New GPU Features of NVIDIA’s Maxwell Architecture

Holger Gruen - Senior DevTech Engineer
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30 am – 10:30 am</td>
<td>Holger Gruen, New GPU Features of NVIDIA’s Maxwell Architecture</td>
</tr>
<tr>
<td>11:00 am – 12:00 am</td>
<td>Iain Cantlay, NVIDIA SLI and stutter avoidance: a recipe for smooth gaming and perfect scaling with multiple GPUs</td>
</tr>
<tr>
<td>12:30 am – 13:30 pm</td>
<td>Andrei Tatarinov, Tim Tcheblokov, Far Cry 4, Assassin's Creed Unity and War Thunder: Spicing up PC graphics with GameWorks</td>
</tr>
<tr>
<td>14:00 pm – 15:00 pm</td>
<td>Nathan Reed, VR Direct: How NVIDIA Technology Is Improving The VR Experience</td>
</tr>
<tr>
<td>15:30 pm – 16:30 pm</td>
<td>Alexey Panteleev, VXGI: dynamic global illumination for games</td>
</tr>
<tr>
<td>17:00 pm – 18:00 pm</td>
<td>Jeffrey Kiel, Russ Kerschner, Brighter and faster graphics with NVIDIA Nsight Visual Studio Edition 4.5™ and beyond</td>
</tr>
</tbody>
</table>
Outline of this talk

- Architectural goals of Maxwell
 - Conservative Rasterization
 - Raster Order Views
 - Tiled Resources

- Multi-Projection Acceleration

- New Antialiasing Features

- Misc other new features

- Questions and Answers
Direct3D 12

- Latest high-performance graphics API
- Low-level model, even more direct
- Works across all Microsoft Platforms
- Supported by excellent tools
- Supports top PC hardware vendors
DirectX 12 Features

- New API is parallelizable for rendering on multicore CPUs
- Reduced API overhead for single-core work
- More nimble resource binding model using indexing
- More efficient data management/transfer model
- More explicit work scheduling model

- New Hardware Features

- Demos in station at the Microsoft Booth of API and tools
Outline of this talk

- Architectural goals of Maxwell
- DirectX12 hardware features
 - Conservative Rasterization
 - Raster Order Views
 - Tiled Resources
- Multi-Projection Acceleration
- New Antialiasing Features
- Misc other new features
- Questions and Answers
Maxwell and its architectural Goals

• New architecture for improved efficiency still on a 28nm process

• Massively improved perf / watt

• Focus on new graphics features
 • Real-time GI for rich dynamic scenes
 • Higher quality, programmable AA
 • Working set management
 • Scalable 2D graphics acceleration

• Create the best platform for DirectX 12
Maxwell and its architectural Goals

- New architecture for improved efficiency still on a 28nm process
- Massively improved perf / watt
- Focus on new graphics features
 - Real-time GI for rich dynamic scenes
 - Higher quality, programmable AA
 - Working set management
 - Scalable 2D graphics acceleration
- Create the best platform for DirectX 12

<table>
<thead>
<tr>
<th></th>
<th>680</th>
<th>780</th>
<th>980</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFLOPS</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>MEMORY</td>
<td>2GB</td>
<td>3GB</td>
<td>4GB</td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>POWER</td>
<td>195W</td>
<td>250W</td>
<td>165W</td>
</tr>
<tr>
<td>GFLOPS / WATT</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>
Maxwell and its architectural Goals

- New architecture for improved efficiency still on a 28nm process
- Massively improved perf / watt
- Focus on new graphics features
 - Real-time GI for rich dynamic scenes
 - Higher quality, programmable AA
 - Working set management
 - Scalable 2D graphics acceleration
- Create the best platform for DirectX 12
Maxwell and its architectural Goals

• New architecture for improved efficiency still on a 28nm process

• Massively improved perf / watt

• Focus on new graphics features
 • Real-time GI for rich dynamic scenes
 • Higher quality, programmable AA
 • Working set management
 • Scalable 2D graphics acceleration

• Create the best platform for DirectX 12
Maxwell and its architectural Goals

• New architecture for improved efficiency still on a 28nm process

• Massively improved perf / watt

• Focus on new graphics features
 • Real-time GI for rich dynamic scenes
 • Higher quality, programmable AA
 • Working set management
 • Scalable 2D graphics acceleration

• Create the best platform for DirectX 12
Outline of this talk

• Architectural goals of Maxwell
 • DirectX12 hardware features
 • Conservative Rasterization
 • Raster Order Views
 • Tiled Resources
 • Multi-Projection Acceleration
 • New Antialiasing Features
 • Misc other new features
 • Questions and Answers
Standard Rasterization Limitations

- Rasterization can’t easily create data-structures
 - Drops sub-pixel triangles

- Data-structures used in later compute passes
 - E.g. Ray-Tracing
Standard Rasterization Limitations

- Rasterization can’t easily create data-structures
 - Drops sub-pixel triangles

- Data-structures used in later compute passes
 - E.g. Ray-Tracing
Conservative Rasterization

- Draws all pixels a triangle touches
 - Different Tiers - see DX spec

- Possible before through GS trick but relatively slow
 - See J. Hasselgren et. Al, “Conservative Rasterization“, GPU Gems 2

- Now we can use rasterization do implement some nice techniques!
Conservative Rasterization Usecases

- C. Wymann et. al, “Frustum-Traced Raster Shadows: Revisiting Irregular Z-Buffers“, I3D 2015
- J. Story “Hybrid Ray-Traced Shadows“, D3D Day GDC 2015
Conservative Rasterization Usecases

- C. Wymann et. al, “Frustum-Traced Raster Shadows: Revisiting Irregular Z-Buffers“, I3D 2015
- J. Story “Hybrid Ray-Traced Shadows“, D3D Day GDC 2015
Hybrid Raytraced Shadows using a \(\text{NxNxd} \) primitive map

- Prim Buffer - Triangle vertices
- Prim Indices Map - Prim buffer indices of triangles
- Prim Count Map - \# of tris per texel
- Raytrace triangles in a later pass
Raytraced Shadows Demo
Shadow Map

SM = 8K x 8K (256 MB)
Ray Traced

SM = 3K x 3K (36 MB)
PM = 1K x 1K x 64 (256 MB)
Outline of this talk

• Architectural goals of Maxwell
 • DirectX12 hardware features
 – Conservative Rasterization
 – Raster Order Views
 – Tiled Resources
 • Multi-Projection Acceleration
 • New Antialiasing Features
 • Misc other new features
 • Questions and Answers
Pixel shader writes to UAVs are unordered
 - Can’t guarantee determinism

Can’t do a number of things
 - Programmable Blending
 - Smart OIT implementations
 - Arbitray g-buffer data packing
 - Other per-pixel data structures
Raster Order Views (ROVs)

- ROVs guarantee ordering
- Ordering doesn’t come for free
 - Depth complexity affects performance
- Always compare with alternative implementations
 - Advanced Blending Ops
 - Atomics
Outline of this talk

• Architectural goals of Maxwell
 • Conservative Rasterization
 • Raster Order Views
 • Tiled Resources

• Multi-Projection Acceleration

• New Antialiasing Features

• Misc other new features

• Questions and Answers
DX12 Tiled Resources

- Full support for tiled 3D Textures/Arrays

- On top of what DX11.2 provides

Recap Tiled Resources

- Enable fine grained working set management
- Texture defined as set of tiles
- Memory for tiles allocated separately
Tiled Resources applications

- Fine-grained working set management
 - Texture streaming/Clipmaps

- Variable resolution resources
 - Adaptive shadow maps
 - Sparse multi-resolution rendering

- Sparse representation
 - Voxel grids
 - Simulation - physics, path finding
Tiled Resources applications

- Fine-grained working set management
 - Texture streaming/ Clipmaps

- Variable resolution resources
 - Adaptive shadow maps
 - Sparse multi-resolution rendering

- Sparse representation
 - Voxel grids
 - Simulation - physics, path finding
Tiled Resources applications

- Fine-grained working set management
 - Texture streaming/ Clipmaps

- Variable resolution resources
 - Adaptive shadow maps
 - Sparse multi-resolution rendering

- Sparse representation
 - Voxel grids
 - Simulation - physics, path finding
Tiled Resources applications

- Fine-grained working set management
 - Texture streaming/ Clipmaps

- Variable resolution resources
 - Adaptive shadow maps
 - Sparse multi-resolution rendering

- Sparse representation
 - Voxel grids
 - Simulation - physics, path finding
Tiled Resources applications

- Fine-grained working set management
 - Texture streaming/ Clipmaps

- Variable resolution resources
 - Adaptive shadow maps
 - Sparse multi-resolution rendering

- Sparse representation
 - Voxel grids
 - Simulation - physics, path finding
Sparse Fluid Simulation

- Uses tiled resources to only simulate/store grid cells that contain fluid
- Save computation time and memory
- See Alex Dunn, “Sparse Fluid Simulation in DirectX”, D3D Day GDC 2015
Outline of this talk

• Architectural goals of Maxwell

• DirectX12 hardware features
 • Conservative Rasterization
 • Raster Order Views
 • Tiled Resources

• Multi-Projection Acceleration

• New Antialiasing Features

• Misc other new features

• Questions and Answers
Geometry Shader Challenges

• Significant overhead even for pass-through cases

• Significant overhead for viewport selection

• Significant amplification overhead for multiple viewports
Multi-Projection Acceleration

- Fast Geometry shader pass-through
- Fast viewport multi-casting
- Maxwell accelerates:
 - Voxelization
 - Cube-Map Rendering
 - Cascaded shadow maps
 - Multi-resolution rendering
Multi-Projection Acceleration

- Fast Geometry shader pass-through
- Fast viewport multi-casting

Maxwell accelerates:

- Voxelization
- Cube-Map Rendering
- Cascaded shadow maps
- Multi-resolution rendering
Multi-Projection Acceleration

- Fast Geometry shader pass-through
- Fast viewport multi-casting

Maxwell accelerates:
- Voxelization
- Cube-Map Rendering
- Cascaded shadow maps
- Multi-resolution rendering
Multi-Projection Acceleration

- Fast Geometry shader pass-through
- Fast viewport multi-casting
- Maxwell accelerates:
 - Voxelization
 - Cube-Map Rendering
 - Cascaded shadow maps
 - Multi-resolution rendering
Voxel Based GI - VXGI

- Uses multi-projection for fast voxelization

- See Alexey Panteleev’s talk later today, VXGI: dynamic global illumination for games
VXGI Result

VXGI
Reference rendering with NVIDIA Iray
VXGI demo
Multi-Projection API Support

- OpenGL+Android:
 - NV_geometry_shader_passthrough extension for GS passthrough
 - NV_viewport_array2 extension for viewport multicast
 - The extension specs have good shader examples

- DX11/DX12:
 - No explicit API publicly available yet - stay tuned
Outline of this talk

- Architectural goals of Maxwell
- DirectX12 hardware features
 - Conservative Rasterization
 - Raster Order Views
 - Tiled Resources
- Multi-Projection Acceleration
- New Antialiasing Features
- Misc other new features
- Questions and Answers
Quick Multisampling Recap
Target-independent Multisampling

- Decouples visibility rate from color sample rate
- Allows lower color buffer storage cost for custom AA techniques
- Introduces coverage reduction stage
Post-depth Coverage

- Pre-Maxwell: Coverage Mask delivered is pre-depth-test coverage
 - No way to get at the post-depth-test coverage

- Maxwell can deliver post-depth-coverage to the pixel shader
Multisample Coverage Override

- Pre-Maxwell: Shader can only reduce coverage sample set
- Maxwell can fully override raster-coverage mask
Aggregate G-Buffer AA demo

- C. Crassin et. al, ”Aggregate G-Buffer Anti-Aliasing”, ID3D 2015

- Uses post depth coverage to only process visible sub-samples

- Uses coverage override to route to right sub-sample cluster

- Other work using Maxwell AA features:
 - E. Enderton et. al, ”Accumulative Anti-Aliasing”, to appear

[Diagram showing MSAA 32x, AGAA 2A, and FXAA]
MSAA Coverage to Color Conversion
Programmable Sample Locations

- Sample locations fully programmable
- Foundation for Multi Frame sampled AA
- Interleaved sample positions
 - 16x sample locations can be tiled to a set of pixels
Programmable Sample Locations

- Sample locations fully programmable
- Foundation for Multi Frame sampled AA
- Interleaved sample positions
 - 16x sample locations can be tiled to a set of pixels
Programmable Sample Locations

- Sample locations fully programmable
- Foundation for Multi Frame sampled AA
- Interleaved sample positions
 - 16x sample locations can be tiled to a set of pixels
API support Antialiasing Features

- DirectX 12
 - Target-independent multisampling

- OpenGL+ Android:
 - Target-independent multisampling control:
 - NV_framebuffer_mixed_samples
 - EXT_raster_multisample
 - Coverage to color conversion: NV_fragment_coverage_to_color
 - Post-depth coverage: EXT_post_depth_coverage
 - Multisample coverage override: NV_sample_mask_override_coverage
 - Programmable sample locations: NV_sample_locations

- NvAPI:
 - Coming soon
Outline of this talk

• Architectural goals of Maxwell
 • Conservative Rasterization
 • Raster Order Views
 • Tiled Resources

• Multi-Projection Acceleration

• New Antialiasing Features

• Misc other new features

• Questions and Answers
Screen Space BBox Rasterization

- Screen Space Bbox rasterization
 - Reduce # of vertices sent to GPU
 - Speeds up particle systems, point sprite etc.

- Supported by these APIs:
 - OpenGL: NV_fill_rectangle extension
 - NvAPI: coming soon
Min/Max texture filtering

- Hardware support for min/max filtering

- Use cases:
 - Min-Max shadow maps
 - Other min-max reduction chains

- API support:
 - OpenGL: EXT_texture_filter_minmax
 - DirectX11.2

MAX returns “5”
MIN returns “0”
New Interlocked Operations 1

- 2D-vector: two 16bit floating point numbers

\[\begin{array}{c|c}
16bit\ fp & 16bit\ fp \\
\hline
\end{array} \]

- 4D-vector: four 16bit floating point numbers

\[\begin{array}{c|c|c|c}
16bit\ fp & 16bit\ fp & 16bit\ fp & 16bit\ fp \\
\hline
\end{array} \]
New Interlocked Operations 2

• Usecases:
 ▶ Reduce the number of Interlocked ops during e.g. light accumulation
 ▶ Save memory if you only need 16bit values

• API support
 ▶ OpenGL + Android: NV_shader_atomic_fp16_vector
 ▶ NvAPI: coming soon
Extended Blend Modes

- ZERO SRC
- DST
- SRC_OVER
- DST_OVER
- SRC_IN
- DST_IN
- SRC_OUT
- DST_OUT
- SRC_ATOP
- DST_ATOP
- XOR PLUS
- PLUS_CLAMPED
- PLUS_CLAMPED_ALPHA
- MULTIPLY
- SCREEN
- OVERLAY
- DARKEN
- LIGHTEN
- COLORDOODGE
- COLORBURN
- HARDLIGHT
- SOFTLIGHT
- SOFTLIGHT_SVG
- DIFFERENCE
- MINUS
- MINUS_CLAMPED
- EXCLUSION
- CONTRAST
- INVERT
- INVERT_KHR
- LINEARDODGE
- LINEARBURN
- VIVIDLIGHT
- LINEARLIGHT
- PINLIGHT
- HARDMIX
- RED
- GREEN
- BLUE
- HSL_HUE
- HSL_SATURATION
- HSL_COLOR
- HSL_LUMINOSITY
Outline of this talk

- Architectural goals of Maxwell
 - Conservative Rasterization
 - Raster Order Views
 - Tiled Resources

- Multi-Projection Acceleration

- New Antialiasing Features

- Misc other new features

- Questions and Answers
GameWorks

• Get the latest information for developers from NVIDIA and continue the discussion
• gameworks.nvidia.com