

February 2007
WP-03012-001_v01

White Paper

Perlin Fire

Perlin Fire

ii WP-03012-001_v01
 February 15, 2007

Document Change History

Version Date Responsible Reason for Change
01 February 15, 2007 AT, CK Initial release

Go to sdkfeedback@nvidia.com to provide feedback on Perlin Fire.

WP-03012-001_v01 1
February 15, 200

Perlin Fire

Abstract
Volumetric effects such as fire and explosions play a significant role in modern
interactive media applications. Typically, these applications use simple particle
systems with varying textures to model these effects—but with unrealistic results.

The approach for fire described in this white paper uses an improved Perlin noise
algorithm (suggested by Ken Perlin [1] and originally implemented by Yury Uralsky
in an offline [3] algorithm). This method renders realistically animated fully
procedural fire, with individual uniquely animated flame shapes generated in a pixel
shader that uses three-dimensional simplex flow noise or four-dimensional simplex
noise. The improved Perlin noise algorithm requires many complex scalar
computations, making it a great match for the scalar architecture of the NVIDIA®
GeForce® 8800 GPU. Coupled with the robust shader horsepower of the GeForce
8800, this algorithm can now be implemented for real-time effects.

Andrei Tatarinov, atatarinov@nvidia.com
NVIDIA Corporation

Perlin Fire

2 WP-03012-001_v01
 February 15, 2007

Motivation
Most fire effects in current interactive media applications are sprite-based or
billboard-based. These effects use a set of two-dimensional animated images to
create an illusion of real-life volumetric fire. When the images are placed well, the
fire can be very believable.

Unfortunately, interacting with its environment can shatter the fire’s impression.
Unpleasant artifacts such as banding can appear and the sprite-based nature of the
effect can show up. The screenshot in Figure 1 shows the possible artifacts of the
sprite-based approach.

Figure 1. Sprite-Based Fire Effect Used in Max Payne 2

The improved Perlin noise algorithm discussed in this paper is fully volumetric, so it
does away with many of the banding artifacts and does not have any predictable
animation patterns. It is rendered using a ray-marching algorithm through a volume
filled with fire, and it uses jittering to avoid banding.

How Does It Work?
Our suggested approach uses Perlin noise to perturb a basic fire shape created with
a profile texture (Figure 2, Left), which is the only predefined texture in this
algorithm. The profile texture controls the shape, color, and intensity of the fire.
There are no restrictions on the size and shape of the profile texture and the artist
can customize it to achieve the desired look and feel.

By sweeping this two-dimensional representation around the y-axis, we can create a
cylindrical unit fire shape (Figure 2, Right). The dimensions of the unit volume are
[-0.5; 0.5] for the horizontal axes x and z, and [0.1] for the vertical y-axis. Each
rectangular volume, which contains a fire, is mapped into this unit volume.

Perlin Fire

WP-03017-001_v01 3
February 15, 2007

Figure 2. Left: Profile Texture. Right: Unit Fire Shape

However, calculating traditional Perlin noise in four dimensions is extremely
expensive. Using simplex Perlin noise, we can significantly reduce the number of
interpolations needed to compute a noise value. For a space with N dimensions we
need to interpolate only (N+1) values for simplex Perlin noise—instead of 2N values,
as in the case of traditional Perlin noise.

Note: Simplex in N-dimensional space is the simplest and most compact shape that can
be repeated to fill the entire space. It contains as few corners as possible, much
fewer than a hypercube.

Calculating Perlin noise requires a large number of random numbers, which are
generally too expensive to compute in real time. Instead, we use a permutation
texture—a two-dimensional look-up texture filled with precomputed random
numbers. To associate each simplex grid point with a gradient vector, we use the
coordinates of a point as an index into the permutation texture to compute a hash
value. The hash value is then used as an index into a look-up table of predefined
gradient vectors.

For each pixel in the fire volume, a ray-march is performed. Each ray’s initial
position is shifted according to a value in a jittering pattern filled with noise. For
each ray, a number of equal-length steps are performed. At each step, the obtained
ray position is used as the texture coordinates for the unit fire volume and for the
computation of the noise values.

Several octaves of Perlin noise are computed at each step and summed up with the
given weights, and this sum is used to displace the unit volume texture coordinates
along the y-axis. These coordinates in turn are used to obtain a color for a given
point. The color of a pixel is considered the integrated sum of all the colors
calculated during the ray-marching. The algorithm stops tracking a ray when it
encounters an obstacle or when it reaches the unit fire volume boundaries.

Perlin Fire

4 WP-03012-001_v01
 February 15, 2007

Implementation Details
There are two files that implement the algorithm. PerlinFire.cpp prepares the
scene and all the required resources. It then renders a fire volume, applying one of
the techniques described in the effect file, PerlinFire.x.

The effect file, PerlinFire.x, contains the following routines:

 simplex3D: This routine computes four vertices of a 3D simplex, which
contains a given point.

 simplex4D: This routine computes four vertices of a 4D simplex, which
contains a given point.

 hash: This routine computes a hash value for a given grid point.
 snoise3D: This routine computes the 3D simplex Perlin noise value for a given

point in three-dimensional space.
 snoise3Dflow: This routine computes the 3D simplex Perlin flow noise value

for a given point in three-dimensional space. The flow noise gradient vectors are
rotated around the y-axis to imitate the noise changing in time.

 snoise4D: This routine computes the 4D simplex Perlin noise value for a given
point in four-dimensional space.

 turbulence3D, turbulence3Dflow, and turbulence4D: These routines
compute turbulence noise values (a weighted sum of several octaves of noise).

 PerlinFire3DPS, PerlinFire3DFlowPS, and PerlinFire4D: These are
the pixel shader routines, which perform the ray-marching algorithm.

References
[1] Ken Perlin

“Noise Hardware”

[2] Stefan Gustavson, Linkoping University, Sweden

“Simplex Noise Demystified”

[3] Yury Uralsky, NVIDIA Corporation
“Volumetric Fire”

WP-03012-001_v01 1
February 15, 200

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and GeForce are trademarks or registered trademarks of NVIDIA
Corporation in the United States and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

