

February 2008

OpenGL SDK
Guide

February 2008 ii

Document Change History

Version Date Responsible Reason for Change
0.9 2/21/2007 Ehart Beta release

1.1 1/31/2008 Ehart Feb 2008 release

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Overview
The samples in the OpenGL SDK serve two purposes. First, they demonstrate how
to use the OpenGL API and its extensions to access the newest hardware features.
Secondly, the SDK samples strive to show interesting and unique techniques that
can be integrated into an application. This overview guide focuses primarily on the
former issue, describing the samples intended to teach API usage. Additionally, it
catalogues the API features used by more complicated effects, and it points to any
additional documentation explaining those rendering effects.

Updated versions of the SDK will be available on NVIDIA’s developer website at:

http://developer.nvidia.com

February 2008 2

SDK Structure
The SDK is broken into four sub-components represented in the directory
hierarchy of the SDK. The first component is the common code directory. This
directory contains components reused throughout the SDK. These include model
loading, image loading, math, and user interaction code. The next component in the
SDK is the media directory. The media directory contains shared data files, like
models and textures. The next component is the external code directory. This
directory contains widely available libraries which the SDK uses to support common
tasks like window management and file access. The final component in the SDK is
the sample code. All samples can be built from a single solution file, release.sln.

Common Code
The common code for the SDK is intended to encompass operations that most
SDK samples require. The intent is to provide a common set of tools so that
anyone familiar with a single sample will be able to easily understand a different
sample. The majority of the common code been placed in the “nv” namespace to
prevent collisions and make reuse simpler, but some minor pieces from older SDKs
have been brought forward and are not contained in the standard namespace.

nvImage
The nvImage library is a tool for loading images for textures. It supports png, dds,
and hdr image formats. This provides it with a variety of capabilities, including
compressed textures, cubemaps, pre-generated mipmaps, volume textures, and a
wide array of bit depths. The interface returns pointers to data formatted for direct
use by glTexImage calls. nvImage is built as a shared library, so a single instance can
be shared by all samples.

nvModel
The nvModel library is a tool for loading meshes. It presently only support
polygonal objects in the obj format. The library supports reading normals and
texture coordinates from the file, but it also supports the automatic generation of
normals and tangent space vectors. The library will compile a mesh into a format
acceptable for use with vertex arrays. Additionally, nvModel will produce index lists
supporting point, edge, triangle, and triangle adjacency versions of the model. As
with nvImage, nvModel is built as a shared library.

nvMath
nvMath is a collection of header files designed to support the common math needs
of 3D applications. It is broken into nvMath.h, nvVector.h (tuple support),
nvMatrix.h (matrix support, and nvQuaternion.h (quaternion support). These
components provide templated vector, matrix, and quaternion math classes and the

February 2008 3

utility functions to operate on them. The classes and functions are all designed to
match the naming and behavior of GLSL and Cg as closely as possible to make the
sample code and shader code behave consistently.

nvWidgets
nvWidgets is an immediate mode user interface library. The immediate mode style
of the library reduces the setup and interaction code within the sample, making it
easier to follow the key details in the sample. nvWidgets is not intended to be a
complex GUI toolkit, instead it is intended to only provide enough support to make
samples more easily comprehensible.

GLEW
GLEW is the OpenGL Extensions Wrangler. This code it not created by NVIDIA,
but the version shipped with the SDK occasionally has modifications to support the
latest NVIDIA extensions. The license and copyright for GLEW are included in the
header files for the library. The version shipped with this SDK is 1.5, plus a minor
fix related to the glProgramVertexLimitNV entrypoint..

GLEW provides a mechanism for querying and initializing OpenGL extensions, and
core versions newer than are supported in the platform’s ABI definition. GLEW
parses extension specifications to produce the source for the extension library. The
SDK only contains the generated source, and not the generation scripts. To obtain
the generation scripts, or for more information about GLEW, please visit the
homepage at: http://glew.sourceforge.net/.

External Libraries
The external libraries contained in the external directory are not developed by
NVIDIA. The copyright and license information is contained in the headers for all
external libraries. They are common libraries used by many other projects, and they
may be safely replaced with alternate versions of the ones provided with the SDK.
The headers, libs, and dlls are the versions the SDK has been tested against, and
they are provided for convenience. The external libraries provided with the SDK
are:

 Libpng – PNG loading library
 Libpng home: http://www.libpng.org/pub/png/libpng.html

 Zlib – compression library used by libpng
 Zlib home: http://www.zlib.net/

 GLUT – OpenGL Utility Toolkit for managing OpenGL windows

For zlib and libpng, the compiled binaries provided are from the GnuWin32 project
at http://gnuwin32.sourceforge.net/.

February 2008 4

Media Files
Some of the texture files for the SDK originate from external sources. The
following list identifies them and provides links to the original source.

 Paul Debevec’s Light probe images - http://www.debevec.org/Probes/
 rnl_cross.dds
 grace_new_cross.hdr

 SpeedTree - http://www.speedtree.com/
 FraserFirNeedles_MD_1.dds
 FraserFirNeedles_MD_1_Normal.dds

Cg 2.0
The full SDK comes with an installer for Cg 2.0. This version supports the new
features of the GeForce 8000 series GPUs. This version has been qualified to work
with the samples in this SDK.

Running the Samples
Most samples in the SDK require GeForce 8000 series or later hardware. In many
cases they can be run in software emulation on older hardware if necessary. This
support can be enabled by the NVemulate tool located at:

http://developer.nvidia.com/object/nvemulate.html

February 2008 5

Samples

Cascaded Shadow Maps

This sample demonstrates the use of cascading shadow maps to more gain a better
distribution of shadow texels through the scene. The included whitepaper provides
an overview of the algorithm for computing the shadow splits and utilizing them in
a shader to render the scene. In addition to the cascading shadow maps, this sample
demonstrates a few different filtering methods to show how they interact with
different shadow map configurations.

Features used
 GL_EXT_gpu_shader4
 GL_EXT_texture_array
 GL_EXT_framebuffer_object
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

W Move viewer forward

A Move viewer left

S Move viewer right

D Move viewer back

Space Move the viewer up

1 Use only one shadow buffer

2 Use two shadow buffers

February 2008 6

3 Use three shadow buffers

4 Use four shadow buffers

+ Increase the split weight

- Decrease the split weight

Cg Geometry Program

This sample demonstrates how to use geometry programs with Cg. Specifically, it
demonstrates compiling the programs to the GL_NV_gpu_program4 profile.
Included in the shader programs with this sample are: Bezier curve tessellation, b-
spline curve tessellation, silhouette determination, and fin generation.

Features used
 GL_NV_gpu_program4

 GL_NV_geometry_program4 (part of GL_NV_gpu_program4)
 GL_ARB_vertex_program
 GL_ARB_fragment_program
 GL_NV_texture_rectangle
 GL_ARB_texture_float
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

W Toggle rendering in wireframe

M Toggle between rendering the model and rendering simple

February 2008 7

geometry

P Toggle drawing with a geometry program

O Toggle drawing the original geometry

Space Toggle continuous animation of the object

+ Increase the number of subdivisions used for curve tessellation

- Decrease the number of subdivisions used for curve tessellation

Cg Isosurf

This sample demonstrates how to perform iso-surface extraction from three
different field sources. The iso-surface is produced through an algorithm called
marching tetrahedra, using the geometry shader. The geometry is recreated
dynamically each frame.

Marching Tetrahedra Algorithm
Background

Iso-surface extraction is a way to create a polygonal representation of a continuous
field, such as those produced by mathematical description such as implicit surfaces
or direct measurement such as medical scan. An iso-surface attempts to display the
surface in the volume for which all points are at a single value, the iso-value.
Changing the iso-value will produce different surfaces

Marching tetrahedra produces an iso-surface by filling the space of the field with
tightly packed tetrahedral. At each vertex of the tetrahedra the value of the field at
that point is compared to the iso-value to produce a Boolean value. If the Boolean is
different for the vertices of a single tetrahedron, then the iso-surface must have
passed through the area represented by that tetrahedron. Assuming that the iso-
surface is planar within the tetrahedron, the intersection will form either a triangle or
a quadrilateral.

February 2008 8

GPU Implementaion
Iso-surface extraction is implemented on the GPU using a combination of the
vertex shader and the geometry shader. The base geometry is a fine
tetrahedralization of the volume, where the four vertices of the each tetrahedron are
submitted as a line with adjacency. The vertex shader samples the field, compares it
to the iso-value, and transforms the vertex. The geometry shader performs a logical
or of the results from the iso-value compares. This four bit integer determines the
geometry produced by the geometry shader. If all the bits are set, a value of fifteen,
or all the bits are not set, a value of zero, then the tetrahedron does not intersect the
iso-surface, and no geometry is generated. Otherwise, the 4-bit value indexes into a
texture that contains a table of values describing the geometry produced. These
eight values pulled from the table describe the three or four edges which intersect
the iso-value. The values correspond to the indices of the vertices that bound the
edge. The fourth edge is special, in that it is encoded such that its first value, the
seventh overall, will always be non-zero if the intersection is a quadrilateral. This
allows it to be used as a condition for whether to output a fourth vertex. To
produce the output primitive, the shader solves a linear equation on the three or
four edges to interpolate the vertex position to the point where the field would
intersect the edge. These values are output as the vertices for the generated
primitives

Swizzling
In addition to implementing the straight iso-surface extraction, this sample also
demonstrates a technique for optimizing volume traversals. Instead of rendering a
set of tetrahedral that march through the grid in row order, it reorders them to
improve locality of reference. This works by a bit swizzling technique. In this
sample, the volume is traversed as a set of 8 miniature volumes (2 x 2 x 2
configuration) each containing six tetrahedral. These blocks are then stepped in a
regular row-ordered traversal. The improvement in cache behavior results in up to a
thirty percent increase in performance. Other traversal orders are possible, but the
one used in this sample provides a good compromise between complexity and
performance, as it is within five percent of the best measured performance.

Features used
 GL_NV_gpu_program4

 GL_NV_geometry_program4 (part of GL_NV_gpu_program4)
 GL_ARB_vertex_program
 GL_ARB_fragment_program
 GL_ARB_texture_rectangle
 GL_ARB_texture_float
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

February 2008 9

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

W Toggle rendering in wireframe

V Toggle using a vertex program to render the geometry

F Toggle using a fragment program to render the geometry

G Toggle using a geometry program to render the geometry

P Toggle drawing geometry to just drawing points

L Toggle drawing the geometry for tetrahedrons to layers

Space Toggle continuous animation of the object

+ Increase the isovalue

- Decrease the isovalue

] Increase the number of primitives

[Decrease the number of primitives

1 Switch to the metaballs program

2 Switch to the volume texture program

3 Switch to the procedural program

Compress Normal DXT

Compress NormalDXT demonstrates the online compression of normal maps into
DXT format textures with a shader on the GPU. Importantly, it uses a separate
alpha channel or a two-component compressed format to improve the quality of the
normal map over the standard RGB compression scheme. The sample also
demonstrates the use of integer operations within the pixel shader. Once the
compression has been done in the pixel shader, the compressed block is written out
to an RGBA unsigned 16-bit integer texture. A pixel buffer object is then used to
transfer the image data to the compressed texture object, avoiding a host readback
while converting between the different surface formats.

February 2008 10

GPU Texture Compression Algorithm
The texture compression algorithms used in this sample are detailed in a whitepaper
published at: http://developer.nvidia.com/object/real-time-normalmap-
dxtcompression.html

Features used
 GL_ARB_vertex_program
 GL_ARB_fragment_program
 GL_EXT_framebuffer_object
 GL_NV_gpu_program4
 GL_ARB_pixel_buffer_object
 GL_ARB_texture_compression
 GL_EXT_texture_compression_s3tc
 GL_EXT_texture_integer
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

+ Zoom into the texture

- Zoom out from the texture

B Benchmark the compress operation

R Reset the texture position

Left Arrow Scroll the texture left

Right Arrow Scroll the texture right

Up Arrow Scroll the texture up

Down Arrow Scroll the texture down

February 2008 11

Compress YCoCg DXT

Compress YCoCgDXT demonstrates the online compression of DXT format
textures with a shader on the GPU. It provides a mode that uses an alternate color
space from the standard RGB one to provide better compression results. The
sample also demonstrates the use of integer operations within the pixel shader.
Once the compression has been done in the pixel shader, the compressed block is
written out to an RGBA unsigned 16-bit integer texture. A pixel buffer object is
then used to transfer the image data to the compressed texture object, avoiding a
host readback while converting between the different surface formats.

GPU Texture Compression Algorithm
The texture compression algorithms used in this sample are detailed in a whitepaper
published at: http://developer.nvidia.com/object/real-time-ycocg-dxt-
compression.html.

Features used
 GL_ARB_vertex_program
 GL_ARB_fragment_program
 GL_EXT_framebuffer_object
 GL_NV_gpu_program4
 GL_ARB_pixel_buffer_object
 GL_ARB_texture_compression
 GL_EXT_texture_compression_s3tc
 GL_EXT_texture_integer
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

February 2008 12

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

+ Zoom into the texture

- Zoom out from the texture

B Benchmark the compress operation

R Reset the texture position

Left Arrow Scroll the texture left

Right Arrow Scroll the texture right

Up Arrow Scroll the texture up

Down Arrow Scroll the texture down

Dual Depth Peeling

Dual Depth Peeling demonstrates how the new capabilities in the GeForce
8000series can be utilized to cut the number of depth peeling asses in half when
attempting to render high quality transparency. The sample also provides an
implementation of regular depth peeling and some alternate approximations for
transparency for the purposes of comparison. This sample includes a whitepaper
fully detailing the algorithms used.

Features used
 GL_ARB_texture_rectangle
 GL_ARB_texture_float
 GL_NV_float_buffer
 GL_NV_depth_buffer_float
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

February 2008 13

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

A Decrease the model opacity

D Increase the model opacity

1 Dual depth peeling mode

2 Regular depth peeling mode

3 Weighted average mode

4 Weighted sum mode

R Reload shaders

B Change background color

HDR

The HDR sample demonstrates the use new GeForce 8000 series features in the
rendering and display of a high-dynamic range scene. The sample uses the
GL_EXT_packed_float and GL_EXT_texture_shared_exponent extensions to
optimize the storage of floating point framebuffers and textures. The sample also
demonstrates the use of GL_EXT_framebuffer_multisample with these and other
high dynamic range formats. Finally, in addition to the bloom and exposure
operations frequently used in HDR rendering, this sample implements an effect that
approximates streaming rays one would often see emanating from bright objects.

Features used
 GL_ARB_vertex_program
 GL_ARB_fragment_program
 GL_EXT_framebuffer_object
 GL_EXT_framebuffer_multisample
 GL_EXT_framebuffer_blit
 GL_NV_framebuffer_multisample_coverage
 OpenGL version 2.0

Controls

February 2008 14

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

W Toggle rendering in wireframe

A Toggle MSAA 4x <-> CSAA or supersampling

F Toggle using a fragment program

C CSAA 16x only (FBO size factor = 1 and no kernel filter used)

S CSAA 16x with supersampling (FBO size factor = 2x + kernel
filter)

- Cycle backward through the HW MSAA/CSAA modes for
supersampled FBO

+ Cycle forward through the HW MSAA/CSAA modes for
supersampled FBO

9 Decrease the supersample size factor

0 Increase the supersample size factor

1 Select single bilinear downsample technique

2 Select five bilinear tap downasmple technique

3 Select advanced downsample technique

Space Toggle continuous animation of the object

Multisample Coverage

Multisample_coverage demonstrates the use of the
WGL_NV_multisample_coverage extension. This extension allows an application
to request Coverage Sample Anti-Aliasing (CSAA) for the pixel format in a window.
CSAA allows a higher number of coverage samples to be combined with color and
depth samples to generate a higher quality anti-aliased image with less cost.

Features used
 WGL_NV_multisample_coverage

February 2008 15

 OpenGL version 2.0

Controls

Control Action
Escape Quit the sample

Render to 3D Texture

Render to 3D Texture demonstrates the use of GL_EXT_framebuffer_object to
render directly into slices of a three dimensional texture. In this case, a simple wave
simulation is rendered into the texture. The texture is visualized by a shader
marching rays through the texture.

Features used
 GL_ARB_vertex_program
 GL_ARB_fragment_program
 GL_EXT_framebuffer_object
 GL_NV_gpu_program4
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

February 2008 16

Escape Quit the sample

A Toggle automatically seeding the volume with splats

R Reset the simulation

C Draw the bounding cube in wireframe

X Add a splat to the volume

Enter Advance the simulation one step

Space Toggle continuous update of the simulation

Simple Depth Float

The simple_depth_float sample demonstrates how best to utilize the precision of a
floating point depth buffer. The sample renders the test scene to an FBO with one
of three depth buffer configurations (16 bit integer, 24 bit integer, and 32 bit
floating point). The sample also demonstrates the differences between using the
typical mapping of depth values into the depth buffer (near plan to 0 and far plane
to 1) and the an inverse mapping (near plane to 1 and far plane to 0). Due to the
concentration of precision close to zero in a floating point frame buffer, the inverse
mapping provides significantly better results when attempting to eliminate depth
fighting typically seen with distant objects.

Features used
 GL_EXT_framebuffer_object
 GL_NV_depth_float
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Escape Quit the sample

W Toggle rendering in wireframe

February 2008 17

D Toggle displaying the depth buffer

I Toggle using an inverted depth

M Toggle using the projection matrix to invert the depth

Space Toggle continuous animation of the object

Simple Framebuffer Object

The simple_framebuffer_object sample demonstrates how to discover and use
formats for framebuffer objects. It covers the creation and use of multisample
framebuffer objects, framebuffer objects with floating point formats, and
framebuffer objects with sRGB formats.

Features used
 GL_EXT_framebuffer_object
 GL_NV_depth_float
 GL_EXT_framebuffer_multisample
 GL_EXT_framebuffer_blit
 GL_NV_framebuffer_multisample_ceverage
 GL_ARB_fragment_program
 GL_ARB_texture_float
 GL_EXT_packed_float
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

W Toggle rendering in wireframe

February 2008 18

D Toggle displaying the depth buffer

O Toggle overlaying the rendered texture

+ Increase the size of the FBO

- Decrease the size of the FBO

Space Toggle continuous animation of the object

Simple Geometry Program

Simple_geometry_program demonstrates the use of the GL_NV_gpu_program4
extension to control the geometry shader.

Features used
 GL_ARB_vertex_program
 GL_ARB_fragment_program
 GL_NV_gpu_program4

 GL_NV_geometry_program4
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

W Toggle rendering in wireframe

P Toggle the geometry and vertex programs on/off

+ Increase the number of segments for curve tessellation

- Decrease the number of segments for curve tessellation

Space Toggle continuous animation of the object

February 2008 19

Simple Glow

Simple_glow shows a highlight shader using framebuffer object and Cg. The
whitepaper in the sample’s doc directory explains the technique in detail.

Features used
 GL_EXT_framebuffer_object
 GL_ARB_vertex_program
 GL_ARB_fragment_program
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

W Toggle wireframe

1 Decrease the filter width

2 Increase the filter width

3 Decrease the size of the FBO

4 Increase the size of the FBO

- Decrease the blend factor for the glow

+ Increase the blend factor for the glow

Space Toggle continuous animation

February 2008 20

Simple Texture Array

The simple_texture_array sample demonstrates the use of GL_EXT_texture_array
to create multilayered array textures. It demonstrates the creation and loading of the
texture and the use within a shader.

Features used
 GL_ARB_vertex_program
 GL_ARB_fragment_program
 GL_NV_gpu_program4

 GL_NV_geometry_program4
 GL_EXT_texture_array
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

W Toggle rendering in wireframe

F Toggle the fragment program on/off

L Toggle between the lerping and non-lerping fragment programs

Space Toggle continuous animation of the object

February 2008 21

Simple Texture Buffer Object

The simple_texture_buffer_object sample demonstrates the use of
GL_EXT_texture_buffer_object to access large blocks of data from within the
vertex shader. In this sample, the texture buffer is used to contain irregularly
indexed vertex data, with the indexing all handled from within the shader. Note that
the performance when fetching from the texture buffer object is significantly less
than the performance when using vertex buffer objects to supply the geometry. This
is because the model and shader in this sample are not bound by the vertex attribute
fetch stage of the pipeline. Instead, they are bound by the shader, so the additional
work of fetching the vertices reduces the performance. Under certain scenarios,
where the hardware is bottlenecked on vertex attribute fetching, using a texture
buffer object to hold some of the attributes may provide a performance advantage.

Features used
 GL_EXT_gpu_shader4
 GL_EXT_texture_buffer_object
 OpenGL version 2.0

Controls

Control Action
Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

W Toggle rendering in wireframe

B Toggle between rendering with texture buffers and vertex
buffers

Space Toggle continuous animation of the object

February 2008 22

Tessellation

This sample demonstrates the tessellation of Bezier patches with a vertex shader.
The patch data is stored using GL_EXT_bindable_uniform, and the rendering of
the patches utilizes GL_EXT_draw_instanced to render the multiple patches in a
single draw call.

Features used
 GL_EXT_gpu_shader4
 GL_EXT_bindable_uniform
 GL_EXT_draw_instanced
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

w Toggle displaying wireframe

1 Toggle drawing the control mesh

2 Toggle drawing the GLUT reference teapot

February 2008 23

Transform Feedback Fractal

This sample demonstrates how an application can use a feedback loop with the
GL_NV_transform_feedback extension to generate large amounts of geometry that
cannot be generated by a single pass through the geometry shader.

Features used
 GL_ARB_vertex_program
 GL_ARB_fragment_program
 GL_NV_gpu_program4

 GL_NV_geometry_program4
 GL_NV_transform_feedback
 GL_ARB_texture_float
 OpenGL version 2.0

Controls

Control Action
Right Mouse Button Application menu

Left Mouse Button Rotate object

Shift + Left Mouse Button Pan object in front of the camera

Control + Left Mouse Button Dolly the object toward/away from the camera

Escape Quit the sample

w Toggle displaying wireframe

l Toggle lighting the mesh

c Toggle continuous tessellation

+ Increase tessellation level

- Decrease tessellation level

] Increase random transform scale

[Decrease random transform scale

r Reset values

s Step forward through the subdivision steps (only applicable
when continuous subdivision is not enabled)

February 2008 24

Space Toggle continuous animation of the object

Christmas Tree Renderer

This sample demonstrates the use of deferred shading with framebuffer objects to
render a Christmas tree. The sample has its own whitepaper describing the
techniques and steps in detail.

Features used
 GL_EXT_gpu_shader4
 GL_EXT_geometry_shader4
 GL_EXT_packed_float
 GL_EXT_framebuffer_object
 GL_ARB_texture_float
 OpenGL version 2.1

Controls

Control Action
Right Mouse Button Application menu

Escape Quit the sample

w Move viewer forward

a Move viewer left

s Move viewer back

d Move viewer right

+ Increase exposure

February 2008 25

- Decrease exposure

[Decrease sigma

] Increase sigma

< Decrease blur amount

> Increase blur amount

; Decrease blur buffer size

‘ Increase blur buffer size

t Toggle the display of the timer graph

v Toggle display of current HDR parameters

i Toggle display of intermediate results

b Toggle drawing the tree branches

f Toggles drawing the needles

o Toggle drawing the ornaments

r Toggle drawing the reflections

l Toggle drawing the lights

x Change the current intermediate displayed

Space Toggle continuous animation of the object

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and NVIDIA Quadro are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

