

February 2007
WP-03018-001_v01

White Paper

Cloth Simulation

White Paper

ii WP-03018-001_v01
 February 15, 2007

Document Change History

Version Date Responsible Reason for Change
_v01 February 15, 2007 CZ, TS Initial release

Go to sdkfeedback@nvidia.com to provide feedback on Clipmap.

WP-03018-001_v01 1
February 15, 2007

Cloth Simulation

Abstract
The sample demonstrates how to simulate cloth on the GPU using DirectX 10.

The cloth vertex positions are computed in several rendering passes by looping
through the vertex and geometry shader stages, using the stream output stage to
stream the positions from the geometry stage directly back to video memory.

The few cloth vertices whose positions are interactively controlled by the user
(“anchor points”) are updated by setting the buffer containing the cloth vertex
positions as a render target and rendering point primitives.

The sample also makes extensive use of the bitwise shader operations introduced in
DirectX 10 to store and manage the state of each cloth vertex.

Cyril Zeller
NVIDIA Corporation

White Paper

2 WP-03018-001_v01
 February 15, 2007

Motivation
Cloth simulation exhibits a lot of data parallelism: a piece of cloth can be modeled
as a 2D network of many particles with the same dynamic. This makes it a good
candidate for GPU implementation.

The implementation proposed in the sample is geared toward performance and
visual realism, rather than physical accuracy. This is more suitable to applications
such as 3D games and virtual reality systems. These applications usually do not need
the result of the cloth simulation on the CPU as it is only used for rendering. It is
therefore all the more natural to entirely off-load it from the CPU to the GPU.

The model and simulation algorithm are the same as the DirectX 9 implementation
from the NVIDIA SDK 9.5, described in details in ShaderX4: Advanced Rendering
Techniques, section 1.2 “Practical Cloth Simulation for Modern GPU.”

The DirectX 10 implementation differs from the DirectX 9 implementation in that
the particles are stored in a buffer and mostly processed during the vertex and
geometry shader stages instead of being stored in a texture and processed during the
pixel shader stage. Since the geometry shader stage can output multiple vertices, this
allows us to handle more than one particle in one shader call, making the
implementation more work-efficient: Fewer rendering passes are required and the
distances between each particle are computed only once during each rendering pass.
Moreover, it is easier to handle non-rectangular meshes, or meshes with holes since
particles are stored in a vertex buffer.

Figure 1. Cloth Simulation Example

Cloth Simulation

WP-03018-001_v01 3
February 15, 2007

How It Works

Model and Algorithm
A cloth object is modeled as a set of particles. Each particle is subject to:

 External forces, such as gravity, wind and drag;
 Various constraints:

 To maintain the overall shape of the object (spring constraints),
 To prevent interpenetration with the environment (collision constraints).

The particle’s equation of motion resulting from applying the external forces is
integrated using Verlet integration.

The various constraints create a system of equations linking the particles’ positions
together. This system is solved at each simulation time step by relaxation; that is by
enforcing the constraints one after the other for a given number of iterations.

Spring constraints between neighboring particles are of two types as illustrated in
Figure 2.

 Structural Springs Shear Springs

Figure 2. Spring Constraints Between Neighboring Particles

A spring constraint between two particles, P and Q, is defined as a distance
constraint between P and Q:

Distance(P, Q) = distance at rest

and enforced by moving P and Q away or towards each other as illustrated in
Figure 3.

White Paper

4 WP-03018-001_v01
 February 15, 2007

Figure 2. Distance Constraint Between Particles P and Q

The environment is defined as a set of collision objects of various geometric types:
planes, spheres, capsules, ellipsoids. A collision constraint between a particle and a
collision object is enforced by checking whether the particle is inside the object or
not, and if it is inside, by moving the particle to a position at the surface of the
object, usually the position at the surface that is the closest to the particle’s current
position.

Following is an outline of the complete algorithm for every simulation step:

 Step 1: For every particle that is not an anchor point:
Apply force through equation of motion

 Step 2: For every particle that is an anchor point:
Update position

 Step 3: For every relaxation step:
 Step 3a: For every spring constraint:
Enforce spring constraint

 Step 3b: For every particle:
 For every collision object:
Enforce collision constraint

GPU Implementation
The particles are stored in a buffer and, at each simulation step, processed through
several rendering passes.

Forces can be applied to each particle in parallel. Similarly, collision constraints can
be enforced for each particle in parallel. So, Step 1 and Step 3b are implemented as
one rendering pass through the vertex shader stage.

Updating the anchor points’ positions can also be done in parallel, but given that the
number of anchor points represents a small percentage of the total number of
particles, Step 2 is implemented as one rendering pass through the pixel shader
stage by rendering one point primitive per anchor point.

Distance at rest

P

P

Q

P Q

Q

Cloth Simulation

WP-03018-001_v01 5
February 15, 2007

A spring constraint involves two vertices; so it is processed during the geometry
shader stage as a line primitive. The geometry shader can actually process more than
one constraint in one call since it can have up to six vertices as input by declaring its
input parameter as a triangle with adjacency. The choice of the optimal number of
input vertices is not straightforward: On one hand, if fewer vertices are processed by
one geometry shader invocation, then more rendering passes are required to process
all constraints; on the other hand, geometry shader performance degrades as more
vertices are output. In the sample, we chose to process four vertices per geometry
shader (one line with adjacency) as the best compromise. We therefore process one
group of spring constraints per geometry shader call.

Two spring constraints can be enforced in parallel if they are independent; meaning
that the two pairs of particles involved in each constraint do not share a particle.
Similarly, two groups of spring constraints can be enforced in parallel if they are
independent (each spring constraint of one of the two groups is independent from
each spring constraint of the other group). Step 3a therefore consists of several
rendering passes, each of them processing one set of independent groups of
constraints. These sets must be a partition of the total set of constraints and in order
to minimize the number of rendering passes required to process all constraints, they
need to be maximal. Figure 4 shows the four sets used in the sample for a
rectangular piece of cloth; Step 3a is therefore performed in four rendering passes.

Figure 4. Partitioning of the total set of spring constraints in
four sets of independent groups of spring
constraints

White Paper

6 WP-03018-001_v01
 February 15, 2007

Implementation Details
The particle attributes (state, position, normal, tangent, color) are stored into
attribute buffers.

The state attribute is a 32-bit integer whose bits encode connectivity information
and specify whether the particle is an anchor point or not. The state attribute is
stored in the position buffer.

There are three copies of the position buffers: One of them is bound as input to the
vertex shader stage and another one is bound to the stream output shader stage; the
third one is necessary because Verlet integration also requires the particle positions
from the previous simulation step; it is bound to the vertex shader stage during
Step 1. The buffers are rotated after each rendering pass.

An index buffer is required for each rendering pass of Step 3a to feed the geometry
shader stage with the right groups of 4-tuples of particles in the most optimal order.
Figure 5 illustrates the layout of such an index buffer for the top right set from
Figure 4. There are four different connection configurations in this case depending
on the location of the particles of the 4-tuples within the piece of cloth (interior,
vertical edge, horizontal edge, corners). These connection configurations, encoded
in the state attribute of the particles, are handled as a switch statement in the
geometry shader. In order to maximize branch coherency, the index buffer is laid
out such that the 4-tuples with the same connection configuration are grouped
together.

The order in which the particle positions are output to the position buffer through
the stream output stage at the end of each rendering pass of Step 3a is determined
by the corresponding index buffer. Therefore, at the end of Step 3a, the particle
positions are stored in the position buffer in a different order than the input order at
the beginning of Step 3a. That is why Step 3b also requires an index buffer whose
function is to reorder the particle positions into the order assumed at the beginning
of Step 3a and by the rendering step.

Following is an outline of the complete algorithm for every simulation step:

 Step 1:
 Set a vertex shader that applies force (ApplyForces)
 Set position buffer as stream output target
 Render as a point list
 Swap position buffers

 Step 2:
 Set a pixel shader that updates position (TransformAnchorPointPS)
 Set position buffer as render target
 Render anchor points only as a point list
 Swap position buffers

Cloth Simulation

WP-03018-001_v01 7
February 15, 2007

 Step 3: For every relaxation step:
 Step 3a: For each sets of independent groups of spring constraints:

 Set a geometry shader that applies distance constraints
(SatisfyStructuralAndShearSpringConstraints,
SatisfyShearSpringConstraints)
 Set position buffer as stream output target
 Render as an indexed line list with adjacency
 Swap position buffers

 Step 3b:
 Set a geometry shader that applies distance constraints
(SatisfyCollisionConstraints)
 Set position buffer as stream output target
 Render as an indexed point list
 Swap position buffers

White Paper

8 WP-03018-001_v01
 February 15, 2007

Figure 5. Index Buffer Layout for Spring Constraints

void SatisfySpringConstraintsGS(lineadj Particle particle[4],

 inout PointStream<Particle> stream)

{

 switch (connectionConfiguration) {

 case 0:

 SatisfyDistanceConstraint(particle[0], RIGHT, particle[1]);

 SatisfyDistanceConstraint(particle[0], DOWN, particle[2]);

 SatisfyDistanceConstraint(particle[2], RIGHT, particle[3]);

 // etc.

 break;

 case 1:

 SatisfyDistanceConstraint(particle[0], DOWN, particle[1]);

 SatisfyDistanceConstraint(particle[2], DOWN, particle[3]);

 break;

 case 2:

 ...

 case 4:

 break;

 }

 for (int i = 0; i < 4; ++i) stream.Append(particle[i]);

}

...

Input Vertex Buffer Output Vertex Buffer

...

Geometry

Shader
...

Input Index Buffer

1 20 12 3 ... 1421 2 5

0 1

3 2

0

1

2

3

Cloth Simulation

WP-03018-001_v01 9
February 15, 2007

The user can also cut cloth by dragging the mouse over it from one window point to
another. To compute the cut, these two window points are back-projected to their
corresponding world space positions to define a 3D triangle together with the
camera origin. This triangle acts as a cutter (see Figure 6); every cloth spring it
intersects is suppressed.

Figure 6. The Triangle Defined by the Mouse Motion Acts as
a Cutter

Which springs intersect with the cutter is determined during the first pass through
Step 3a that immediately follows the user cutting action. A spring is suppressed by
modifying the connection configurations of the two corresponding particles.

During the rendering pass, if a triangle has edges that correspond to springs that
have been previously suppressed, it is tessellated on-the-fly into up to four new
triangles to approximate the cut: The positions of the new vertices are not based on
the exact cut location, but simply set as if springs were always cut in their middle.
These new vertices are not collided against the environment to save computation
time.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

