




There are lots of hard problems to solve in VR — in headset design, in input devices, in 
rendering performance, and in designing VR-friendly user experiences, just to name a few 
areas.

At NVIDIA, being a GPU company, clearly rendering performance is the area we’re going to 
concentrate on, as that’s where we can help the most.



Virtual reality is extremely demanding with respect to rendering performance.  Not only do 
we need to hit a very high framerate — 90 Hz for Oculus’ Crescent Bay — but we need to 
do it while maintaining low latency.

Latency is the amount of time between an input event — in this case, when you move your 
head — and when the result of that input shows up on the display.  Mike Abrash at Oculus 
has done some research on this, and his results show that the motion-to-photons latency 
should be at most 20 milliseconds to ensure that the experience is comfortable for players.

The problem is that we have a long pipeline, where input has to first be processed and a 
new frame submitted from the CPU, then the image has to be rendered by the GPU, and 
finally scanned out to the display.  Each of these steps adds latency.

Traditional real-time rendering pipelines have not been optimized to minimize latency, so 
this goal requires us to change how we think about rendering to some extent.



The other thing that makes VR rendering performance a challenge is that we have to 
render the scene twice, now, to achieve the stereo eye views that give VR worlds a sense of 
depth.  Today, this tends to approximately double the amount of work that has to be done 
to render each frame, both on the CPU and the GPU, and that clearly comes with a steep 
performance cost.

However, the key fact about stereo rendering is that both eyes are looking at the same 
scene.  They see essentially the same objects, from almost the same viewpoint.  And we 
ought to be able to find ways to exploit that commonality to reduce the rendering cost of 
generating these stereo views.



And that’s where VR Direct comes in. VR Direct refers to a variety of hardware and 
software technologies NVIDIA is working on to attack those two problems I just mentioned 
— to reduce latency, and accelerate stereo rendering performance, ultimately to improve 
the VR experience.

We have a LOT of people at NVIDIA interested in VR, and a lot of different technologies 
being built.  Some of these are closer to production-ready things that developers are 
already using, and others are a little more researchy and farther away.



Specifically, today we’re mainly going to be discussing two components of VR Direct, which 
are: asynchronous timewarp and VR SLI.  These are technologies that are pretty close to 
production-ready, with early implementations already in the hands of a few developers.  
Each of these technologies is focusing on a different aspect of the VR rendering 
performance problem.

There are other components we’ve announced previously and more may be announced in 
the future, but we’re not talking about those today.





Traditionally, in real-time graphics we allow the CPU to run ahead of the GPU.  The 
OS can queue up several frames’ worth of rendering commands.  This is done to 
obtain the maximum possible framerate: it ensures the CPU and GPU run in parallel 
and do not need to wait for each other unnecessarily.  It also provides a cushion so 
that frames can keep being delivered at a steady rate even if there’s a momentary 
hitch in CPU performance.

With 2D displays, the latency that accumulates in frame queueing is generally 
considered acceptable for many types of apps.

However, at 90 Hz, each additional queued frame adds 11.11 milliseconds of 
latency, and that is very perceptible by the viewer in VR.  With several queued 
frames, we’re blowing right past our 20 ms target.



There are number of ways to limit the size of the frame queue; for example, more recent 
versions of DXGI expose SetMaximumFrameLatency.  However, even with just one queued 
frame we still have too much latency for a comfortable VR experience.



That’s where timewarp comes in.  Timewarp is a feature implemented in the Oculus SDK 
that allows us to render an image and then perform a postprocess on that rendered image 
to adjust it for changes in head motion during rendering. This reduces latency further and 
opens doors for modifications in the render pipeline from the app’s perspective.

This is a purely image-space operation, and in the Oculus SDK it’s incorporated into the 

same rendering pass that performs lens distortion.  The pass is very quick — it takes less 
than half a millisecond on most GPUs.  So we can put it right at the end of the 
frame, rendering it at the last possible moment before we start to scan out the 
frame to the display.

It’s important to understand the distinction between distortion and timewarp.  
Distortion is necessary to take what the app has generated and warp it to 
compensate for the lenses.  Timewarp takes this a step further, and shifts the image 
to compensate for changes in the orientation of the viewer’s head since the app 
began rendering.

This gets the apparent latency of head-tracking down to only a few milliseconds 
longer than scanout.  This is great — we’ve reached our 20 ms target and even 
exceeded it a bit!



So we’re done, right?  Well, not so fast. Timewarp is very effective at reducing the 
apparent latency of head rotation.  That’s very important, as excessive latency in 
orientation is very uncomfortable.  However, timewarp as it currently exists can’t help you 
with head translation.  It only has a 2D image to work with, so it can’t move the viewpoint.

Timewarp also can’t help you with other input latency.  And it only works if your app is 

already rendering fast enough to hit vsync rate on the headset — if you miss vsync, you’ll 
have a stuck frame on the display until your rendering catches up, which isn’t great.

So while timewarp is a great tool, it isn’t a magic wand for solving latency-related 
issues.



The major tradeoff in the fight to reduce latency is the creation of bubbles in the CPU/GPU pipeline.  
If you recall a few slides ago when we discussed frame queueing, the CPU and GPU were processing 
two different frames in parallel with each other, and that enabled both the CPU and the GPU to be 
used as efficiently as possible, without spending too much time waiting for each other.

However, the Oculus SDK currently forces a completely synchronous model by flushing and waiting 
on the GPU via event queries.  That is to say, in the Oculus SDK there is no notion of queuing frames 
ahead.

The CPU begins work at the start of a frame on the vertical blanking interval. The GPU then starts 
when either the CPU flushes the GPU, or command buffers fill up.  At frame completion, the Oculus 
SDK waits to submit distortion just-in-time before the next vertical blank.

This achieves several latency advantages. One, the pose used by the CPU has a consistent delta 
from the previous frame. Additionally, the distortion/timewarp pass is run as close to the end of the 
frame as possible, as consistently as possible.

However, this means the CPU can’t run ahead and start submitting the following frame — the app’s 
render thread will be idle while we wait for the right time to kick off timewarp.  And in turn, after 
the distortion/timewarp pass finishes, the GPU will go idle waiting for the CPU to submit the next 
frame.

So we have sacrificed CPU/GPU parallelism for latency. What can we do to get the parallelism back?



There are a couple different ways we can address this problem.  The key point is that we 
had to wait to submit the timewarp rendering commands because the head pose, in the 
form of a set of constants in a constant buffer, gets latched in (so to speak) at the time the 
render commands are submitted.

However, what if we could continue to update the constants after the render commands 
are submitted?  In that case, we don’t need to wait to submit timewarp.  We can submit it 
early and unblock the render thread, allowing it to proceed to the next frame.

We still do need to wait on the GPU, after the main rendering is finished, until just before 
vsync before we perform the timewarp pass.  But this is no different from ordinary 
rendering with vsync enabled: there’s little point in letting the GPU render faster than what 
the display can present.



This notion of late-latching constants can be implemented in OpenGL 4.4 using its concept 
of a persistently-mapped buffer, which enables the CPU to update constants directly in 
video memory without tying them to the submission of rendering commands.  All we have 
to do is set up a thread that updates the constants with new head poses, say every 1 ms, 
continuously.  Then when the GPU executes the timewarp pass, it will see the latest head 
pose.

Direct3D 12 also supports persistently-mapped buffers.  Direct3D 11 does but only 
indirectly by violating the NO_OVERWRITE contract provided when mapping constant 
buffers.

More information about late latching can be found in an Oculus blog post here:
https://www.oculus.com/blog/optimizing-vr-graphics-with-late-latching/

With late-latching constants for timewarp, we can get rid of a lot of the bubbles in the 
CPU/GPU pipeline.  However, we’re still relying on the app rendering consistently at vsync 
rate.  If the app has a hitch or the framerate drops for some reason, then we’ll end up with 
a stuck or stuttering image on the headset.  This is bad enough on an ordinary screen, but 
in VR it’s really distracting and uncomfortable.



That brings us to asynchronous timewarp.  The idea here is to decouple timewarp from the 
app’s main rendering.  Effectively it’s like a separate process running on the GPU alongside 
the main rendering.  It wakes up and runs right before each vsync, regardless of what else is 
going on with the system.

The interesting thing about this is it enables us to re-warp the previous frame if the main 
rendering process falls behind.  So we will never end up with a stuck image on the headset, 
and we can continue to have low-latency rotation tracking even if the app hitches or its 
framerate drops.



The goal is to make timewarp act like an independent process from main rendering.  
However, in reality, timewarp will have to share resources with the rest of the GPU.  There 
are a range of ways to do this, depending on how we distribute the timewarp work over 
space and time.



One approach is to permanently reserve a small subset of GPU resources just for timewarp.  
With the minimum possible reservation, timewarp runs continuously, taking an entire 
frame time to complete each frame’s work.

This works best in a rolling shutter display where we can race the beam.  We slow down 
and do sections of timewarp to a front buffer just ahead of the beam.  This allows us to 
limit the resources needed, but it’s tricky to ensure that the scheduling works consistently, 
and there are also cache flushing issues to contend with.



The other approach is to preempt and take over the entire GPU, running timewarp in the 
shortest possible time just before each vsync.

This involves working with (or around) the operating system in its graphics preemption 
system.  Preemption is also limited by the hardware context switch granularity.



Async timewarp is a great tool for preventing the uncomfortable scenario of a stuck image 
on the headset, patching up occasional stutters that cause an app to miss vsync.

However, it doesn’t address head translation (yet), latency of other inputs, or low 
animation frame rate.



So, Oculus has this concept of async timewarp that they’ve been thinking about for awhile. 
The question for NVIDIA is how can we actually enable Oculus to implement async 
timewarp on current hardware?

We’re doing this by exposing support in our driver for a feature called a high-priority 
graphics context.  This is very similar to what your OS desktop compositor already does to 
ensure the desktop can be rendered at a consistent framerate while a 3D app is running.  
It’s a separate graphics context that takes over the entire GPU, preempting any other 
rendering that may already be taking place.  In other words, it operates using the time-
multiplexing method that was just explained.

With this feature exposed, we can have one ordinary rendering context, to which the app 
submits its usual work, plus a second, high-priority context where we can submit timewarp 
work.



Here’s what async timewarp looks like in this picture.  We have the app’s main render 
thread submitting work to a main graphics context, like usual.  We also have another 
thread running on the CPU, which sets up the high-priority context and submits the 
timewarp work to it a few milliseconds before each vsync.  When that work hits the GPU, it 
preempts whatever’s going on in the main context, performs the timewarp pass, then 
resumes what it was doing before.



Since we’re relying on preemption, let’s talk about how preemption actually works on 
current GPUs.  Fermi, Kepler, and Maxwell GPUs — basically GeForce GTX 500 series and 
forward — all manage multiple contexts by time-slicing, with draw-call preemption.  This 
means the GPU can only switch contexts at draw call boundaries!  Even with the high-
priority context, it’s possible for that high-priority work to get stuck behind a long-running 
draw call on a normal context.  If you have a single draw call that takes 5 ms, then async 
timewarp can get stuck behind it and be delayed for 5 ms, which will mean it misses vsync, 
causing stuttering or tearing.

On future GPUs, we’re working to enable finer-grained preemption, but that’s still a long 
way off.



In Direct3D, we’re exposing the high-priority context feature by adding an NvAPI function
called “HintCreateLowLatencyDevice”.  This just takes a bool flag to turn the high-priority 
feature on and off.  Any D3D devices created while the hint is set to “true” will be high-
priority contexts.  So, you’d turn the flag on, create the high-priority device, and turn it back 
off.

We have an NDA developer driver that exposes this feature available today.  It works on 
Fermi, Kepler, and Maxwell cards on Windows Vista and up.

To be clear, game developers are not generally expected to be implementing async 
timewarp themselves; that’s a job for Oculus.  However, if you want to explore this on your 
own, we have the driver available.



As for OpenGL, on Android we already support the EGL_IMG_context_priority extension, 
which lets you select low, medium, or high priority when you create an EGL context.  This is 
available on both Tegra K1 and Tegra X1, including on the SHIELD console.

To enable context priorities on desktop GL, we need to create corresponding extensions for 
WGL (Windows) and GLX (Linux).  That hasn’t happened yet, but we are pursuing it.



So what you, as a game developer, take away from all this?

Oculus is working on implementing async timewarp, but we want developers to understand 
that even async timewarp is not a magic wand to fix all latency-related issues.  You really 
should still try to render at the headset’s native framerate — 90 Hz for Crescent Bay —
even though that’s a difficult target to hit.

Async timewarp is really best looked at as a safety net to help cover up occasional hitches 
and perf drops.  It is not a good tool for upsampling framerate — it’s not going to work well 
for running 30 Hz content at 90 Hz, for example.



A little while ago, we mentioned the limitations of preemption on current NVIDIA GPUs.  
Because we can only switch contexts at draw call boundaries, it’s best for VR developers to 
split up long draw calls.

If you have individual draws that are taking longer than 1 ms or so, try to split them up into 
smaller ones.  Heavy postprocessing passes are a common culprit here.  For example, an 
SSAO pass or a depth-of-field pass where you’re rendering a full-screen quad and running a 
heavy pixel shader may well take several milliseconds to complete.  However, you can split 
up the screen into tiles and run the postprocessing on each tile in a separate draw call.  
That way, you provide the opportunity for async timewarp to come in and preempt in 
between those draws if it needs to.



Of course, we’re always thinking about ways to make things better and improve timewarp 
and in the future.  One very natural idea is to try to extend timewarp to handle head 
translation as well as rotation.  At minimum, this needs a depth buffer to tell the timewarp 
kernel how far each object should parallax as you move your head.  It would also be 
interesting to look at layered depth images, as seen in several recent research papers, to 
help fill in disocclusions.

Similarly, we could extend timewarp to extrapolate the motion of objects, helping to avoid 
animation stuttering.  This could be done using velocity buffers, such as many engines 
already generate for motion blur.

Finally, it’s interesting to consider using GSYNC, or other variable-refresh-rate technology, 
with VR.  However, there are some non-trivial issues to solve there, relating to the 
interaction of GSYNC with the low-persistence display and with async timewarp.

All of these things are still very much in the research phase, but this is just a hint of some 
directions that VR technology might go in the future.



And that’s it for the latency section of the talk.  To recap: the Oculus SDK today reduces 
latency by limiting the size of the frame queue and by using timewarp to correct the 
rendered image for late head rotation.  Going forward, Oculus and NVIDIA are working on 
asynchronous timewarp as a safety net in case a app occasionally misses vsync, and NVIDIA 
is enabling async timewarp on our hardware by exposing high-priority contexts as a feature.





Here is the standard graphics pipeline today.  The CPU processes the scene to find which 
objects to render, submits rendering commands, and then the driver/OS do a bunch of 
work validating and translating those commands, tracking and managing memory 
allocations, and so on.  The GPU in turn transforms the geometry (or generates it, with 
tessellation and so forth), rasterizes it to screen space, and finally shades it.

Today, to render stereo eye views for VR, game engines are mostly running all of these 
stages twice.  The question we want to ask is: can you save work by sharing some of these 
stages across views?



There are a range of different options in the stereo rendering space, and we have a trade-
off between flexibility and optimizability.

At one end of the spectrum, with completely independent rendering for left and right eye,
you have a lot of flexibility in how you set up your rendering, but it’s not very easy for the 
game engine, the driver, or GPU hardware to optimize this picture.



If you give up the freedom of having completely independent rendering, you open up the 
opportunity to optimize, by sharing work in some of the rendering pipeline stages.

This is more restrictive, as you can’t have view-dependent work happening in the earlier 
stages.  But the farther down the pipeline you push that point where it forks in two, the 
more opportunities the driver and GPU have to optimize.



With stereo rendering there’s a great deal of redundancy between the two eye views.  
Visibility is almost always nearly identical.  Because the same objects are visible, the same 
rendering commands are submitted.  And because the rendering commands are the same, 
the driver translation/validation work is very similar as well.  Finally, even if geometry is 
generated dynamically (e.g. adaptive tessellation), since the views are so close together, 
the geometry will be almost the same.

This suggests that by sharing many of the earlier stages of the rendering pipeline, we can 
save a lot of work while giving up minimal flexibility.



Although stereo is the primary case we’re thinking about, it’s worth noting that there are 
plenty of other scenarios where you want to render multiple views of a single scene 
containing the same objects and geometry — such as rendering the 6 faces of a cubemap, 
rendering several shadow maps (from different lights, or different slices of a cascaded 
shadow map), and rendering many light probes for global illumination.

In all of these cases, we’d like to be able to optimize by sharing redundant work across 
multiple views.  So multiview rendering is more than just stereo.



This is why we’re looking into API-level and even hardware-level support for multiview 
rendering.  There is a range of different proposals for how this might be done, occupying 
different points in that flexibility versus optimizability trade-off, but what they all have in 
common is that they accept a single stream of commands that renders two or more views.

All state changes, draw calls, and so on will be broadcast to all views by the 
implementation.  There will be limited ways to configure per-view state — for example, to 
set different transforms for the left and right eyes.

Doing stereo rendering this way enables us to save a great deal of CPU work — both in the 
rendering engine and in the driver — by eliminating work that is redundant across the 
views.  Saving CPU work is particularly important on mobile devices, but desktop devices 
benefit from it too.

Depending on the implementation, we may also be able to save some GPU work as well.



One possible implementation is to expose a ViewID variable to shaders. The GPU would 
launch separate shader threads for each view, with ViewID = 0 for the left eye and 1 for the 
right eye, for instance.  This can be simulated today using geometry instancing, as 
described in this doc: 
https://docs.google.com/presentation/d/19x9XDjUvkW_9gsfsMQzt3hZbRNziVsoCEHOn4Ae
rcAc/  In the future, multiview could be explicitly supported in shading languages and APIs, 
as a distinct feature from instancing.

The application could pass in a constant buffer containing view-dependent information, and 
shaders could lookup into it based on ViewID to find transforms or whatever other view-
specific data they needed. Furthermore, the shaders themselves could behave differently 
per ViewID.

This does imply that all the shader stages would have to be run separately for each view.



Another possible implementation is to run the geometry pipeline once, including vertex, 
tessellation, and geometry shaders, and add hardware that can split off the views at the 
rasterization stage.  This implies that we’d render exactly the same geometry in all views.

To generate appropriately-transformed vertex positions for the rasterizer for each view, 
we’d introduce a fixed-function 4×4 matrix (blast from the past!) configured per view.  The 
output position from the geometry pipeline would get transformed by these matrices 
before going into rasterization and pixel shading.  (We could do this replication and per-
view transform using a geometry shader, but geometry shaders are really slow and not a 
good fit for this.)  Pixel shaders would have access to a ViewID variable, similar to the 
previous slide.

A complication with this approach is what to do about other interpolated attributes.  If 
shaders are outputting other vectors or data that’s view-dependent in some way, the 
implementation isn’t going to know how to transform them.  Either the shaders will have to 
explicitly generate per-view attribute values, or those calculations will need to be moved to 
the pixel shader.

Since it requires GPU hardware changes to fully realize this approach, it’s a long way off.  
However, if APIs are designed today with this possibility in mind, the API can automatically 
fall back to a shader-based approach (as on the previous slide) on hardware that doesn’t 
support multiview directly.



Although this is somewhat of a handwavy future possibility, it’s also interesting to explore 
possibilities for reusing shading work between views.  We can already do this to some 
extent with texture-space shading.  However, the obvious complication is view-dependent 
shading phenomena such as specular reflections.



One very natural extension of these multiview rendering ideas we’ve been talking about is 
to distribute the views across multiple GPUs.  In the case of stereo, you’d have two GPUs, 
each rendering one eye view, but driven by a single command stream from the application.  
We call this VR SLI, and we’ve created an API to enable it.

Now, one way to feed two GPUs is to let the application provide two completely 
independent command streams and send totally different rendering to each GPU.  That’s a 
very flexible solution, but the problem is you then need to burn the CPU time to generate 
those two command streams in your engine and process them through the driver.  If we 
trade off the flexibility of independent command streams, by producing one command 
stream for both GPUs, we can save a lot of CPU work.



Before we dig into VR SLI, as a quick interlude, let me first explain how SLI normally works.  
For years, NVIDIA has had alternate-frame rendering, or AFR SLI, in which the GPUs trade 
off whole frames.  In the case of two GPUs, one renders the even frames and the other the 
odd frames.  The GPU start times are staggered half a frame apart to try to maintain regular 
frame delivery to the display.

This works well to increase framerate (as long as you don’t have interframe dependencies, 
anyway), but it doesn’t help with latency.  In fact, it might actually hurt latency in some 
scenarios.  So this isn’t the right model for VR.



A better way to use two GPUs for VR rendering is to split the work of drawing a single 
frame across them — rendering each eye on one GPU.  This has the nice property that 
since the two eyes see essentially the same objects and have essentially the same 
command stream, the work distribution is nice and even across the two GPUs.

This allows you to improve both framerate and latency, since each GPU does less work per 
frame.



Let’s see how VR SLI works in more detail.  First of all, keep in mind that in SLI, each GPU 
has its own copy of every resource.  (This is true in standard AFR SLI as well as in VR SLI.)  
Every time you upload a texture, a model, a constant buffer, or any other resource, it goes 
to both GPUs — and in fact to the same memory address on both GPUs.

In VR SLI, the driver will also submit the same command stream to both GPUs.  Every state 
setting and draw command your app performs will be executed on both GPUs, using its 
own copy of every resource referenced.

Because the GPUs have the same input data and execute the same command stream, they 
generate the same output.



Of course, we don’t actually want them to generate the same output; we want them to 
render a stereo pair.  So, in our API we have ways to specify a very limited set of state that 
can differ between the two GPUs: namely, constant buffer bindings and viewports.

So, you can prepare a constant buffer that contains the left eye view matrix, and another 
buffer with the right eye view matrix.  There is a SetConstantBuffers call in the API that 
takes both the left and right eye constant buffers and sends them to the respective GPUs.

Similarly, you can set up a render target with left and right eye viewports.  You don’t have 
to do that — remember, each GPU is rendering to its own copy of the render target, so 
they’re not overwriting each other in any case — but it can make things easier for an 
engine to set up different viewports per eye.



Finally, at some point we have to get both halves of the stereo pair back on a single GPU to 
present to the display.  So we have an API call that synchronizes the GPUs and blits an 
image from one to the other, over the PCI Express bus.

That way, at the end of the frame we can blit the right eye image back to GPU0 and present 
both eyes from there.

We can also blit things between GPUs at other points in the frame, if needed — with the 
proviso that each blit introduces a sync point between the GPUs, which can be harmful for 
performance.



Because of the way VR SLI works, all view-independent work gets duplicated on both GPUs.  
For example, both GPUs render the shadow maps.  Presumably, your shadow maps aren’t 
going to be any different between the left and right eyes, so this is a waste — the two GPUs 
will be generating exactly the same shadow map results.  We’re trading this inefficiency in 
exchange for lower latency.

Therefore we can’t expect to get perfect 2x scaling.  The scaling we see will depend on 
what proportion of the frame is taken up by view-dependent work, such as the actual eye 
views, versus view-independent work such as physics simulations and shadow maps.  I 
would argue that if you see 40% to 50% scaling with VR SLI, you’re doing pretty well.  
However, if you have much less view-independent work you would get closer to 2x scaling.

You could also consider splitting up the physics sims, shadow maps and so on and trying to 
do half of the work on each GPU, then syncing and blitting the results between GPUs 
before going on.  This can work, but it’s tricky to ensure an even work distribution, and as 
mentioned, the sync points can potentially hurt performance.



When you do blit between GPUs, it goes across the PCI Express bus, so just be aware of 
what kind of speed you can expect from that.  With PCIe 2.0 x16, you get about 8 GB/sec of 
bandwidth.  A single eye view for an Oculus headset is about 2 megapixels, so will take 
about 1 ms to transfer (at 32 bits per pixel).  With PCIe 3.0 you’ll get double the bandwidth, 
so half the time.  This is something that needs to be kept in mind when planning a 
rendering pipeline: the transfer time will eat up some of the benefit you got by distributing 
rendering across GPUs.

One piece of good news here is that the blits are done using a dedicated copy engine.  This 
is an engine on the GPU that just shoves bits from one GPU’s memory into the other, 
without consuming any computational resources.  So, other rendering work can continue 
during the blit, as long as it’s not reading or writing the same render targets that are being 
blitted.



In light of the fact that cross-GPU blits are somewhat slow, an interesting question comes 
up regarding the distortion pass.  We know that at the end of the frame we have to blit the 
right eye view to GPU0 so it can be presented on the display.  The question is, should we do 
this blit before or after distortion?  In other words, should we have each GPU perform 
distortion for one eye and then blit across the distorted image?  Or should we first blit the 
undistorted image, then run the distortion for both eyes on GPU0?

There are arguments to be made both ways.  If you do the distortion before the blit, the 
distortion gets to take advantage of both GPUs.  Also, there will be less data to transfer 
overall, because the post-distortion render target is smaller, by about 40% of the pixel 
count, than the pre-distortion render target.  On the other hand, you’ve introduced the 
extra latency of the sync and blit between when the distortion pass runs and when the 
image gets presented on the display.

If you do the distortion after the blit, you don’t have that extra latency.  There’s also the 
benefit that you’re just using the standard Oculus SDK distortion, which means you’ll be 
compatible with any future changes to the distortion pass that Oculus makes.  As opposed 
to the per-eye distortion, where you’d have to copy the Oculus distortion code out of their 
SDK and modify it to run per-eye.

Still, it’s not entirely clear which approach might be the better one in general.



VR SLI is currently implemented for D3D11 only.  It works on Fermi, Kepler, and Maxwell 
GPUs, on Windows 7 and up.

We have an NDA developer driver with VR SLI support available now, so if you’re interested 
in looking at this, get in touch with us and we’ll set you up with a driver.

We’re also working on support for VR SLI, and multiview rendering more generally, in 

OpenGL and other APIs — but that’s still down the road a bit.



We’ve talked a lot about the nuts and bolts of how multiview rendering and VR SLI operate, 
but as a game developer, what should you take away from this?

The most important thing is that you don’t want to process individual views one at a time 
anymore.  Instead, you want to teach your engine the concept of what you might call a 

multiview set — a set of related views that will be rendered together, such as the 
two eyes of a stereo pair, or the six faces of a cubemap.

Currently, most engines are doing something like this pseudocode snippet here at a 
high level.  They’re iterating over views as an outer loop.  For each view, they build a 
list of visible objects, then they calculate the appropriate constants for those 
objects and generate the rendering commands for them.



In multiview, what you want is a little bit different.  First, you want to build a list of visible 
objects that is the union of all the objects visible from all the views in the set.  Then, when 
you calculate the constants for an object, you build a set of constants for all views in the 
set.  For example, in stereo you might build a left eye and right eye matrix for the same 
object.  Those per-view constants should be stored together, in the same data structure, so 
they can be submitted to the multiview API.  Finally, you’ll submit the rendering commands 
just once for the whole set of views.

So, with a multiview API, rendering a stereo pair of views is really almost like rendering a 
single view.  All you have to do differently is calculate and submit a few extra matrices in 
your constant buffers, to set up the appropriate transforms for the left and right eye views.



Just a couple of other notes.  If you’re preparing your engine for multiview APIs, you’re 
going to want to keep track of which render targets are intended to store stereo data.  G-
buffers and scene color buffers would be in stereo, while things like shadow maps and 
physics simulation results would not be.  Depending on the details of the multiview API, 
you may need to configure stereo render targets differently, or allocate them as slices of a 
texture array, or something like that.

You’ll also want to keep track of sync points between the views — places where you 
need all the views’ rendering to be finished before continuing.  In VR SLI, such 
places may need to sync the GPUs and blit data between them, so it’s a good idea 
to keep track of where those places are.



That’s about all we have to say on stereo rendering today.  To review, we’ve explained the 
concept of multiview rendering, in which you submit a single stream of rendering 
commands that contains all the information necessary to render several different views.  
Having a single command stream lets you save CPU work, both in the engine and in the 
driver, versus completely independent command streams.

There are a range of possible implementations of multiview rendering, and some of them 
enable you to save some portion of GPU work by sharing some stages of the rendering 
pipeline across views.  There is a trade-off between flexibility and optimizability here, and 
no one is quite sure yet exactly what the right point is to hit on that spectrum.

Finally, we discussed VR SLI, a special case of multiview that’s implemented today.  VR SLI 
works by broadcasting a command stream to two GPUs, letting you render each eye on its 
own GPU and accomplishing stereo rendering with hardly any more overhead than single-
view rendering.



And that pretty much concludes the talk.  We’ve discussed two major components of VR 
Direct: asynchronous timewarp and VR SLI, for which we have APIs working today.  Again, 
VR Direct is a collection of a variety of technologies, all aimed at reducing latency and 
accelerating stereo rendering, so you’ll be hearing about it from NVIDIA again in the future.



Again, the context priorities and VR SLI APIs we talked about today are available now in an 
NDA developer driver, so if you’re really interested in working with these APIs, come talk to 
us, and we’ll get you set up with a driver.

Both context priorities and VR SLI on Fermi, Kepler, and Maxwell hardware.  The APIs are 
currently implemented for D3D11, and in addition, we have support for context priorities 
on Android already.  In the future we will gradually fill out the rest of the API/platform 
matrix — such as desktop GL, and eventually new APIs such as D3D12 and Vulkan.



Before we conclude, I’d just like to make a quick note.  All of the things we talked about 
today are hot out of the oven.  Some of the APIs that I’m talking about here literally did not 
exist six weeks ago.  They should be looked at as rough drafts, not finished products.

We are going to need more iterations before all this stuff settles out.  As an industry, we 
will need to try different things out, see what works and what doesn’t, and revise our APIs 
as needed.  Eventually we should consolidate and standardize on some common APIs and 
feature sets for things like multiview rendering — but we’re not there yet; we’re still 
experimenting and learning.  So things will be changing rapidly for awhile!



And that concludes our talk. We’ll have some time for questions and comments now, and 
you can email us as well.  The slides will be posted on NVIDIA’s developer website.  Thank 
you for listening.


