This scene has a lot of local
lights simulating indirect illumination already, so it’s not really designed for GI.

Let’s talk about the quality issues that may appear, how to solve these issues, and
how to make sure that VXGI works as fast as it can.

The first step of VXGI algorithm is voxelization, so let’s start with that. There are two
major issues that happen during voxelization, and the first of them is aliasing.

Since voxelization is performed by rasterizing geometry at a very low resolution,
aliasing is really hard to get rid of. You won’t see aliasing on static objects because
any voxelization of those is plausible, but when objects move, especially slowly,
aliasing manifests itself as flickering in indirect illumination or occlusion. There are
two things you can do about it. First, if flickering appears on small objects, try
enabling supersampled emittance voxelization for those objects or their materials.
This mode uses conservative rasterization and uses an optimized sampling pattern in
the pixel shader, so it makes sure that small objects are not lost at any resolution, but
it is really expensive. Another advice is to use temporal filtering which may cancel the
flicker completely.

The second issue with voxelization is that unless FP16 emittance is used, which is
possible only on Maxwell, light information can be quantized if it’s really dim, or
saturated if it’s really bright. Try adjusting the emittanceStorageScale voxelization
parameter until indirect lighting looks good. We are also considering adding a mode
that uses FP32 to store emittance to enable high quality results on non-Maxwell
GPUs.

Speaking of voxelization performance, there are a few things you can do to improve
it. First of all, do not use highly detailed meshes for voxelization. If possible, have
separate low-detailed models that have the same general shape as the originals, and
that should be enough. And don’t use highly detailed tessellation, too, unless it really
changes the object shape.

Voxelization of light can be optimized by using a culling function. When creating the
voxelization GS, you can pass the code of the function that can discard triangles
based on their vertex coordinates. For example, it doesn’t make sense to rasterize a
triangle that is facing away from the light or that is outside of the light frustum. Also
you have the choice of voxelizing all lit geometry once and processing lights in a loop
in the shader versus voxelizing lit geometry for each light separately, or any option in
between. Most likely, processing several closely located lights at a time will be the
fastest option.

And I already mentioned that while supersampled emittance voxelization helps with
quality, it’s very expensive, so don’t enable it on all objects. Especially on non-
Maxwell GPUs because Maxwell at least has hardware support for conservative
rasterization.

After voxelization comes cone tracing, and it also has some issues. One of the most
important issues is light leaking, which comes from the fact that we average lighting
information over relatively large regions of space. Sometimes light just comes
through walls or ceilings, or objects look like they receive subsurface scattering from
the other side. To mitigate light leaking, you can try to modify the content and make
objects or walls thicker. Also for example if light leaks from the outside of the building
into the inside, you can skip the light voxelization on the outside surfaces.

Other two issues are mostly visible in specular reflections. First, if you have a flat
reflective surface, like the floor here, you can see that the objects in the reflections
are built of voxels, basically the trilinear interpolation artifacts. To hide these artifacts,
just make the reflective objects bumpy. Or use another technique like screen space
reflections on them. Also there is an experimental feature that’s called “tangent
jitter” that adds a lot of noise but essentially blurs the reflections with a circular
kernel, on average. Temporal filtering can efficiently reduce that noise.

And finally, our specular reflections are only single bounce so far. This means that you
only see directly lit surfaces in the reflections. To make other objects appear, just add
some amount of ambient light when voxelizing them. In the meantime, we’re
working on second bounce support, but no promises yet.

This picture shows how adding a little ambient color to voxelization and using tangent
jitter improves specular tracing quality. The difference is better visible when the
pictures are flipped back and forth.

This is just a summary of the tracing issues and solutions described before.

To improve tracing performance, follow these advices. First, do not use many diffuse
cones. 4 or 8 cones are most likely enough. Maybe 16. Sparse diffuse tracing also
helps to improve performance a lot, but doesn’t work well for scenes with high
geometric complexity. But temporal filtering can make it work for such scenes, and
also it can reduce flickering on moving objects, and the noise coming from tangent
jitter on specular cones.

Reducing the number of specular surfaces is kind of obvious because tracing is
performed for every visible specular pixel, so if the surface is not specular, set its
roughness to 0.

And finally, the optional G-buffer smooth normal channel, which doesn’t include
normal maps, helps improve diffuse tracing performance at no image quality co

In general, VXGI performance depends on the scene and the configuration a lot. To
give you some idea about real numbers, let’s consider the San Miguel scene which
has 3 million triangles, and that scene is revoxelized completely on every frame –
which is optional. So, on a GTX 980 with a pre-release driver that includes some
optimizations for the voxelization passes, opacity voxelization of those 3 million
triangles takes about 7 milliseconds. And emittance voxelization of the whole scene
with one shadow mapped light takes 4.7 milliseconds. Diffuse tracing at full HD
resolution with relatively high quality settings takes another 7 milliseconds, and
specular tracing at the same resolution takes just under 2 milliseconds – but that is
because there are not that many specular surfaces in the scene. This may seem like a
lot, but more game-like scenes which have an order of magnitude simpler geometry
have better performance.

The final part of my presentation is about ambient occlusion that you can also get
from VXGI.

Like I mentioned earlier when talking about cone tracing, we compute occlusion
when marching through the cone and accumulating emittance. So, if we drop the
whole emittance part, we can get approximate occlusion for every visible point. And
that is actually much cheaper than computing global illumination because there is no
emittance voxelization, and tracing doesn’t have to sample the emittance textures.
That makes tracing something like 3 times cheaper, as you may have noticed on the
previous slide talking about performance.

Modern game engines compute ambient occlusion based on screen space
information, using various algorithms commonly known as screen-space ambient
occlusion. The results of SSAO are not always correct, for example when geometry
comes near the screen edge or when a far object is close to a near object in screen
space. Voxel based AO has no such problems.

On the left picture there is a rendering of the Lunar lander with screen-space ambient
occlusion, and on the right is the same lander with VXGI ambient occlusion. The
moon surface behind the astronaut and some parts of the lander should not be
occluded, which is captured correctly by VXGI but not by SSAO.

To summarize, VXGI is a library that provides an efficient real-time global illumination
and ambient occlusion solutions. But in order to make it work fast and hide some
quality issues, you may have to tune it or modify your content a little. It works on all
DirectX 11 class GPUs, but it was optimized specifically for Maxwell, whose new
hardware features allow us to produce higher quality results faster.

You can download and try VXGI as a part of Unreal Engine 4 now; a standalone
package with DirectX samples should be available on the Nvidia developer website
soon, and the OpenGL version is being worked on.

