

February 2007
WP-03020-001_v01

White Paper

Denoising

White Paper

ii WP-03020-001_v01
 February 15, 2007

Document Change History

Version Date Responsible Reason for Change
_v01 February 15, 2007 AK, TS Initial release

Go to sdkfeedback@nvidia.com to provide feedback on Denoising.

WP-03020-001_v01 1
February 15, 2007

Denoising

Abstract
Image denoising algorithms may be the oldest in image processing. Many methods,
regardless of implementation, share the same basic idea – noise reduction through
image blurring. Blurring can be done locally, as in the Gaussian smoothing model
or in anisotropic filtering; by calculus of variations; or in the frequency domain, such
as Weiner filters. However a universal “best” approach has yet to be found.

Among others, neighborhood filters – filters that restore a pixel by taking an average
of the values of neighboring pixels with a similar color – are of great interest due to
the simplicity of implementation and the quality of the result. A GPU based
technique is to store an image in a texture and use a pixel shader to implement a
kernel.

Alexander Kharlamov
NVIDIA Corporation

White Paper

2 WP-03020-001_v01
 February 15, 2007

Motivation
White noise is one of the most common problems in image processing. Even a
high-resolution photo is bound to have some noise in it. But, whereas for a high-
resolution photo a simple box blur may be sufficient, because even a tiny features
like eyelashes or cloth texture will be represented by a large group of pixels.
Unfortunately, this is not the case with video where real-time noise reduction is still
a subject of many researches. However, current DX10 hardware allows us to
implement high quality filters that run at acceptable frame rate.

Figure 1. Filtering

Denoising

WP-03020-001_v01 3
February 15, 2007

How It Works
The main idea of any neighborhood filter is to calculate pixel weights depending on
how similar their colors are. We describe two such methods: the K Nearest Neighbors
and Non Local Means filters

K Nearest Neighbors Filter
The K Nearest Neighbors filter was designed to reduce white noise and is basically a
more complex Gaussian blur filter. Let u(x) be the original noisy image, and
KNNh,ru(x) be the result produced by the KNN filter with parameters h and r. Let
Ω(p) be the spatial neighborhood of a certain size surrounding pixel p. We will
consider it to be a block of pixels of size NxN, where N = 2M + 1 – so that p is the
central pixel of Ω(p). Then let
KNNh,ru(x) = where C(x) is the normalizing coefficient.

Figure 2. Original, Noisy and KNN Restored Picture

White Paper

4 WP-03020-001_v01
 February 15, 2007

Non Local Means Filter
The Non Local Means filter is a more complex variation of the KNN filter. Using
the same notation as for KNN, let NLMh,r,Bu(x) be the restored image, Let
B(q) be the spatial neighborhood of a certain size surrounding pixel q. We will
consider it to be a block of pixels of size KxK, where K = 2L + 1 – so that q is
the central pixel of B(q). Then let

NLMh,r,Bu(x) = yy
x

xy

xΩ

dee)(u
)(C

h
nceColorDista

r
||

)(

22

2

1 B(y))(B(x),−−−

∫ where C(x) is the

normalizing coefficient, and

αααxy
B

yBxB
xB

d|)(u))((u|
)(S

))(),(nce(ColorDista
)(

21 −−+= ∫

where S(B) is B’s area. Thus ColorDistance(B(x),B(y)) represents a
normalized sum of absolute differences between blocks around pixel u(x) and
around pixel u(y).

Figure 3. Original, Noisy and NLM Restored Picture.

Note: NLM can even fix some flaws in original images (Figure 3)

Figure 4. Original and NLM Restored Picture.

Denoising

WP-03020-001_v01 5
February 15, 2007

Choosing Parameters
There is always the question of choosing the best parameters for KNN and NLM.
As evident from the previous equations the weights for surrounding pixels depend
on the following parameters

 r – can be considered to be a traditional Gaussian blur coefficient. If then
KNN transforms into Gaussian blur. As with Gaussian blur r should be
equal to N.

 h – is a lot more tricky to choose. In fact, the best way to select h is to make it
user defined as estimation of quality of the image is highly subjective.

 The size of Ω depends on the size of the image, but good visual results are
usually achieved with a 7x7 block of pixels.

 NLM has one additional parameter – the size of B. B is usually a 7x7 block of
pixels.

Implementation Details
Both methods can be easily implemented in DX10. Original and noisy pictures are
loaded as textures and filter kernel is implemented in a pixel shader. The restored
image is rendered into a texture.

Running the Sample
KNN has the following parameters that can be altered by the user:

 Noise Level corresponds to in the formula for KNNh,ru(x).
 Lerp Coefficient, Weight Threshold and Counter Threshold are used in a simple
modification:
Once a weight is counted, it can be compared to g_WeightThreshold. The
number of weights that are greater than g_WeightThreshold are stored in
the fCounter variable. The g_WeightThreshold should lie between
(0.66f, 0.95f).
fCounter += (fWeight > g_WeightThreshold) ? 1.0f: 0.0f;

Once all the weights are counted, and a restored pixel has been computed, we
blend between the original and restored pixels. The blending coefficient is
g_LerpCoefficient, its values should lie between (0.00f 0.33f). A simple
check determines if the block is smooth: if fCounter exceeds
g_CounterThreshold (usually more then 66% of all pixels in the block)
then the block should be considered smooth, otherwise we presume that the
block contains edges or small features. The blending coefficient is altered to
preserve restored pixels in the smooth areas and original pixels otherwise.
f4Result.rgb = (fCounter > (g_CounterThreshold * iWindowArea))?
 lerp (f4Result, f4Tex00, 1-g_LerpCoefficient):
 lerp (f4Result, f4Tex00, g_LerpCoefficient);

White Paper

6 WP-03020-001_v01
 February 15, 2007

 Gaussian Sigma is a traditional Gaussian blur coefficient. It corresponds to in the
formula for KNNh,ru(x).

 Window Radius determines the size of Ω. If Ω is a block of pixels of size NxN,
where N = 2M + 1 then M = Window Radius.

NLM has one additional parameter:

 Block Radius determines the size of B. If B is a block of pixels of size KxK,
where K = 2L + 1 then L = Block Radius.

Performance
Traditionally, image filtering is much faster on the GPU than on the CPU. Both
KNN and NLM run faster on the GPU. On the CPU, KNN runs in real time while
the NLM is much slower.

Figure 5 shows what noise does to an image. Figure 6 shows repaired images.

Original Image Noisy Image

Figure 5. Noise in an Image

Denoising

WP-03020-001_v01 7
February 15, 2007

Image restored with KNN, runs at ~ 290 FPS with
Window Radius = 3

Image restored with NLM, runs at ~ 27 FPS with
Window Radius = 3 and Block Radius = 3

Figure 6. Restored Images

References
[1] A. Buades, B. Coll, and J. Morel. “Neighborhood Filters and PDE’s”. Technical
Report 2005-04, CMLA, 2005.

[2] L. Yaroslavsky. “Digital Picture Processing - An Introduction”. Springer Verlag, 1985.

.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

