

November 2007

Stencil Routed
K-Buffer

Kevin Myers
kmyers@nvidia.com

Louis Bavoil
lbavoil@nvidia.com

November 2007

Document Change History

Version Date Responsible Reason for Change
1.0 November 6, 2007 Louis Bavoil Initial release

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Overview
GPUs are designed to handle traditional rasterization, where only the nearest fragment is
kept (Z-buffering). This sample shows how to use stencil routing to capture 8 layers of
fragments per pixel per geometry pass. First, up to 16 fragments per pixel are captured in
rasterization order, in 2 geometry passes. Second, a fullscreen shader pass sorts the 16
fragments per pixel using a bitonic sort. Finally, another fullscreen shader pass renders either
a translucency effect based on volumetric absorption and a dual-layer refraction
approximation (Figure 1), order independent alpha blending, or the individual layers.

To compare performance, the sample also features a depth peeling mode, which captures
one layer per geometry pass. The advantage of depth peeling is that it captures its layers in
depth order. However, stencil routing is faster when it costs more to render the geometry
than to sort, and when all the fragments need to be captured.

Figure 1. Example of volumetric effect rendered with a stencil
routed k-buffer with 16 fragments per pixel.

November 2007

 Implementation Details
The code is organized as follows. The StencilRoutedKBuffer and DepthPeeledKBuffer
classes are defined in KBuffer.h. They implement the Capture and Postprocess methods of
the KBuffer abstract class. In addition, StencilRoutedKBuffer also provides a method to
query the number of overflowed pixels (rendering a fullscreen quad with an occlusion
query), and to asynchronously read the number of overflows.

Running the Sample
This sample requires DirectX 10. Because the algorithm relies on the ability to fetch the
individual samples of a multisample texture, it cannot be implemented with DirectX 9.

Use the mouse to rotate the camera, and the A/D/S/W keys to pan.

Limitations
On the GeForce 8 series, up to 8 fragments per pixel must be computed in one pass over
the geometry. To capture more layers, more geometry passes are required.

Because the stencil routed k-buffer algorithm stores the fragments in a multisample texture,
it requires multisample antialiasing (MSAA) to be disabled when rendering to the k-buffer.

References
"Stencil Routed A-Buffer", Kevin Myers, Louis Bavoil, ACM SIGGRAPH 2007 Technical
Sketch Program. http://developer.nvidia.com/object/siggraph-2007.html

“Deferred Rendering using a Stencil Routed K-Buffer”, Louis Bavoil, Kevin Myers,
ShaderX 6 - Advanced Rendering Techniques (to appear).

November 2007

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

