

TABLE OF CONTENTS

(61101 =] i B 0 Y] o 1= PPN 1

Chapter 2. Video Decoder Capabiliti@S......ceuieeeieeniieeioreiineisnesiaesiarssssssssosnsosssosnsosssonnss 2
2.1. Hardware Video Decoder Capabilities. . .civerueeeiiiiiiineiiiiiiiieeeeeiiiereeeeeenneeceesannnns 2

Chapter 3. INtrodUCtion.....ccieiiiiiiiiiiiiiiii i iiiiitiieeteiietenneeenensesnescssnsssnnnsessnasonns 4

Chapter 4. NVIDIA Video Decoder (NVCUVID)......ueiiieieiieeeeineeeeeneeeeeaeecnnncccsnsccasnsscannsens 5
2 D TTolo o [S O (=T L (o] o I PP 5
4.2, DECOAING SUIMACES. c uuutttiteeiitteteetieteeteeanaeeeeeeasnnneeessesnnneessssssnnnessssesnnneesssanns 6
4.3. Processing and Displaying Frames.ceiiiiiiiiitiiiiiiiiiiiiiiteeieeiiieseeeeeeniaeeseeeennnes 7
4.4. Performance Optimizations for NVIDIA Video Decoding.......c.ccviiiiiiiiiiiiiiiiiiniineennnnenn. 7
www.nvidia.com

NVIDIA Video Decoder (NVCUVID) Interface DA-05614-001_v8.0 | ii

Chapter 1.
OVERVIEW

The NVIDIA Video Decoder (NVCUVID) API enables developers to use the hardware
video decode capabilities with the ability to interoperate video with compute and
graphics. The NVCUVID API supports the following video codec formats: MPEG-2,
VC-1, H.264 (AVCHD), and H.265 (HEVC). Refer to Chapter 2 for the complete details
about video capabilities for each GPU architecture.

Applications that use this API can decode compressed video streams directly to video
memory. With frames in video memory, post processing can be done with CUDA
kernels. Additionally, the NVIDIA CUDA driver can allow the dedicated copy engines
to be used for asychronous I/O transfers between video memory and system memory.
Decoded video frames can either be presented to the display with graphics interop

for video playback, or frames can be passed directly to a dedicated hardware encoder
(NVENC) for video transcoding.

www.nvidia.com
NVIDIA Video Decoder (NVCUVID) Interface DA-05614-001_v8.0 | 1

Chapter 2.
VIDEO DECODER CAPABILITIES

2.1. Hardware Video Decoder Capabilities

(GM20x)

4080x4080
Performance: 8HD

2048x1024
1024x2048
Performance:
7.5HD, 6.5HD
(Interlaced), Max
bitrate: 60Mbps

4096x4096 Profile:

Baseline, Main,
High profile up

to Level 5.1,
Performance: 8HD
for 15Mbps, 6HD
when 40Mbps

GPU
Architecture MPEG-2 VC-1 H.264/AVCHD H.265/HEVC
Fermi (GF1xx) Max Resolution: Max Resolution: Max Resolution: Unsupported
4080x4080 2048x1024 4096x4096 Profile:
1024x2048 Baseline, Main,
High profile up
to Level 4.1, Max
Bitrate: 45mbps
Kepler (GK1xx) Max Resolution: Max Resolution: Max Resolution: Unsupported
4080x4080 2048x1024 4096x4096 Profile:
1024x2048 Main, High profile
up to Level 4.1
Maxwell Gen 1 - Max Resolution: Max Resolution: Max Resolution: Unsupported
(GM10x) 4080x4080 2048x1024 4096x4096 Profile:
Performance: 8HD | 1024x2048 Baseline, Main,
Performance: High profile up
7.5HD, 6.5HD to Level 5.1,
(Interlaced), Max Performance: 8HD
bitrate: 60Mbps for 15Mbps, 6HD
when 40Mbps
Maxwell Gen 2 - Max Resolution: Max Resolution: Max Resolution: Unsupported

(GM206)

www.nvidia.com

Maxwell Gen 2 -

Max Resolution:
4080x4080
Performance: 8HD

NVIDIA Video Decoder (NVCUVID) Interface

Max Resolution:
2048x1024
1024x2048
Performance:
7.5HD, 6.5HD

Max Resolution:
4096x4096 Profile:
Baseline, Main,
High profile up

to Level 5.1,

Max Resolution:
4096*2304 Profile:
Main profile up
to Level 5.1,
Performance:

DA-05614-001_v8.0 | 2

Video Decoder Capabilities

GPU
Architecture

MPEG-2

VC-1

H.264/AVCHD

H.265/HEVC

(Interlaced), Max
bitrate: 60Mbps

Performance: 8HD,
4kx2k 60fps @
120Mbps

8HD 4kx2k 60fps
@160Mbps, 5.1
high tier

www.nvidia.com

NVIDIA Video Decoder (NVCUVID) Interface

DA-05614-001_v8.0 | 3

Chapter 3.
INTRODUCTION

This NVIDIA Video Decoder (NVCUVID) API allows developers access the video
decoding features of NVIDIA graphics hardware. This APl is supported with multiple

OS platforms and works in conjunction with NVIDIA’s CUDA, Graphics, and Encoder
capabilities.

The NVIDIA Video Decoder API interoperates with CUDA, OpenGL, and Direct3D.

It supports CUDA fast memory copies between video memory and system memory.
Now it is possible to implement a fully hardware accelerated video pipeline where

all video stages are running directly on GPU. For video playback applications, video
frames can be processed with compute or graphics playback. For video transcoding
applications, frames can be sent directly to a dedicated hardware encoder (NVENC) for
video encoding.

The two decode samples NvDecodeD3D9 (DirectX) and NvDecodeGL (OpenGL on
windows and linux) demonstrate a hardware accelerated video playback pipeline:

Parse a video input source (using NVIDIA Video Decoder API)
Decode video on GPU using NVCUVID API.

Convert decoded surface NV12 format to RGBA.

Map RGBA surface to DirectX 9.0 or OpenGL surface.

5. Draw texture to screen.

L e

A single transcode example NvTranscoder for windows and linux demonstrates a
pipeline for video transcode:

1. Parse a video input source (using NVIDIA Video Decoder API)
2. Decode video on GPU using NVCUVID API.

3. Send YUV video frame to encoding using the NVENC APL

4. Receive a compressed video bitstream back to the host.

This document will focus on the use of the NVIDIA Video Decoder API (NVCUVID)
and the stages following decode, (i.e. format conversion and display using DirectX or
OpenGL). Parsing of the video source using the NVCUVID APl is secondary to the
sample. While NVCUVID has a built in video parser, most developers will already have
code to parse video streams down to the slice-level. The NVCUVID API can be used
hardware picture level decoding.

www.nvidia.com
NVIDIA Video Decoder (NVCUVID) Interface DA-05614-001_v8.0 | 4

Chapter 4.
NVIDIA VIDEO DECODER (NVCUVID)

The NVIDIA Video Decode (NVCUVID) API consists of a header-file: cuviddec.h and
nvcuvid.h lib-file: nveuvid. 1ib located in CUDA toolkit include files location. For the
samples in the NVIDIA Video SDK, the samples dynamically load the library functions
and only require that you include dynlink cuviddec.h and dynlink nvcuvid.h

in your source projects. These headers can be found at . /common/inc folder.

The Windows DLLs nvcuvid.d11 ship with NVIDIA display drivers. The Linux
libnvcuvid. so is included with Linux drivers (R260+).

This API defines five function entry points for decoder creation and use:

// Create/Destroy the decoder object
CUresult cuvidCreateDecoder (CUvideodecoder *phDecoder,
CUVIDDECODECREATEINFO *pdci) ;

CUresult cuvidDestroyDecoder (CUvideodecoder hDecoder) ;
// Decode a single picture (field or frame)

CUresult cuvidDecodePicture (CUvideodecoder hDecoder,
CUVIDPICPARAMS *pPicParams) ;

// Post-process and map a video frame for use in cuda

CUresult cuvidMapVideoFrame (CUvideodecoder hDecoder, int nPicIdx,
unsigned int *pDevPtr, unsigned int *pPitch,
CUVIDPROCPARAMS *pVPP) ;

// Unmap a previously mapped video frame
CUresult cuvidUnmapVideoFrame (CUvideodecoder hDecoder, unsigned int DevPtr) ;

4.1. Decoder Creation

The sample application uses this API through a C++ Wrapper class VideoDecoder
defined in VideoDecoder . h. The class’s constructor is a good starting point to see how
to setup the CUVIDDECODECREATEINFO for the cuvidCreateDecoder () method. Most
importantly, the create-info contains the following information about the stream that’s
going to be decoded:

1. codec-type
2. the frame-size
3. chroma format

www.nvidia.com
NVIDIA Video Decoder (NVCUVID) Interface DA-05614-001_v8.0 | 5

NVIDIA Video Decoder (NVCUVID)

The user also determines various properties of the output that the decoder is to generate:

1. Output surface format (currently only NV12 supported)

2. Output frame size

3. Maximum number of output surfaces. This is the maximum number of surfaces that
the client code will simultaneously map for display.

The user also needs to specify the maximum number of surfaces the decoder may
allocate for decoding.

4.2. Decoding Surfaces

The decode sample application is driven by the VideoSource class, which spawns its
own thread. The source calls a callback on the VideoParser class to parse a stream. The
VideoParser in turn calls back into two callbacks that handle the decode and display of
the frames.

The parser thread calls two callbacks to decode and display frames:

// Called by the video parser to decode a single picture. Since the parser will
// deliver data as fast as it can, we need to make sure that the picture index
// we're attempting to use for decode is no longer used for display.
static int CUDAAPI HandlePictureDecode (void *pUserData,

CUVIDPICPARAMS *pPicParams) ;

// Called by the video parser to display a video frame (in the case of field
// pictures, there may be two decode calls per one display call, since two
// fields make up one frame).
static int CUDAAPI HandlePictureDisplay(void *pUserData,

CUVIDPARSERDISPINFO *pPicParams) ;

The NVIDIA VideoParser passes a CUVIDPICPARAMS struct to the callback which can
be passed straight on to the cuvidDecodePicture () function. The CUVIDPICPARAMS
struct contains all the information necessary for the decoder to decode a frame or field;
in particular pointers to the video bitstream, information about frame size, flags if field
or frame, bottom or top field, etc.

The decoded result gets associated with a picture-index value in the CUVIDPICPARAMS
struct, which is also provided by the parser. This picture index is later used to map the
decoded frames to cuda memory.

The implementation of HandlePictureDecode () in the sample application waits if the
output queue is full. When a slot in the queue becomes available, it simply invokes the
cuvidDecodePicture () function, passing the pPicParams as received from the parser.

The HandlePictureDisplay () method is passed a CUVIDPARSERDISPINFO struct
which contains the necessary data for displaying a frame; i.e. the frame-index of the
decoded frame (as given to the decoder), and some information relevant for display like
frame-time, field, etc. The parser calls this method for frames in the order as they should
be displayed.

The implementation of HandlePictureDisplay () method in the sample application
simply enqueues the pPicParams passed by the parser into the FrameQueue object.

www.nvidia.com
NVIDIA Video Decoder (NVCUVID) Interface DA-05614-001_v8.0 | 6

NVIDIA Video Decoder (NVCUVID)

The FrameQueue is used to implement a producer-consumer pattern passing frames (or
better, references to decoded frames) between the VideoSource’s decoding thread and
the application’s main thread, which is responsible for their screen display.

4.3. Processing and Displaying Frames

The application’s main loop retrieves images from the FrameQueue
(copyDecodedFrameToTexture () in videoDecode . cpp) and renders the texture to
the screen. The DirectX device is set up to block on monitor vsync, throttling rendering to
60Hz for the typical flat-screen display. To handle frame rate conversion of 3:2 pulldown
content, we also render the frame multiple-times, according to the repeat information
passed from the parser.

copyDecodedFrameToTexture () is the method where the CUDA Decoder APl is used
to map a decoded frame (based on its Picture-Index) into CUDA device memory.

Post processing on a frame is done by mapping the frame through
cudaPostProcessFrame (). This returns a pointer to a frame decoded as a NV12
surface. This then gets passed to a CUDA kernel which converts the NV12 surface to
a RGBA surface. The final RGBA surface is then copied directly to either a DirectX or
OpenGL texture and then drawn to the screen.

4.4, Performance Optimizations for NVIDIA Video
Decoding

The two Samples (NvDecodeGL and NvDecodeD3D9) are intended for simplicity and
understanding of how to use this APL. It is by no means a fully optimized application.
This NVCUVID library makes use two different engines on the GPU, the Video
Processor for video decode, and the Compute Cores for colorspace conversion and
display. The Video Processor and the Compute Cores can be run concurrently. The
display thread for this sample is as follows:

1. cuvidMapVideoFrame — gets a CUDA device pointer from decoded frame of a
Video Decoder (using map)

2. cuD3D9ResourceGetMappedPointer — For cudaDecodeD3D9, this function
retrieves a CUDA device pointer from a D3D9 texture

3. cuGLMapBufferObject — For cudaDecodeGL, this function retrieves a CUDA
device pointer from an OpenGL PBO (Pixel Buffer Object).

4. cudaPostProcessFrame — calls all subsequent CUDA post-process functions on
that frame, and writes the result directly to the Mapped D3D texture.

5. cuD3D9UnmapResources — For NvDecodeD3D9, the CUDA driver will release the
pointer back to the D3D9 driver. This tells the Direct3D driver that CUDA is done
modifying the resource, and that it is safe to use it with D3D9.

6. cuGLUnmapBufferObject — For NvDecodeGL, the CUDA driver will release the
pointer back to the OpenGL driver. This tells the OpenGL driver that CUDA is done
modifying the resource, and that it is safe to use it with OpenGL.

7. cuvidUnmapVideoFrame (Decoded Frame)

www.nvidia.com
NVIDIA Video Decoder (NVCUVID) Interface DA-05614-001_v8.0 | 7

NVIDIA Video Decoder (NVCUVID)

For optimal performance, use two or more D3D9 or OpenGL surfaces to ping/pong
between them. This allows the driver to work on both decode and display without
waiting.

www.nvidia.com
NVIDIA Video Decoder (NVCUVID) Interface DA-05614-001_v8.0 | 8

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2012-2015 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVIbiA®

	Table of Contents
	Overview
	Video Decoder Capabilities
	2.1. Hardware Video Decoder Capabilities

	Introduction
	NVIDIA Video Decoder (NVCUVID)
	4.1. Decoder Creation
	4.2. Decoding Surfaces
	4.3. Processing and Displaying Frames
	4.4. Performance Optimizations for NVIDIA Video Decoding

