

February 2007

GPU Christmas
Tree Rendering

Evan Hart
ehart@nvidia.com

February 2007 ii

Document Change History

Version Date Responsible Reason for Change
0.9 2/20/2007 Ehart Betarelease

January 2007 1

Beta Release
This is the beta version of the Christmas tree rendering whitepaper. A final version
will be released in a later SDK with additional information and diagrams. Please visit
the NVIDIA developer web page for updates:

http://developer.nvidia.com

Abstract
The xmas_tree sample in the NVIDIA OpenGL SDK demonstrates how to render
a Christmas tree on a GeForce 8800 or later GPU. The sample brings together
several techniques in order to effectively render the tree, including deferred shading
and geometry shaders.

Figure 1. Real tree on left, with rendered tree on right.

 Christmas Tree Rendering

February 2007 2

Motivation
While GPU based rendering has achieved great advances over the past several years
with the introduction of shaders and floating-point computations, many everyday
objects are still not commonly rendered in real-time. This can be due to the
difficulty of the rendering the object, or the lack of the need in a game or simulation
environment. One such object that is ubiquitous for nearly one tenth of the year in a
large fraction of the world is a Christmas tree. Both its complexity and uniqueness
within a rendered environment make it an interesting object to pursue.

The complexity of rendering a good Christmas tree arises from many factors. First,
one must render a convincing looking tree, since it will be the focus. This problem is
encountered frequently, and many programmers have produced good solutions for
GPU rendering of trees. One such solution is SpeedTree™, who generously allowed
the use of their frasir fir texture for this sample. In this case, fractal generation of
the branches was chosen to make the placement of lights and ornaments easier. The
next order of complexity on a Christmas tree is the number of objects and varied
types of materials found on it. A typical tree has dozens (often more than 100)
ornaments with varying geometric and shading complexity. Reflective balls, satin
balls, crystal snow flakes, velvet ribbons, wooden nutcrackers, and candy canes all
require unique shaders. Finally, all these different materials are placed in a very
complex illumination environment with no less than fifty lights and typically several
hundred lights. This complex illumination requires high dynamic range techniques
to handle it effectively. In the end, all these complexities come together to make the
Christmas tree an interesting object to render.

More information on SpeedTree can be obtained from the website:

http://www.speedtree.com/

How Does It Work?
Unlike many other SDK samples, this sample is about using several effects together
to reach a goal, rather than implementing a single effect. The key effects used in
creating the tree are deferred shading to handle the massive number of lights, a set
of tricks used in ornament rendering, and tone mapping.

Deferred Shading
As powerful as modern GPUs are, lighting every fragment of a Christmas tree with
1000 or more lights at thirty frames per second is too much to ask. Additionally,
breaking the tree into smaller pieces that are only impacted a given set of lights is an
impossible task due to the amount of overlap in light influence. This leads to
deferred shading as the best option for illuminating the tree. Each light can be
rendered as a quad that extends to the limits of the light’s noticeable influence in the

 Christmas Tree Rendering

February 2007 3

frame buffer. To prepare for the deferred shading, all objects rendered into the
scene must store their position, normal, and material into the frame buffer. On the
lighting passes, these will all be read to allow the light sources to compute
illumination on a per-fragment basis.

The deferred shading process starts by rendering the tree geometry into a
framebuffer object. The framebuffer object contains attachments for eye-space
normals, eye-space positions, and materials. After the tree is rendered, the
ornaments are rendered into the FBO as well. As the ornaments are all simple glass
balls, no real geometry is needed. Instead, the balls are created by expanding a point
in the geometry shader, and deriving the eye-space position, and normal in the
fragment shader. The material value comes from a vertex attribute, allowing for
many different ornament materials to all be rendered in the same draw call.

Once the FBO has been filled with the geometric and material information, the
attachments are bound as textures, and a second FBO is bound as the render target.
This second FBO has a single color buffer with a high dynamic range format, and it
shares its depth buffer with the first FBO. By sharing the depth buffer, the lighting
operations are accelerated by the depth cull hardware. The first light applied to the
tree is environmental lighting; in this case, it is a directional light. This light is
applied by rendering a full-screen quad with a lighting shader. Next, the lights local
to the tree are rendered, with the total illumination being accumulated into the
frame buffer via additive alpha blending. As mentioned previously, each light is
represented as a single point, with expansion occurring in the shader. Next,
reflections are applied to all the ornaments in the frame buffer. This technique is
similar to the environmental lighting, except all pixels lacking the material properties
that require reflection are discarded. Finally, the lights themselves are accumulated
into the frame buffer. Again, each light starts as a point that is expanded in the
shaders. The light then lands in the frame buffer as a hot spot that will be utilized in
the tone mapping phase.

Tone Mapping
To display the high dynamic range rendering of the Christmas tree, the buffer must
be tone mapped to bring the colors to a displayable range. The tone mapping
algorithm used in this sample, while quite simple, is highly effective. The algorithm
works by combining a blurred image with the original image, then applying spatially
varying terms, adjusting for exposure, and finally transforming into sRGB space.

The tone mapping algorithm starts by downsampling the HDR buffer with a simple
box filter. Conveniently, automatic mipmap generation does just this. Next, the
reduced resolution HDR buffer undergoes a Gaussian blur with a large filter kernel (
7x7 or larger). Acceptable performance is achieved in this stage of the rendering
through a few tricks. First, for each level the image is reduced via box-filtering, the
number of pixels to filter is reduced by a quarter. As the blurred image does not
need much definition, using a one half resolution image is acceptable, and it reduces
the pixels to process to one quarter. Second, the Gaussian blur is a separable
operation, so it can be done in two stages by blurring horizontally, then blurring
vertically. This cuts the number of values accessed in the convolution from the
square of the width of the kernel to two times the width of the kernel. Finally,
reducing the image size has also made the effective width of the convolution larger.

 Christmas Tree Rendering

February 2007 4

This allows the use of a narrow convolution kernel. While these are great
optimizations, they are somewhat limited in this example. Since the lights on the
tree are essentially points, the reduction in resolution can lead to some aliasing and
loss of definition. A more continuous scene would likely be well suited with a lower
resolution buffer for filtering.

Once the blurred version of the scene has been computed, a shader is used to
combine the blurred image with the original and write the result to the frame buffer.
The amount of blur included in the output image is controlled by a simple user
editable parameter that is constant across the image. Next, the intensity of the
fragment is scaled down by the vignette function. This darkens portions of the
image closer to the edges of the scene, approximating an effect that occurs in vision.
Next, the fragment is scaled by an adjustable exposure constant. Finally, the linear
color space fragment is converted into sRGB space to more closely match the color
reproduction of most monitors.

Implementation Details
The sample is broken down into code for creating and managing the trees, utility
code, and code for managing the render loop and user input. The code for tree
generation and geometry management is all contained in the tree.h and tree.cpp
files. They define a class that fractally generates a tree based on several parameters,
then places lights and ornaments on it randomly. The render loop and user controls
are handled in xmas_tree.cpp. All the FBO creation, rendering, user interaction, and
display code is in this file. Finally, there is a single file GPU_timer.h that implements
a simple GPU based timing system with timer queries. These allow the application
to monitor the performance of different portions of the rendering loop.

The source code is divided into two cpp files:

• xmas_tree.cpp: This file contains the main program and the rendering
code.

• tree.cpp: This file contains the code for fractal tree generation.

Additionally, important code lies in two header files:

• tree.h: This file describes the interface for the fractal tree.

• GPU_timer.h: This file contains code for a simple GPU based stopwatch.
This code is used to measure the relative performance of different aspects
of the rendering without idling the hardware.

Finally, the demo uses shaders contained in several separate files:

• basic_vertex.glsl: This file contains the vertex shader used for
rendering the tree geometry into the deferred shader FBO.

• basic_fragment.glsl: This file contains the fragment shader used for
rendering the tree geometry into the deferred shading FBO.

 Christmas Tree Rendering

February 2007 5

• def_shade_fragment.glsl: This file contains the fragment shader
used for applying the directional light while executing the deferred shading
pass.

• def_shade_vertex.glsl: This file contains the vertex shader used for
applying the directional light while executing the deferred shading pass.

• def_shade_pt_fragment.glsl: This file contains the fragment shader
used for applying the point lights while executing the deferred shading pass.
It computes a simple phong illumination model with the normals, positions,
and materials from the deferred shading buffer.

• def_shade_pt_vertex.glsl: This file contains the vertex shader used
for applying the point lights while executing the deferred shading pass.

• def_shade_pt_geometry.glsl: This file contains the geometry shader
used for applying the point lights while executing the deferred shading pass.
This shader expands the point to cover the volume of light influence, and
clamps it to the near plane.

• display_fragment.glsl: This fragment shader handles the tone
mapping operations to display the object in the viewport.

• filter_fragment.glsl: This fragment shader applies a 1-dimensional
Gaussian blur. The direction and width of the blur is based on a uniforms.

• light_vertex.glsl: This is the vertex shader for the light points. It
handles the attenuation and size of the lights.

• light_geometry.glsl: This is the geometry shader for the light points.
It handles the expansion of the light points.

• light_fragment.glsl: This is the fragment shader for the light points.
It shapes the light points into a circle.

• ornament_vertex.glsl: This is the vertex shader file for ornaments.

• ornament_fragment.glsl: This is the fragment shader file for
ornaments. It uses discard to shape the ornament. It also computes the
surface normal and position.

• ornament_geometry.glsl: This is the geometry shader file for
ornaments. It expands the ornament point into a quad, and sets edge
coordinates.

• pp_vertex.glsl: This is the post-processing vertex shader. It is used for
drawing a fullscreen quad at the front of the depth range, with texture
coordinates ranging from (0,0) to (1,1). It is used by the filtering, tone
mapping, directional lighting, and reflection shaders.

• reflection_fragment.glsl: This shader is used to apply a cubic environment
map to any pixels with a specular material. It biases the lod based on the
specular exponent to approximate roughness.

 Christmas Tree Rendering

February 2007 6

Running the Sample
The sample should be run from the bin directory, so it can find its shaders and
textures. The program can optionally take a filename as its only argument. This file
will be parsed as a tree definition file. The tree definition file can be used to change
the size and shape of the tree, along with the color and number of ornaments and
lights.

Once launched, the Christmas tree sample will print several status messages to the
command line, and then an overview of the available keyboard commands. In
addition to the keyboard commands, the right mouse button brings up a menu of
the commands, and a selector for the HDR format to use.

Navigation in the sample is controlled only by keyboard. The viewpoint can be
moved in the Y plane by using the w, a, s, and d keys, and it can be moved up and
down with the PageUp and PageDn keys. Additional information demonstrating the
phases of the rendering, the time of the different phases, and the parameters used in
the tone mapping stage can be displayed by using the i, t, and v keys respectively.
The phase of rendering displayed in the intermediate panel is controlled by the x
key. Finally, ornaments, branches, needles, lighting, and reflections can all be toggled
by keys.

Controls

Control Action
Right Mouse Button Application menu

Escape Quit the sample

W Move viewer forward

A Move viewer left

S Move viewer back

D Move viewer right

+ Increase exposure

- Decrease exposure

[Decrease sigma

] Increase sigma

< Decrease blur amount

> Increase blur amount

; Decrease blur buffer size

‘ Increase blur buffer size

T Toggle the display of the timer graph

V Toggle display of current HDR parameters

I Toggle display of intermediate results

B Toggle drawing the tree branches

F Toggles drawing the needles

O Toggle drawing the ornaments

R Toggle drawing the reflections

L Toggle drawing the lights

 Christmas Tree Rendering

February 2007 7

X Change the current intermediate displayed

Space Toggle continuous animation of the object

Performance
The sample runs at 150 frames per second on a GeForce 8800 GTX with a window
size of 600 by 800 with the eye position zoomed out to allow the entire tree to be
viewed. When the sample is maximized to cover a 1920x1200 display and the
viewpoint is drawn so that the entire viewport is covered by the tree, the
performance drops to 20 frames per second. The major bottlenecks for this sample
are the rendering of the tree into the multiple render target FBO, and the lighting of
the scene with the 1200 lights. The tree bottleneck is fill rate and bandwidth related,
so choosing the smallest possible render target formats helps it. The lighting stage
has a similar bottleneck, and using packed floats instead of 16-bit or 32-bit floats
provides a significant performance advantage.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and NVIDIA Quadro are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

