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 Overview 
GPUs are designed to handle traditional rasterization, where only the nearest fragment is 
kept (Z-buffering). This sample shows how to use stencil routing to capture 8 layers of 
fragments per pixel per geometry pass. First, up to 16 fragments per pixel are captured in 
rasterization order, in 2 geometry passes. Second, a fullscreen shader pass sorts the 16 
fragments per pixel using a bitonic sort. Finally, another fullscreen shader pass renders either 
a translucency effect based on volumetric absorption and a dual-layer refraction 
approximation (Figure 1), order independent alpha blending, or the individual layers. 

To compare performance, the sample also features a depth peeling mode, which captures 
one layer per geometry pass. The advantage of depth peeling is that it captures its layers in 
depth order. However, stencil routing is faster when it costs more to render the geometry 
than to sort, and when all the fragments need to be captured. 

 

Figure 1. Example of volumetric effect rendered with a stencil 
routed k-buffer with 16 fragments per pixel. 
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 Implementation Details 
The code is organized as follows. The StencilRoutedKBuffer and DepthPeeledKBuffer 
classes are defined in KBuffer.h. They implement the Capture and Postprocess methods of 
the KBuffer abstract class. In addition, StencilRoutedKBuffer also provides a method to 
query the number of overflowed pixels (rendering a fullscreen quad with an occlusion 
query), and to asynchronously read the number of overflows.  

Running the Sample 
This sample requires DirectX 10. Because the algorithm relies on the ability to fetch the 
individual samples of a multisample texture, it cannot be implemented with DirectX 9. 

Use the mouse to rotate the camera, and the A/D/S/W keys to pan. 

Limitations 
On the GeForce 8 series, up to 8 fragments per pixel must be computed in one pass over 
the geometry. To capture more layers, more geometry passes are required. 

Because the stencil routed k-buffer algorithm stores the fragments in a multisample texture, 
it requires multisample antialiasing (MSAA) to be disabled when rendering to the k-buffer. 
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