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Cloth Simulation 

Abstract 
The sample demonstrates how to simulate cloth on the GPU using DirectX 10. 

The cloth vertex positions are computed in several rendering passes by looping 
through the vertex and geometry shader stages, using the stream output stage to 
stream the positions from the geometry stage directly back to video memory. 

The few cloth vertices whose positions are interactively controlled by the user 
(“anchor points”) are updated by setting the buffer containing the cloth vertex 
positions as a render target and rendering point primitives. 

The sample also makes extensive use of the bitwise shader operations introduced in 
DirectX 10 to store and manage the state of each cloth vertex. 
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Motivation 
Cloth simulation exhibits a lot of data parallelism: a piece of cloth can be modeled 
as a 2D network of many particles with the same dynamic. This makes it a good 
candidate for GPU implementation. 

The implementation proposed in the sample is geared toward performance and 
visual realism, rather than physical accuracy. This is more suitable to applications 
such as 3D games and virtual reality systems. These applications usually do not need 
the result of the cloth simulation on the CPU as it is only used for rendering. It is 
therefore all the more natural to entirely off-load it from the CPU to the GPU. 

The model and simulation algorithm are the same as the DirectX 9 implementation 
from the NVIDIA SDK 9.5, described in details in ShaderX4: Advanced Rendering 
Techniques, section 1.2 “Practical Cloth Simulation for Modern GPU.” 

The DirectX 10 implementation differs from the DirectX 9 implementation in that 
the particles are stored in a buffer and mostly processed during the vertex and 
geometry shader stages instead of being stored in a texture and processed during the 
pixel shader stage. Since the geometry shader stage can output multiple vertices, this 
allows us to handle more than one particle in one shader call, making the 
implementation more work-efficient: Fewer rendering passes are required and the 
distances between each particle are computed only once during each rendering pass. 
Moreover, it is easier to handle non-rectangular meshes, or meshes with holes since 
particles are stored in a vertex buffer. 
 

 

Figure 1. Cloth Simulation Example 
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How It Works 

Model and Algorithm 
A cloth object is modeled as a set of particles. Each particle is subject to: 

 External forces, such as gravity, wind and drag; 
 Various constraints: 

 To maintain the overall shape of the object (spring constraints), 
 To prevent interpenetration with the environment (collision constraints). 

The particle’s equation of motion resulting from applying the external forces is 
integrated using Verlet integration. 

The various constraints create a system of equations linking the particles’ positions 
together. This system is solved at each simulation time step by relaxation; that is by 
enforcing the constraints one after the other for a given number of iterations. 

Spring constraints between neighboring particles are of two types as illustrated in 
Figure 2. 

 

 
      Structural Springs   Shear Springs 

Figure 2. Spring Constraints Between Neighboring Particles 
 

A spring constraint between two particles, P and Q, is defined as a distance 
constraint between P and Q: 

Distance(P, Q) = distance at rest 

and enforced by moving P and Q away or towards each other as illustrated in 
Figure 3. 
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Figure 2. Distance Constraint Between Particles P and Q 
 

The environment is defined as a set of collision objects of various geometric types: 
planes, spheres, capsules, ellipsoids. A collision constraint between a particle and a 
collision object is enforced by checking whether the particle is inside the object or 
not, and if it is inside, by moving the particle to a position at the surface of the 
object, usually the position at the surface that is the closest to the particle’s current 
position. 

Following is an outline of the complete algorithm for every simulation step: 

 Step 1: For every particle that is not an anchor point: 
Apply force through equation of motion 

 Step 2: For every particle that is an anchor point: 
Update position 

 Step 3: For every relaxation step: 
 Step 3a: For every spring constraint: 
Enforce spring constraint 

 Step 3b: For every particle: 
 For every collision object: 
Enforce collision constraint 

GPU Implementation 
The particles are stored in a buffer and, at each simulation step, processed through 
several rendering passes. 

Forces can be applied to each particle in parallel. Similarly, collision constraints can 
be enforced for each particle in parallel. So, Step 1 and Step 3b are implemented as 
one rendering pass through the vertex shader stage. 

Updating the anchor points’ positions can also be done in parallel, but given that the 
number of anchor points represents a small percentage of the total number of 
particles, Step 2 is implemented as one rendering pass through the pixel shader 
stage by rendering one point primitive per anchor point. 

Distance at rest 

P 

P 

Q

P Q 
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A spring constraint involves two vertices; so it is processed during the geometry 
shader stage as a line primitive. The geometry shader can actually process more than 
one constraint in one call since it can have up to six vertices as input by declaring its 
input parameter as a triangle with adjacency. The choice of the optimal number of 
input vertices is not straightforward: On one hand, if fewer vertices are processed by 
one geometry shader invocation, then more rendering passes are required to process 
all constraints; on the other hand, geometry shader performance degrades as more 
vertices are output. In the sample, we chose to process four vertices per geometry 
shader (one line with adjacency) as the best compromise. We therefore process one 
group of spring constraints per geometry shader call. 

Two spring constraints can be enforced in parallel if they are independent; meaning 
that the two pairs of particles involved in each constraint do not share a particle. 
Similarly, two groups of spring constraints can be enforced in parallel if they are 
independent (each spring constraint of one of the two groups is independent from 
each spring constraint of the other group). Step 3a therefore consists of several 
rendering passes, each of them processing one set of independent groups of 
constraints. These sets must be a partition of the total set of constraints and in order 
to minimize the number of rendering passes required to process all constraints, they 
need to be maximal. Figure 4 shows the four sets used in the sample for a 
rectangular piece of cloth; Step 3a is therefore performed in four rendering passes. 

 

 

Figure 4. Partitioning of the total set of spring constraints in 
four sets of independent groups of spring 
constraints 
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Implementation Details 
The particle attributes (state, position, normal, tangent, color) are stored into 
attribute buffers. 

The state attribute is a 32-bit integer whose bits encode connectivity information 
and specify whether the particle is an anchor point or not. The state attribute is 
stored in the position buffer. 

There are three copies of the position buffers: One of them is bound as input to the 
vertex shader stage and another one is bound to the stream output shader stage; the 
third one is necessary because Verlet integration also requires the particle positions 
from the previous simulation step; it is bound to the vertex shader stage during 
Step 1. The buffers are rotated after each rendering pass. 

An index buffer is required for each rendering pass of Step 3a to feed the geometry 
shader stage with the right groups of 4-tuples of particles in the most optimal order. 
Figure 5 illustrates the layout of such an index buffer for the top right set from 
Figure 4. There are four different connection configurations in this case depending 
on the location of the particles of the 4-tuples within the piece of cloth (interior, 
vertical edge, horizontal edge, corners). These connection configurations, encoded 
in the state attribute of the particles, are handled as a switch statement in the 
geometry shader. In order to maximize branch coherency, the index buffer is laid 
out such that the 4-tuples with the same connection configuration are grouped 
together. 

The order in which the particle positions are output to the position buffer through 
the stream output stage at the end of each rendering pass of Step 3a is determined 
by the corresponding index buffer. Therefore, at the end of Step 3a, the particle 
positions are stored in the position buffer in a different order than the input order at 
the beginning of Step 3a. That is why Step 3b also requires an index buffer whose 
function is to reorder the particle positions into the order assumed at the beginning 
of Step 3a and by the rendering step. 

Following is an outline of the complete algorithm for every simulation step: 

 Step 1: 
 Set a vertex shader that applies force (ApplyForces) 
 Set position buffer as stream output target 
 Render as a point list 
 Swap position buffers 

 Step 2: 
 Set a pixel shader that updates position (TransformAnchorPointPS) 
 Set position buffer as render target 
 Render anchor points only as a point list 
 Swap position buffers 
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 Step 3: For every relaxation step: 
 Step 3a: For each sets of independent groups of spring constraints: 

 Set a geometry shader that applies distance constraints 
(SatisfyStructuralAndShearSpringConstraints, 
SatisfyShearSpringConstraints) 
 Set position buffer as stream output target 
 Render as an indexed line list with adjacency 
 Swap position buffers 

 Step 3b: 
 Set a geometry shader that applies distance constraints 
(SatisfyCollisionConstraints) 
 Set position buffer as stream output target 
 Render as an indexed point list 
 Swap position buffers 
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Figure 5. Index Buffer Layout for Spring Constraints 

void SatisfySpringConstraintsGS(lineadj Particle particle[4], 

                                inout PointStream<Particle> stream) 

{ 

    switch (connectionConfiguration) { 

        case 0: 

            SatisfyDistanceConstraint(particle[0], RIGHT, particle[1]); 

            SatisfyDistanceConstraint(particle[0], DOWN,  particle[2]); 

            SatisfyDistanceConstraint(particle[2], RIGHT, particle[3]); 

            // etc. 

            break; 

        case 1: 

            SatisfyDistanceConstraint(particle[0], DOWN, particle[1]); 

            SatisfyDistanceConstraint(particle[2], DOWN, particle[3]); 

            break; 

        case 2: 

            ... 

        case 4: 

            break; 

    } 

    for (int i = 0; i < 4; ++i) stream.Append(particle[i]); 

} 
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The user can also cut cloth by dragging the mouse over it from one window point to 
another. To compute the cut, these two window points are back-projected to their 
corresponding world space positions to define a 3D triangle together with the 
camera origin. This triangle acts as a cutter (see Figure 6); every cloth spring it 
intersects is suppressed. 

 

 

Figure 6. The Triangle Defined by the Mouse Motion Acts as 
a Cutter 

 

Which springs intersect with the cutter is determined during the first pass through 
Step 3a that immediately follows the user cutting action. A spring is suppressed by 
modifying the connection configurations of the two corresponding particles. 

During the rendering pass, if a triangle has edges that correspond to springs that 
have been previously suppressed, it is tessellated on-the-fly into up to four new 
triangles to approximate the cut: The positions of the new vertices are not based on 
the exact cut location, but simply set as if springs were always cut in their middle. 
These new vertices are not collided against the environment to save computation 
time. 
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