
gameworks.nvidia.com | GDC 2015

A Recipe for Smooth Gaming and Perfect Scaling with Multiple GPUs

NVIDIA SLI AND STUTTER AVOIDANCE:

http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Iain Cantlay (Developer Technology Engineer)

Lars Nordskog (Developer Technology Engineer)

NVIDIA SLI AND STUTTER AVOIDANCE:

http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

“SLI” – Set of multi-GPU technologies

Pixel counts increasing at a staggering rate (4K+)

Emulating the “hardware of tomorrow”

VR – 2 eyes, 2 GPUs

WHY SLI?

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

AFR – Alternate Frame Rendering

One frame per GPU in parallel

Want linear performance improvements for each GPU added

“SLI scaling”

AFR SLI abstracts all non-primary GPUs away from the runtime

Game sees one GPU

Driver does the “magic”

SLI BASICS

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Single GPU frame rendering

SLI BASICS

n+2 n+1 n n+3 n+4 GPU0

Display

Time

n n+1 n+2 n+3 n+4

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

2-way Alternate Frame Rendering
Parallelism

SLI BASICS

n+1 n+3 n+5 n+9 n+7

GPU0

GPU1

Display n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

Time

n+4 n+2 n n+6 n+8

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Allocated resources replicated per AFR GPU

Static GPU resource mirrored between GPUs

Reading from local memory is optimal

Static textures, IBs, VBs, etc.

Dynamic GPU resources can diverge

RTs, UAVs

SLI BASICS

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Up to linear performance scaling

“Frame” provides natural data
dependency boundary*

Uniform workloads (frames similar)

Non-uniform flip intervals (microstutter)

*Interframe dependencies

Input latency does not reduce with
increased performance

SLI BASICS

AFR Pros AFR Cons

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Up to linear performance scaling

“Frame” provides natural data
dependency boundary*

Uniform workloads (frames similar)

Non-uniform flip intervals (microstutter)

*Interframe dependencies

Input latency does not reduce with
increased performance

SLI BASICS

AFR Pros AFR Cons

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Naïve parallelism -> non-uniform flip intervals…

Reported framerate 2x, but perceived framerate closer to single GPU

MICROSTUTTER

GPU0

GPU1

Display

Time

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

… but SLI driver handles frame flip metering, so you don’t have to!

Back pressure to application avoids animation stutter

FLIP METERING

GPU0

GPU1

Display

Time

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

We know static resources replicated to all GPUs

Never change, so no problem

…but some RTs/UAVs are modified by GPU

Correctness! Driver must keep RTs/UAVs in sync between GPUs

Sustain “illusion” of single GPU

Data transferred GPU->GPU when reference “dirty”

INTERFRAME DEPENDENCIES

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Transferring data hurts SLI performance

Some transfers not necessary

Game updates resource entirely each frame

…But other transfers are necessary

Techniques that need previous frame results as input

Temporal feedback (luminance adaptation, TXAA)

Compute (simulations)

Partial updates (tiled shadowmap, cubemap, atlas textures)

Driver transfers entire mip slice/buffer

INTERFRAME DEPENDENCIES

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

SLI Profile skips transfers deemed unnecessary

Blunt instrument

Prioritize correctness

NVIDIA tests, ships official SLI profile with driver

Profiles usually more complicated than AFR1/AFR2

INTERFRAME DEPENDENCIES

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

SLI-enabled in Control Panel without SLI profile = single GPU

NVIDIA Control Panel AFR Modes

AFR1 transfers all dirty resources -> low scaling, but no corruption

AFR2 skips some transfers -> better scaling, but possible corruption

INTERFRAME DEPENDENCIES

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Driver doesn’t have all the information about game’s intent 

Need game to behave well, provide hints to driver, and become

“AFR-aware” for optimal performance!

SO WHERE’S THE PROBLEM?

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Queries or APIs preventing queuing of frames (Bad!)

Solution: SLI input latency same as single, so allow n+1 frames in flight for n GPUs

Readbacks to CPU (Dangerous!)

Solution: Avoid, or delay readback by n frames via buffering to avoid CPU stalling

Stalling Map() writes (Bad!)

Solution: Use WRITE_DISCARD/WRITE_NO_OVERWRITE

COMMON SCALING PITFALLS (CPU)

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Necessary transfer causing GPU->GPU serialization

Solution: Decouple GPUs, look back n frames on n-way config (input local)

Mod of per-frame ping-pong buffer -> n-way dependent transfers

Solution: Always Discard/Clear dynamic resource before bind, QA SLI with 3-way config

GPU-generated data not regenerated every frame

Solution: Regenerate data on each GPU, or hint to keep

COMMON SCALING PITFALLS (GPU)

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Renaming EXE to AFR-FriendlyD3D.exe

Enables n-way AFR, skips all transfers

Corruption, but ideal for checking “speed of light”

No scaling with rename -> CPU-GPU serialization or CPU-boundedness

Query NVAPI to detect SLI via number of GPUs

NvAPI_D3D_GetCurrentSLIState()

SLI profile “aware”… no profile returns “1 GPU”

INITIAL STEPS

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

1. Think through your interframe dependent effects/systems

2. Run with exe renamed to “AFR-FriendlyD3D.exe” to skip all GPU->GPU transfers of
dirty resources

3. Test thoroughly, looking for corruption

4. Address resources that are not “AFR Friendly”

Regenerate data for all GPUs, or hint to driver that data must persist

Hint what data can be discarded

SLI COMPATIBILITY PROCESS

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

“How do I regenerate data for each GPU?”

“Explicit synchronization”

Keep track of which GPUs receive updates

Re-issue for each “dirty” GPU

Allows discarding of transfers + GPU coherency

Regenerate work or hint to driver to keep?

Generally regenerating better, but case by case

Only so much data practically transferred per frame (performance)

TAKING ACTION

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

“How do I regenerate data for each GPU?” (cont)

TAKING ACTION

GPU0

Frame n

Simulation steps

n

n+1

n+1

n+2

n+2

n+3

n+3

n+4

n+4

n+5

n+5

n+6

n+6

n+7

n+7

n+8

n+8

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

“How do I regenerate data for each GPU?” (cont)

Simulation is duplicated for each GPU

Still faster than doing a transfer!

TAKING ACTION

GPU0

Frame n

Simulation steps

n

n+1 n+2

n+1 & n+2

n+3 n+4

n+4

n+5 n+6

n+6

n+7 n+8

n+8

GPU1

n-1 & n n+3 & n+4 n+5 & n+6 n+7 & n+8

 n & n+1 n+4 n+6 n+8 n+2 & n+3 n+4 & n+5 n+6 & n+7

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

“How do I hint what I *DO* need to persist between frames?”

NvAPI_D3D_BeginResourceRendering()/NvAPI_D3D_EndResourceRendering()

Wrap update -> driver transfers early/efficiently

NVAPI_D3D_RR_FLAG_FORCE_DISCARD_CONTENT works as Discard/Clear for ping-pong case

Begin/End assume only next GPU needs data

NVAPI_D3D_RR_FLAG_MULTI_FRAME if used for multiple frames

USE WITH CAUTION!!!

Final update of resource in frame

Don’t Begin/End > 1 time per frame, per resource

Begin/End takes precedence over profile

Entire resource transferred

TAKING ACTION

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

“How do I hint what I *DON’T* need to persist between frames?”

ID3D11DeviceContext1::DiscardView()/DiscardResource()

Ideal solution

Before bind in current frame

Only supported in DX11.1

ID3D11DeviceContext::Clear*()

Before bind in current frame

NvAPI_D3D_SetResourceHint()

Driver excludes resource from SLI “dirty” state tracking (never transfers)

Sticky through allocation lifetime

TAKING ACTION

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

SLI excellent for substantially increasing GPU performance

Ensure AFR friendly CPU behavior

Use AFR-FriendlyD3D.exe

Anticipate interframe dependent effects/systems

Design them to be AFR friendly

At minimum, focus on regenerating data or hinting what to keep between frames

BeginResourceRendering/EndResourceRendering hints

NVIDIA can remove the rest with profiles, but Discard APIs better

TAKEAWAYS

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Getting testing builds to NVIDIA early (Please )

For SLI profiling, identification issues, advice

QA SLI on 3-way configuration

Needs profile or AFR-FriendlyD3D.exe to scale

OH YEAH…

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Nsight SLILog

Plans to expand functionality and clarity

GPUView

OTHER RESOURCES

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/

gameworks.nvidia.com | GDC 2015

Thank you!

Iain Cantlay (icantlay@nvidia.com)

Lars Nordskog (lnordskog@nvidia.com)

QUESTIONS?

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/
mailto:icantlay@nvidia.com
mailto:lnordskog@nvidia.com

gameworks.nvidia.com | GDC 2015

Get the latest information for developers from NVIDIA and continue the discussion

gameworks.nvidia.com

GAMEWORKS

http://www.gameworks.nvidia.com/
http://www.gameworks.nvidia.com/
gameworks.nvidia.com

