

NVENC_VideoEncoder_API_PG-06155-001_v06 | October 2015

Programming Guide

NVIDIA VIDEO ENCODER
(NVENC) INTERFACE

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | ii

REVISION HISTORY

Revision Date Author Description

1.0 2011/12/29 SD/CC Initial release.

1.1 2012/05/04 SD Update for Version 1.1

2.0 2012/10/12 SD Update for Version 2.0

3.0 2013/07/25 AG Update for Version 3.0

4.0 2014/07/01 SM Update for Version 4.0

5.0 2014/11/30 MV Update for Version 5.0

6.0 2015/10/15 VP Update for Version 6.0

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | iii

 TABLE OF CONTENTS

NVIDIA Video Encoder Interface ... 5

Introduction .. 5

1. NVIDIA Video Encoder Interface .. 5

2. Setting up Hardware for encoding .. 6

2.1 Opening an Encode Session .. 6

2.1.1 Initializing the Encode Device .. 6

2.2 Selecting an Encoder GUID ... 7

2.3 Querying Capability Values ... 7

2.4 Encoder Preset Configurations ... 7

2.4.1 Enumerating Preset GUIDs ... 7

2.4.2 Fetching Preset Encoder Configuration .. 8

2.5 Selecting an Encoder Profile .. 8

2.6 Getting Supported Input Format list ... 8

2.7 Initializing the Hardware Encoder Session .. 9

2.7.1 Configuring Encode Session Attributes ... 9

2.7.2 Finalizing the Codec Configuration for Encoding 10

2.7.3 Setting Encode Session Attributes .. 11

2.8 Creating Resources Required to Hold Input / Output Data 12

2.9 Retrieving Sequence Parameters ... 12

3. Encoding The Video Stream .. 13

3.1 Preparing Input Buffer for Encoding: ... 13

3.1.1 Input Buffers Allocated through the NVIDIA Video Encoder Interface: 13

3.1.2 Input Buffers Allocated Externally ... 13

3.2 Configuring Per-Frame Encode Parameters 13

3.2.1 Forcing the Current Frame to be used as Intra-Predicted Reference Frame .. 14

3.2.2 Forcing the Current Frame to be used as a Reference Frame 14
3.2.3 Forcing current frame to be used as an IDR frame 14

3.2.4 Requesting Generation of Sequence parameters 14

3.2.6 Enforcing a Constant QP ... 14
3.3 Submitting Input for Encoding ... 15

3.4 Generating Encoded Output ... 15

4. End of Encoding .. 16

4.1 Notifying the End of Input Stream .. 16

4.2 Releasing the Created Resources ... 16

4.3 Closing the Encode Session .. 16

5. Modes of Operation .. 17

5.1 Asynchronous Mode .. 17

5.2 Synchronous Mode ... 19

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | iv

6. Motion Estimation ONLY MODE .. 19

6.1 Query Capability Values .. 19

6.2 Create Resources for Input/Output Data .. 19

6.3 Run Motion Estimation ... 20

6.4 Release the Created Resources ... 20

7. Recommended NVENC settings .. 21

8. Threading Model ... 22

NVIDIA VIDEO ENCODER INTERFACE

INTRODUCTION

NVIDIA’s generation of GPUs based on the Kepler and Maxwell architectures contain a
hardware-based H.264/H.265 video encoder (referred to as NVENC). The NVENC

hardware takes YUV as input, and generates a H.264/H.265 video bit stream. NVENC

hardware’s encoding capabilities are accessed using the NVENC API. This document
provides information on how to program the NVENC using the APIs exposed in the

SDK.

Developers should have a basic understanding of the H.264/H. 265 Video Codec, and be
familiar with either Windows or Linux development.

1. NVIDIA VIDEO ENCODER INTERFACE

Developers can create a client application that calls NVENC API functions within

nvEncodeAPI.dll for Windows OSes or libnvidia-encode.so for Linux OSes.

These libraries are installed as part of the NVIDIA driver. The client application can
either link at run-time using LoadLibrary() on Windows OS or dlopen() for Linux

OS.

The client application must populate the structure versions of all the nested structures
for backward compatibility support. The client's first interaction with the NVIDIA Video

Encoder Interface is to call NvEncodeAPICreateInstance. This populates the input /

output buffer passed to nvEncodeAPICreateInstance with pointers to functions
that implement the functionality provided in the interface.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 6

2. SETTING UP HARDWARE FOR ENCODING

2.1 Opening an Encode Session

After loading the NVENC Interface, the client should first call

NvEncOpenEncodeSessionEx API to open an encoding session. This function
provides an encode session handle to the client, and that handle must be used for all

further API calls in the current session.

2.1.1 Initializing the Encode Device

The NVIDIA Encoder supports the use of the following types of Devices:

1) DirectX 9:

The client should create a DirectX 9 device with behavior flags including:

D3DCREATE_FPU_PRESERVE

D3DCREATE_MULTITHREADED

D3DCREATE_HARDWARE_VERTEXPROCESSING

The client should pass a pointer to the IUnknown interface of the created device [typecast

to void *] as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on
Windows 7 and later OS.

2) DirectX 10:

The client should pass a pointer to the IUnknown interface of the created device [typecast
to void *] as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on
Windows 7 and later OS.

3) DirectX 11:

The client should pass a pointer to the IUnknown interface of the created device [typecast
to void *] as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on
Windows 7 and later OS.

4) CUDA:

The client should create a floating CUDA context, and pass the CUDA context handle as
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to
NV_ENC_DEVICE_TYPE_CUDA. Use of CUDA device for Encoding is supported on
Windows XP and Linux, in addition to Windows 7 and later, from NVIDIA Video Encoder
Interface version 2.0 onwards.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 7

2.2 Selecting an Encoder GUID

The client calls the NVIDIA Encoder Interface to select an Encoding GUID that
represents the desired codec for encoding the video sequence in the following manner:

i) The client should call NvEncGetEncodeGUIDCount to get the number of supported
Encoder GUIDs from the NVIDIA Video Encoder Interface.

ii) The client should use this count to allocate a buffer of sufficient size to hold the
supported Encoder GUIDS.

iii) The client should then call NvEncGetEncodeGUIDs to populate this list.

The client should select a GUID that matches its requirement from this list and use that
as the encodeGUID for the remainder of the encoding session.

2.3 Querying Capability Values

In case the client needs to explicitly query the features supported by the Encoder, the

following should be done

i) The client is required to specify the capability attribute it wants to query through the
NV_ENC_CAPS_PARAM::capsToQuery parameter. This should be a member of the
NV_ENC_CAPS enum.

ii) The client should call NvEncGetEncoderCaps to determine support for the required
attribute.

Refer to the API reference NV_ENC_CAPS enum definition for interpretation of individual
capability attributes.

2.4 Encoder Preset Configurations

The NVIDIA Encoder Interface exposes various presets to cater to different use cases

which can be used by the client. Using presets through the Encoder Interface will

automatically set all of the relevant encoding parameters. This is a coarse level of control
exposed by the NVIDIA Encoder Interface to the client.

2.4.1 Enumerating Preset GUIDs

The client can enumerate supported Preset GUIDs for the selected encodeGUID as

follows:

i) The client should call NvEncGetEncodePresetCount to get the number of
supported Encoder GUIDs from the NVIDIA Video Encoder Interface.

ii) The client should use this count to allocate a buffer of sufficient size to hold the
supported Preset GUIDs.

iii) The client should then call NvEncGetEncodePresetGUIDs to populate this list.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 8

2.4.2 Fetching Preset Encoder Configuration

The client can either use the preset GUID for configuring the encode session or it can

fine-tune the encoder configuration corresponding to a preset GUID. This mechanism

provides a client the ability to fine-tune parameter values by overriding the preset
defaults.

The client should follow these steps to fetch a Preset Encode configuration:

i) The client should enumerate the supported presets as described above, in the section
“2.4.1 Enumerating Preset GUIDs”

ii) The client should select a Preset GUID for which the encode configuration is to be
fetched.

iii) The client should call NvEncGetPresetConfig with the selected EncodeGUID and
PresetGUID as inputs

iv) The required preset encoder configuration can be retrieved through
NV_ENC_PRESET_CONFIG::presetCfg.

v) This gives the client the flexibility to over-ride the default encoder parameters by the
specific preset configuration.

2.5 Selecting an Encoder Profile

The client may specify a profile to encode for specific encoding scenario.

(e.g. encoding video for playback on iPod, encoding video for BD authoring, etc.)

The client should do the following to retrieve a list of supported encoder profiles:

i) The client should call NvEncGetEncodeProfileGUIDCount to get the number of
supported Encoder GUIDs from the NVIDIA Video Encoder Interface.

ii) The client should use this count to allocate a buffer of sufficient size to hold the
supported Encode Profile GUIDS.

iii) The client should then call NvEncGetEncodeProfileGUIDs to populate this list.

The client should select the profile GUID that best matches its requirement.

2.6 Getting Supported Input Format list

The client should follow these steps to retrieve the list of supported input formats:

i) The client should call NvEncGetInputFormatCount.

ii) The Client should use the count retrieved from NvEncGetInputFormatCount to
allocate a buffer to hold the list of supported input buffer formats [list elements of type
NV_ENC_BUFFER_FORMAT].

iii) The client should then populate this list by calling NvEncGetInputFormats.

The client should select a format enumerated in this list for creating input buffers.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 9

2.7 Initializing the Hardware Encoder Session

The client needs to call NvEncInitializeEncoder with a valid encoder configuration
specified through NV_ENC_INITIALIZE_PARAMS, and encoder handle (returned on

successful opening of encode session)

2.7.1 Configuring Encode Session Attributes

Encode session Configuration is divided into three parts:

2.7.1.1 Session Parameters

Common parameters such as output dimensions, input format, display aspect ratio,

frame rate, average bitrate, etc. are available in NV_ENC_INITIALIZE_PARAMS structure.

The client should use an instance of this structure as input to NvEncInitalizeEncoder.

The Client must populate the following members of the NV_ENC_INITIALIZE_PARAMS

structure for the Encode session to be successfully initialized:

i) NV_ENC_INITALIZE_PARAMS::encodeGUID : The client must select a suitable
codec GUID as described in section “2.2 Selecting an Encoder GUID”

ii) NV_ENC_INITIALIZE_PARAMS::encodeWidth : The client must specify the desired
width of the encoded video.

iii) NV_ENC_INITIALIZE_PARAMS::encodeHeight: The client must specify the
desired height of the encoded video.

NV_ENC_INITALIZE_PARAMS::reportSliceOffsets can be used to enable reporting of

slice offsets. This feature requires NV_ENC_INITALIZE_PARAMS::enableEncodeAsync

to be set to 0, and does not work with MB-based and byte-based slicing for Kepler GPUs.

2.7.1.2 Advanced Codec-level parameters

Parameters dealing with the encoded bit stream such as GOP length, encoder profile,

Rate Control mode, etc. are exposed through the NV_ENC_CONFIG structure. The client
can pass codec level parameters through NV_ENC_INITIALIZE_PARAMS::codecConfig.

2.7.1.3 Advanced Codec-specific parameters

Advanced codec-specific parameters are available in NV_ENC_CONFIG_XXXX structures.

E.g.: H.264-specific parameters are available in NV_ENC_CONFIG_H264.

The client can pass codec-specific parameters through the

NV_ENC_CONFIG::encodeCodecConfig union.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 10

2.7.2 Finalizing the Codec Configuration for Encoding

2.7.2.1 High-level Control Using Presets

This is the simplest method of configuring the NVIDIA Video Encoder Interface, and

involves minimal setup steps to be performed by the client. This is intended for use
cases where the client does not need to fine-tune any codec level parameters.

In this case, the client should follow these steps:

i) The client should specify the session parameters as described in section “2.7.1.1 Session
Parameters”

ii) Optionally, the client can enumerate and select Preset GUID that best suits the current
use case, as described in section “2.4.1 Enumerating Preset GUIDs” The client should
then pass the selected Preset GUID using
NV_ENC_INITIALIZE_PARAMS::presetGUID.

This helps the NVIDIA Video Encoder interface to correctly configure the encoder
session based on the encodeGUID and presetGUID provided. Hence, this step is
recommended.

iii) The client should set the advanced codec-level parameter pointer
NV_ENC_INITIALIZE_PARAMS::codecParams to NULL

2.7.2.2 Coarse Control by overriding Preset Parameters

The client can choose to edit some encoding parameters, but may not want to populate
the complete encode configuration from scratch. In this case, the client is advised to

follow these steps:

i) The client should specify the session parameters as described in section “2.7.1.1 Session
Parameters”

ii) The client should enumerate and select a Preset GUID that best suites the current use
case, as described in section “2.4.1 Enumerating Preset GUIDs” The client should
retrieve a Preset encode configuration as described in section “2.4.2 Fetching Preset
Encoder Configuration”

iii) The client may need to explicitly query the capability of the encoder to support certain
features or certain encoding configuration parameters. For this, the client should do the
following:

 The client is required to specify the capability attribute it wants to query through the
NV_ENC_CAPS_PARAM::capsToQuery parameter. This should be a member

of the NV_ENC_CAPS enum.

 The client should call NvEncGetEncoderCaps to determine support for the

required attribute. Refer to NV_ENC_CAPS enum definition in the API reference
for interpretation of individual capability attributes.

iv) The client should then select a desired Preset GUID and fetch the corresponding Preset
Encode Configuration as described in: “2.4 Getting Preset Encoder Configurations”.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 11

v) The client can override any parameters from the preset NV_ENC_CONFIG according to
its requirements. The client should pass the fine-tuned NV_ENC_CONFIG structure using
NV_ENC_INITIALIZE_PARAMS::codecConfig pointer.

vi) Additionally, the client should also pass the selected preset GUID through
NV_ENC_INITIALIZE_PARAMS::presetGUID. This is to allow the NVIDIA Video
Encoder interface to program internal parameters associated with the encoding session
to ensure that the encoded output conforms to the client’s request. Passing the preset
GUID will not override the fine-tuned parameters.

2.7.3 Setting Encode Session Attributes

Once all Encoder settings have been finalized, the client should populate a

NV_ENC_CONFIG structure, and use it as an input to NvEncInitializeEncoder in order
to freeze the Encode settings for the current encodes session. Some settings such as Rate

Control mode, Average Bitrate, can be changed on-the-fly.

The client is required to explicitly specify the following while initializing the Encode
Session:

2.7.3.1 Mode of Operation

The client should set NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 1 if it
wants to operate in Asynchronous mode. Set it to 0 for operating in Synchronous mode.

Asynchronous mode encoding is only supported on Windows 7 and later Windows OS.

Refer to section 5 for more detailed explanation.

2.7.3.2 Picture-type Decision

If the client wants to send the input buffers in display order, it must set enablePTD = 1.

If the client wants to send the input buffers in encode order, it must set enablePTD = 0,

and must specify

 NV_ENC_PIC_PARAMS:: pictureType

 NV_ENC_PIC_PARAMS_H264::.displayPOCSyntax

 NV_ENC_PIC_PARAMS_H264 ::refPicFlag

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 12

2.8 Creating Resources Required to Hold Input /
Output Data

Once the Encode session is initialized, the client should allocate buffers to hold the
input/output data.

The client may choose to allocate input buffers through the NVIDIA Video Encoder

Interface, by calling NvEncCreateInputBuffer API. The input buffer width and height
should be 32-aligned. In this case, the client is responsible to destroy the allocated input

buffers before closing the Encode Session. It is also the client’s responsibility to fill the

input buffer with valid input data according to the chosen input buffer format.

The client should allocate buffers to hold the output encoded bit stream using the

NvCreateBitstreamBuffer API. It is the client’s responsibility to destroy these buffers

before closing the Encode Session.

Alternatively, in scenarios where the client cannot or does not want to allocate input

buffers through the NVIDIA Video Encoder Interface, it can use any externally allocated

DirectX resource as an input buffer. However, the client has to perform some simple
processing to map these resources to resource handles that are recognized by the

NVIDIA Video Encoder Interface before use. The translation procedure is explained in

section ‚3.1.2 Input Buffers Allocated Externally‛

If the client has used a CUDA device to initialize the encoder session, and wishes to use

input buffers NOT allocated through the NVIDIA Video Encoder Interface, the client is

required to use buffers allocated using the cuMemAlloc family of APIs. The NVIDIA
Video Encoder Interface version 5.0 only supports CUdevicePtr as input. Support for

CUarray inputs will be added in future versions.

Note: The client should allocate at least [1 + No. of B-Frames] Input/Output buffers.

2.9 Retrieving Sequence Parameters

After configuring the Encode Session, the client can retrieve the Sequence parameter

information at any time by calling NvEncGetSequenceParams. The client must allocate a

buffer of size NV_MAX_SEQ_HDR_LEN to hold the Sequence parameters. It is the client’s
responsibility to manage this memory.

By default, SPS PPS data will be attached to every IDR frame. However, the client can

request the NVIDIA Video Encoder Interface to generate SPS PPS data on the fly as well.
For this, the client must set NV_ENC_PIC_PARAMS::encodeFlags to

NV_ENC_FLAGS_OUTPUT_SPSPPS. The output frame generated for the current input will

then contain SPS PPS data attached to it.

The client can call NvEncGetSequenceParams at any time during the encoding session,

after it has called NvEncInitializeEncoder.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 13

3. ENCODING THE VIDEO STREAM

Once the Encode Session is configured and input/output buffers are allocated, the client

can start streaming the input data for encoding. The client is required to pass a handle to
a valid input buffer and a valid bit stream buffer to the NVIDIA Video Encoder Interface

for encoding an input picture.

3.1 Preparing Input Buffer for Encoding:

3.1.1 Input Buffers Allocated through the NVIDIA Video
Encoder Interface:

If the client has allocated input buffers through NvEncCreateInputBuffer, the client
needs to fill valid input data before using the buffer as input for encoding. For this, the

client should call NvEncLockInputBuffer to get a CPU pointer to the input buffer. Once

the client has filled input data, it should call NvUnlockInputBuffer. The client should
use the input buffer for encode only after unlocking it. The client must also take care to

unlock any locked input buffer before destroying it.

3.1.2 Input Buffers Allocated Externally

If the client is using externally allocated buffers as input, the client is required to call

NvEncRegisterResource before use with the NVIDIA Video Encoder Interface. The
client should also explicitly call NvEncUnregisterResource with this handle before

destroying the resource. The client should call NvEncMapInputResource to retrieve a

handle to the resource that is understandable by the NVIDIA Video Encoder Interface.
Note that the client is required to pass the registered handle as

NV_ENC_MAP_INPUT_RESOURCE::registeredResource. The mapped handle will

be made available in NV_ENC_MAP_INPUT_RESOURCE::mappedResource. The client
should use this mapped handle as the input buffer handle in NV_ENC_PIC_PARAM. The

client should call NvEncUnmapInputResource after it has finished using the resource as

an input to the NVIDIA Video Encoder Interface. The resource should not be used for
any other purpose outside the NVIDIA Video Encoder Interface while it is in ‘mapped’

state. Such usage is not supported and may lead to undefined behavior.

3.2 Configuring Per-Frame Encode Parameters

The client should populate a NV_ENC_PIC_PARAMS structure with the parameters it

requires to be applied to the current input picture. The client can do the following on a
per-frame basis:

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 14

3.2.1 Forcing the Current Frame to be used as Intra-
Predicted Reference Frame

The client should set NV_ENC_PIC_PARAMS::encodeFlags to
NV_ENC_FLAGS_FORCEINTRA.

3.2.2 Forcing the Current Frame to be used as a
Reference Frame

The client should set NV_ENC_PIC_PARAMS_H264::refPicFlag to 1

3.2.3 Forcing current frame to be used as an IDR
frame

The client should set NV_ENC_PIC_PARAMS_H264::forceIDR to 1.

3.2.4 Requesting Generation of Sequence parameters

The client should set NV_ENC_PIC_PARAMS::encodeFlags to

NV_ENC_FLAGS_OUTPUT_SPSPPS.

3.2.6 Enforcing a Constant QP

The client should set the flag NV_ENC_PIC_PARAMS::userForcedConstQP to 1 and
specify the required RateControl QP value in NV_ENC_RC_PARAMS:: constQP. This

request will be honored only if the Encode Session is already running with rate control

mode NV_ENC_PARAMS_RC_CONSTQP, or the rate control mode is being set to
NV_ENC_PARAMS_RC_CONSTQP in the current operation.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 15

3.3 Submitting Input for Encoding

The client should call NvEncEncodePicture to perform encoding.

The input picture data will be taken from the specified input buffer, and the encoded bit

stream will be available in the specified bit stream buffer once the encoding process
completes.

Common parameters such as timestamp, duration, input buffer pointer, etc. are

available in NV_ENC_PIC_PARAMS while Codec-specific parameters are available in
NV_ENC_PIC_PARAMS_XXXX structures.

For example, H.264-specific parameters are specified in NV_ENC_PIC_PARAMS_H264.

The client should specify the codec specific structure to NV_ENC_PIC_PARAMS using the
NV_ENC_PIC_PARAMS::codecPicParams member.

3.4 Generating Encoded Output

Upon completion of the encoding process for an input picture, the client is required to

call NvEncLockBitstream to get a CPU pointer to the encoded bit stream. The client can
choose to make a local copy of the encoded data or pass on the CPU pointer to a media

file writer.

The CPU pointer will remain valid until the client calls NvUnlockBitstreamBuffer. The
client should call NvUnlockBitstreamBuffer after it completes processing the output

data.

The client must ensure that all bit stream buffers are unlocked before destroying them
(while closing an encode session) or even before reusing it again as an output buffer.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 16

4. END OF ENCODING

4.1 Notifying the End of Input Stream

To notify the end of input stream, the client must call NvEncEncodePicture, with the

flag NV_ENC_PIC_PARAMS::encodeFlags set to NV_ENC_FLAGS_EOS. This must be done
before closing the Encode Session.

When notifying End of Stream, the client should set all other members of

NV_ENC_PIC_PARAMS to 0. No input buffer is required in case of EOS notification.

EOS notification effectively flushes the encoder. This can be called multiple times in a

single encode session.

4.2 Releasing the Created Resources

Once encoding completes, the client should destroy all allocated resources.

The client should call NvEncDestroyInputBuffer if it had allocated input buffers

through the NVIDIA Video Encoder Interface. The client must be sure not to destroy a

buffer while it is locked.

The client should call NvEncDestroyBitStreamBuffer to destroy each bit stream buffer

it had allocated. The client must be sure not to destroy a bit stream buffer while it is

locked.

4.3 Closing the Encode Session

The client should call NvEncDestroyEncoder to close the encoding session. The client
should ensure that all resources tied to the encode session being closed have been

destroyed before calling NvEncDestroyEncoder. These include Input buffers, bit stream

buffers, SPSPPS buffer, etc.

It must also ensure that all registered events are unregistered, and all mapped input

buffer handles are unmapped.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 17

5. MODES OF OPERATION

The NVIDIA Video Encoder Interface supports the following two modes of operation:

5.1 Asynchronous Mode

This mode of operation is used for asynchronous output buffer processing. For this
mode, the client allocates an event object and associates the event with an allocated

output buffer. This event object is passed to the NVIDIA Encoder Interface as part of the

NvEncEncodePicture API. The client can wait on the event in a separate thread. When
the event is signaled, the client calls the NVIDIA Video Encoder Interface to copy

bitstream output produced by the HW encoder. Note: Encoder Interface can support

asynchronous mode of operation for Windows only. In Linux, only synchronous mode
is supported (refer to Section ‚5.2 Synchronous Mode‛)

The client should set the flag NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 1

to indicate that it wants to operate in asynchronous mode. After creating the Event
objects [one object corresponds to each bitstream buffer it creates], the client needs to

register them with the NVIDIA Video Encoder Interface through the

NvEncRegisterAsyncEvent API. The client is required to pass a bitstream buffer
handle and an event handle as input to NvEncEncodePicture. The NVIDIA Video

Encoder Interface will signal this event when the HW finishes encoding the current

input data. The client can then call NvEncLockBitstream in non-blocking mode
[NV_ENC_LOCK_BITSTREAM::doNotWait flag set to 1 to fetch the output data.

The client should call NvEncUnregisterAsyncEvent to unregister the Event handles

before destroying the event objects. The asynchronous mode is the preferred mode of
operation over the synchronous mode.

A step-by-step control flow would be:

i) When working in asynchronous mode, the output sample must consist of an event + output
buffer and clients must work in multi-threaded manner (D3D9 device should be created
with MULTITHREADED flag).

ii) The output buffers are allocated using NvEncCreateBitstream API. The NVIDIA
Video Encoder Interface will return an opaque pointer to the output memory in
NV_ENC_CREATE_BITSTREAM_BUFFER::bitstreambuffer. This opaque output
pointer should be used in NvEncEncodePicture and NvEncLockBitsteam /
NvEncUnlockBitsteam calls. For accessing the output memory using CPU, client must
call NvEncLockBitsteam API. The number of IO buffers should be at least 4 + number
of B frames.

iii) The events are windows event handles allocated using windows CreateEvent API and
registered with NvEncodeAPI calling the function NvEncRegisterAsyncEvent before
encoding. The registering of events is required only once per encoding session. Clients must
unregister the events using NvEncUnregisterAsyncEvent before destroying the event
handles. The number of event handles must be same as number of output buffers as each
output buffer is associated with an event.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 18

iv) Client must create a secondary thread in which it can wait on the completion event and copy
the bitstream data from the output sample. Client will have 2 threads; one is the main
application thread which submits encoding work to NVIDIA Encoder while secondary
thread waits on the completion events and copies the compressed bitstream data from the
output buffer.

v) Client must send both the event and output buffer in
NV_ENC_PIC_PARAMS::outputBitstream and
NV_ENC_PIC_PARAMS::completionEvent

fields as part of NvEncEncodePicture API call.

vi) Client should then wait on the event on the secondary thread in the same order in which it
has called NvEncEncodePicture calls irrespective of input buffer re-ordering(encode
order != display order). NVIDIA Encoder takes care of the reordering in case of B frames
and should be transparent to the encoder clients.

vii) When the event gets signaled client must send down the output buffer of sample event it
was waiting on in NV_ENC_LOCK_BITSTREAM::outputBitstream field as part of
NvEncLockBitstream call.

viii) The NVIDIA Encoder Interface returns a CPU pointer and bitstream size in bytes as part of
the NV_ENC_LOCK_BITSTREAM.

ix) After copying the bitstream data, client must call NvEncUnlockBitstream for the locked
output bitstream buffer.

Note:
 The client will receive the event's signal and output buffer in the same order in which they

were queued.

 The LockBitstream parameter structure has a picture type field which will notify the output
picture type to the clients.

 Both, the input and output sample (output buffer and the output completion event) are free
to be reused once the NVIDIA Video Encoder Interface has signalled the event and the
client has copied the data from the output buffer.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 19

5.2 Synchronous Mode

This mode of operation is used for synchronous output buffer processing. In this mode
the client makes a blocking call to the NVIDIA Video Encoder Interface to retrieve the

output bitstream data from the encoder. The client sets the flag

NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 0 for operation in synchronous
mode. The client then must call NvEncEncodePicture without setting a completion

Event handle. The client must call NvEncLockBitstream with flag

NV_ENC_LOCK_BITSTREAM::doNotWait set to 0, so that the lock call blocks until the HW
Encoder finishes writing the output bitstream. The client can then operate on the

generated bitstream data and call NvEncUnlockBitstream. This is the only mode

supported on Linux.

6. MOTION ESTIMATION ONLY MODE

NVENC can also be used to do motion search for generating motion vectors and Mode

information. This feature can be of use in motion compensated filtering or for offloading

motion estimation to GPU for supporting the codecs like MPEG2 which are not
accelerated by NVENC. The procedure to use the feature is explained as follows.

6.1 Query Capability Values

The client should explicitly query the capability of the encoder to support ME only

mode. For this, the client should do the following:

1. The client is required to specify the capability attribute as

NV_ENC_CAPS_SUPPORT_MEONLY_MODE to query through the

NV_ENC_CAPS_PARAM::capsToQuery parameter.

2. The client should call NvEncGetEncoderCaps to determine support for the

required attribute.

NV_ENC_CAPS_SUPPORT_MEONLY_MODE indicates support of hardware ME only mode.

0 : ME only mode not supported.

1 : ME only mode supported.

6.2 Create Resources for Input/Output Data

The client should allocate at least one buffer for the input picture by calling

NvEncCreateInputBuffer API, and should also allocate one buffer for the reference

frame by using NvEncCreateInputBuffer API. The client can refer to Section 3.1.2 of
the programming guide [1] if they want to use any externally allocated DirectX resource

as input buffer. The client is responsible for filling in the valid input data.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 20

After the resources of inputs are created, the client needs to allocate resources for the

output data by using NvEncCreateMVBuffer API.

6.3 Run Motion Estimation

First, the client should create an instance of NV_ENC_MEONLY_PARAMS.

Second, the pointers of the input picture buffer and the reference frame buffer needs to

be fed into NV_ENC_MEONLY_PARAMS::inputBuffer and
NV_ENC_MEONLY_PARAMS::referenceFrame, respectively.

Third, the MVData* pointer returned by the NvEncCreateMVBuffer API in the
NV_ENC_CREATE_MV_BUFFER::MVbuffer field needs to be fed to

NV_ENC_MEONLY_PARAMS::outputMV.

Finally, the client should call NvEncMotionEstimationOnly API to execute the motion

estimation. The output motion vector data will be returned to the buffer

NV_ENC_MEONLY_PARAMS::outputMV.

6.4 Release the Created Resources

Once the usage of motion estimation is done, the client should call
NvEncDestroyInputBuffer to destroy the input picture buffer and the reference frame

buffer, and client should call nvEncDestroyMVBuffer to destroy the motion vector data

buffer.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 21

7. RECOMMENDED NVENC SETTINGS

NVENC is generally used in several scenarios like Recording, Game-casting,

Transcoding, streaming. The following are the recommended settings for each of the
use-cases to deliver the best encode quality. These recommendations are based on

evaluations done on ‚Second generation Maxwell GPUs‛. For the earlier GPUs the

clients of NVENC are recommended to do proper evaluations to meet their performance
requirements.

Use-case Recommended settings for optimum

quality/performance balance

Recording High Quality Presets

 VBR

 Very large VBV buffer size (four seconds)

 B Frames1

 Finite GOP length(Two seconds)

 Adaptive Quantization2

GameCasting and Cloud
Transcoding

 High Quality Presets

 Two Pass CBR

 Medium VBV buffer size (One second)

 B Frames1

 Finite GOP length (Two seconds)

 Adaptive Quantization2

Low Latency Streaming Low Latency High Quality Presets

 Two Pass CBR

 Very low VBV buffer sizes (Single Frame VBV)

 No B Frames

 Infinite GOP Length

 Adaptive Quantization2

1 Recommended for low motion games and natural video. It is observed that three B frames results in most
optimal quality

2 Recommended for Second Generation Maxwell GPUs and above.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 22

8. THREADING MODEL

In order to get maximum performance for encoding, the encoder client should create a

separate thread to wait on events or when making any blocking calls to the encoder
interface.

The client should avoid making any blocking calls from the main encoder processing

thread. The main encoder thread should be used only for encoder initialization and to
submit work to the HW Encoder using NvEncEncodePicture API, which is non-

blocking.

Output buffer processing, such as waiting on the completion event in asynchronous
mode or calling the NvEncLockBitstream/NvEncUnlockBitstream blocking API in

synchronous mode, should be done on the secondary thread. This ensures the main

encoder thread is never blocked except when the encoder client runs out of resources.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 23

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,

AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.”

NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT

TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,

MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation

assumes no responsibility for the consequences of use of such information or for any infringement

of patents or other rights of third parties that may result from its use. No license is granted by

implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in

this publication are subject to change without notice. This publication supersedes and replaces all

other information previously supplied. NVIDIA Corporation products are not authorized as critical

components in life support devices or systems without express written approval of NVIDIA

Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the

U.S. and other countries. Other company and product names may be trademarks of the respective

companies with which they are associated.

Copyright

© 2011-2015 NVIDIA Corporation. All rights reserved.

NVIDIA Video Encoder (NVENC) Interface PG-06155-001_v06 | 24

